• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mitigating the dissolution of V2O5 in aqueous ZnSO4 electrolyte through Ti-doping for zinc storage

    2023-02-18 01:55:50ZiheWeiXuehuaWangTingZhuPingHuLiqiangMaiaLiangZhoua
    Chinese Chemical Letters 2023年12期

    Zihe Wei ,Xuehua Wang ,Ting Zhu ,Ping Hu,d,? ,Liqiang Maia,,d ,Liang Zhoua,,d,?

    a Hubei Longzhong Laboratory,Wuhan University of Technology (Xiangyang Demonstration Zone),Xiangyang 441000,China

    b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,Wuhan 430070,China

    c School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China

    d Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory,Xianhu Hydrogen Valley,Foshan 528200,China

    Keywords:Aqueous zinc-ion batteries V2O5 cathode materials Aqueous ZnSO4 electrolyte Yolk-shell structure Ti doping

    ABSTRACT Aqueous zinc-ion batteries (AZIBs) have become a hotspot for electrochemical energy storage owing to the high safety,low cost,environmental friendliness,and favorable rate performance.However,the serious dissolution of cathode materials in aqueous electrolytes would lead to poor cyclability,which should be addressed before commercialization.Herein,we designed a Ti-doped V2O5 with yolk-shell microspherical structure for AZIBs.The Ti doping stabilizes the crystal structure and relieves the dissolution of V2O5 in aqueous ZnSO4 electrolyte.The optimized sample,Ti0.2V1.8O4.9,delivers a high capacity (355 mAh/g at 0.05 A/g) as well as good capacity retention (89% after 2500 cycles at 1.0 A/g).This work provides an effective strategy to mitigate the dissolution of cathode material in aqueous ZnSO4 electrolyte for cyclability enhancement.

    Gradual replacement of fossil fuels with renewable energy is an inevitable trend for alleviating energy depletion and environmental pollution.However,most renewable energy such as solar and wind are intermittent.Developing reliable energy storage technologies is able to overcome the intermittency issue [1,2].Aqueous zinc-ion battery (AZIB) represents a competitive technology for large scale energy storage because of the high theoretical capacity(820 mAh/g) as well as low redox potential (?0.76 Vvs.standard hydrogen electrode) of Zn [3].The mild and near-neutral aqueous electrolytes enable unique advantages of non-flammability,low cost,environmental friendliness,fast charging/discharging capability,and easy assembly of AZIBs [4–7].

    A series of cathode materials have been proposed for AZIBs,including manganese oxides [8–12],vanadium oxides [13–18],prussian blue analogs [19,20],and organic compounds [21,22].Among these materials,vanadium oxides attract special attentions due to the high capacity,rich crystal structures,and variable valence states.Take the layered vanadium pentoxide (V2O5) as an example,it possesses an ultrahigh theoretical capacity of 589 mAh/g [23].However,it suffers from poor cycling stability due to the dissolution of vanadium oxide in aqueous ZnSO4electrolytes [24,25].To improve the cyclability,efforts have been devoted to morphology engineering,electrolyte modification,and intercalating foreign ions/molecules into the layered structure,which are able to reduce the dissolution and stabilize the crystal structure [26–28].For example,Yangetal.found that V2O5hollow spheres outperformed commercial V2O5in cyclability and rate performance due to the higher surface area of V2O5hollow spheres [29].Temple-free yolkshell V2O5demonstrated a high capacity and ideal reversibility owing to the volume expansion alleviating ability of yolk-shell structure [30–32].Pre-intercalating various metal ions (Na+,Mg2+,Ni2+,Zn2+,etc.) and crystalline water into layered V2O5could enlarge the interlayer spacings for Zn2+transfer and storage [33–37].For example,with an enlarged interlayer spacing for Zn2+transfer,Ca2+-preintercalated V2O5manifests high capacity,decent rate performance,and long cycling life [38].In most of these studies,the improved electrochemical performances were achieved with high-price Zn(CF3SO3)2or Zn(TFSI)2electrolytes.Improving the electrochemical performance of V2O5in low-cost aqueous ZnSO4electrolyte has been rarely reported [39–41].

    Herein,we synthesize Ti-doped V2O5yolk-shell microspheres(TVO) with tunable Ti content by a spray-drying method.3.0 mol/L ZnSO4is used as the electrolyte to explore the effects of Ti doping on electrochemical performance.The yolk-shell TVO mitigates the dissolution of vanadium in aqueous electrolyte and buffers the volume change during Zn2+intercalation/de-intercalation.The yolkshell Ti0.2V1.8O4.9delivers a high capacity of 355 mAh/g at 0.05 A/g.When cycled at 1.0 A/g,89% of the reversible capacity (211 mAh/g)can be retained after 2500 cycles.Thein-situandex-situcharacterizations reveal that the doping of an appropriate amount of Ti into the lattice of vanadium pentoxides stabilizes the crystal structure.Further increasing the Ti amount lowers the specific capacity due to the reduce of active material content.AZIB pouch cells based on the Ti0.2V1.8O4.9cathode and 3.0 mol/L ZnSO4electrolyte demonstrates good cyclability under deep charging and discharging conditions.Our research offered an effective means to extend the service life of AZIBs with low-cost aqueous ZnSO4electrolyte.

    The TVO samples with different Ti contents are produced by a simple spray drying method with subsequent annealing in air.The Ti0.2V1.8O4.9displays an X-ray diffraction (XRD) pattern resembled to that of V2O5(Fig.1a).The characteristic peaks at 15.3°,20.2°,21.6°,26.1°,30.9°,32.3°,33.2° and 34.2° are associated with the (200),(010),(110),(101),(400),(011),(111) and (301) diffractions of the orthorhombic phase V2O5(PDF No.96–901–2221).For Ti0.5V1.5O4.75,besides the diffractions from the V2O5phase,additional obvious diffractions at 25.3° and 27.4° associated with the (101) plane of anatase TiO2(PDF No.96–900–9087) and (110)plane of rutile TiO2(PDF No.96–900–4143) can also be detected.The results indicate that doping a low content of Ti (Ti/(Ti+V) ≤10%) does not change the crystal structure of V2O5,while doping too much Ti (25%) leads to the formation of residue phases.The diffraction peaks located at 19.5°–21° are enlarged in Fig.1b.For V2O5,the (010) diffraction peak is located at 20.17°.When 10%Ti is doped,the diffraction shifts to 20.29°,while it shifts back to 20.23° when the Ti content is increased to 25%.It should be mentioned that although the Ti4+(61 pm) has a larger ionic radius than the V5+(54 pm),both the Ti0.2V1.8O4.9and Ti0.5V1.5O4.75show a reduced (010) lattice spacing compared to V2O5,indicating the existence of tensile stress in the Ti-doped samples [42,43].According to the Bragg equation (d=nλ/2sinθ),the (010) lattice spacing of V2O5,Ti0.2V1.8O4.9,and Ti0.5V1.5O4.75are calculated to be 4.40,4.37 and 4.38 ?A,respectively (Table S1 in Supporting information).The grain size of the samples can be determined by Scherrer equation (D=Kλ/βcosθ).The grain sizes for V2O5,Ti0.2V1.8O4.9and Ti0.5V1.5O4.75are determined to be 26.3,17.9 and 22.7 nm,respectively.The XRD Rietveld refinement results of Ti0.2V1.8O4.9and Ti0.5V1.5O4.75are provided in Fig.S1,Tables S2 and S3 (in Supporting information).From the Rietveld refinement results,one can know that the doped-Ti occupies the V sites.

    Fig.1. (a,b) XRD patterns,(c) XPS spectra,(d) Raman spectra,(e) EPR spectra,and (f) pore size distributions of V2O5,Ti0.2V1.8O4.9 and Ti0.5V1.5O4.75.

    Fig.1c presents the X-ray photoelectron spectroscopy (XPS)spectra of the samples.Both V4+(515.9 and 523.8 eV) and V5+(517.4 and 525.0 eV) exist in the three samples.The V4+content is 12.43% in V2O5and it increases with the increasing of Ti amount.For Ti0.2V1.8O4.9and Ti0.5V1.5O4.75,the V4+contents are 18.14% and 22.69%,respectively.The existence of V4+suggests the formation of oxygen vacancies in the TVO samples to keep charge neutrality[44].The V2O5,Ti0.2V1.8O4.9,and Ti0.5V1.5O4.75show almost identical Raman spectra (Fig.1d).The characteristic peaks at 478 and 697 cm?1are corresponded to the bending vibration and stretching vibration of V-O-V bond.And the peaks at 405 and 994 cm?1are associated with the V=O bonds [42,45].To further study the effects of Ti doping,electron paramagnetic resonance (EPR) has been conducted.All three samples present a peak atg=2.002 (Fig.1e),suggesting the presence of oxygen vacancies.The signal increases obviously with Ti doping amount,demonstrating that the substitution of V5+with Ti4+is accompanied by the introduction of oxygen vacancies for charge compensation [46].

    N2adsorption-desorption isotherms of the three samples (Fig.S2 in Supporting information) all match with IV-type isotherm with H3 hysteresis loop [47].The V2O5shows a pore size centered at ~2.4 nm,while the Ti0.2V1.8O4.9and Ti0.5V1.5O4.75show a bimodal pore size distribution (Fig.1f).Table S4 shows the BET surface areas of the samples.The Ti0.2V1.8O4.9possesses the highest surface area (27.05 m2/g),while the V2O5and Ti0.5V1.5O4.75show surface areas of 18.54 and 15.85 m2/g,respectively.As for the pore volume,the V2O5,Ti0.2V1.8O4.9and Ti0.5V1.5O4.75show pore volumes of 0.10,0.08 and 0.04 cm3/g,respectively.

    Scanning electron microscope (SEM) images show that the obtained V2O5(Fig.2a and Fig.S3a in Supporting information)has a porous spherical structure built up with interconnected nanoparticles with sizes of 50–100 nm.Between the interconnected nanoparticles,there are rich large pores with sizes of tens of nanometres.From a broken microsphere,a porous yolk can be observed below the porous shell,demonstrating the yolk-shell structure.Transmission electron microscopy (TEM,Fig.2b) further verifies the yolk-shell structure of V2O5.High-resolution TEM(HRTEM,Fig.2c) image shows clear lattice fringes from the (010)planes of orthorhombic V2O5.High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and the corresponding elemental mappings show that the yolk of yolkshell V2O5contains a hollow cavity in the center.Energy dispersive X-ray spectroscopy (EDS) elemental mappings (Fig.2d) show that the V and O elements distribute homogeneously in the yolk-shell microspheres.

    Fig.2. (a) SEM image,(b) TEM image,(c) HRTEM image,and (d) EDS mappings of V2O5.(e) SEM image,(f) TEM image,(g) HRTEM image,and (h) EDS mappings of Ti0.2V1.8O4.9.(i) SEM image,(j) TEM image,(k) HRTEM image,and (l) EDS mappings of Ti0.5V1.5O4.75.

    With the introduction of 10%–25% of Ti,the yolk-shell structure of the samples can be well maintained (Figs.2e,f,i and j),while the large mesopores on the surface disappear.With the introduction of 10% Ti,the grain size of the sample decreases noticeably (Fig.S3b in Supporting information),agreeing well with the XRD results.Further increasing the Ti content from 10% to 25%,the grain size increases obviously (Fig.S3c in Supporting information),which is responsible for the decrease of surface area.Different from the yolk-shell V2O5which possesses a hollow cavity in the yolk (Fig.2b),both the Ti0.2V1.8O4.9and Ti0.5V1.5O4.75possess a solid spherical yolk (Figs.2f and j).HRTEM confirms the high crystallinity of both Ti0.2V1.8O4.9(Fig.2g) and Ti0.5V1.5O4.75(Fig.2k).EDS elemental mappings (Figs.2h and l) show that the Ti distribute homogeneously in the yolk-shell microspheres,demonstrating the successful doping.

    To study the effect of Ti doping on the electrochemical performance,charge-discharge tests were performed in CR-2025 type coin cell with mild 3.0 mol/L ZnSO4electrolyte.Representative cyclic voltammetry (CV) curves of the samples are presented in Fig.S4 (Supporting information).The non-overlapping feature of CV profiles and gradual increasing of enclosed CV area indicate that all three samples experience a similar activation process.The transformations in peak position and peak intensity can be ascribed to the structure evolution of V2O5to ZnxV2O5·nH2O during the cycling,which is common for vanadium oxide based cathode materials [48–50].After five CV cycles,all three samples show two pairs of redox peaks at ~0.58/0.78 V and 0.87/1.15 V (Fig.3a).

    Fig.3. (a) The 5th cycle CV curves of V2O5,Ti0.2V1.8O4.9 and Ti0.5V1.5O4.75 at 0.1 mV/s.(b) GCD profiles of Ti0.2V1.8O4.9 at 0.2 A/g.(c) Cycling performance of V2O5,Ti0.2V1.8O4.9 and Ti0.5V1.5O4.75 at 0.2 A/g.(d) GCD curves of Ti0.2V1.8O4.9 at 1.0 A/g.(e) Cycling performances of V2O5,Ti0.2V1.8O4.9 and Ti0.5V1.5O4.75 at 1.0 A/g.(f) GCD curves of Ti0.2V1.8O4.9 at different current densities.(g) Rate performances of V2O5,Ti0.2V1.8O4.9 and Ti0.5V1.5O4.75.(h) EIS plots of V2O5,Ti0.2V1.8O4.9 and Ti0.5V1.5O4.75.

    Fig.4. The CV curves of (a) V2O5,(b) Ti0.2V1.8O4.9 and (c) Ti0.5V1.5O4.75 at different scan rates.log(i) vs. log(v) plots of (d) V2O5,(e) Ti0.2V1.8O4.9,(f) Ti0.5V1.5O4.75.

    The galvanostatic charge discharge (GCD) curves of V2O5,Ti0.2V1.8O4.9and Ti0.5V1.5O4.75at 0.2 A/g are presented in Fig.3b and Fig.S5 (Supporting information),and the cyclic performances of V2O5,Ti0.2V1.8O4.9,and Ti0.5V1.5O4.75are presented in Fig.3c.Agreeing with the CV profiles,all three samples experience an activation process during cycling (Fig.3c).The activation process is caused by the gradual structural evolution from layered V2O5to layered ZnxV2O5·H2O with expanded interlayer spacings [51–53].After the activation process,the Ti0.2V1.8O4.9displays two discharge plateaus at ~0.6 and 0.9 V,corresponding to the Zn2+intercalation.Upon cycling,the capacity of Ti0.2V1.8O4.9increases gradually until it reaches at ~250 mAh/g after ~25 cycles,after which the capacity decreases slightly.After 200 cycles at 0.2 A/g,the capacity retains at 211 mAh/g.Both the Ti0.5V1.5O4.75and V2O5show quicker capacity fading after the activation process.When cycled at 1.0 A/g for 2500 cycles,the capacity retention of Ti0.2V1.8O4.9reaches 89.4% against the highest capacity,which is much higher than those of V2O5(27.9%) and Ti0.5V1.5O4.75(43.9%) (Figs.3d and e,Fig.S6 in Supporting information).

    The GCD curves of V2O5,Ti0.2V1.8O4.9and Ti0.5V1.5O4.75under a serious of current densities (0.05–2.0 A/g) are shown in Fig.3f and Fig.S7 (Supporting information).The discharge capacities of Ti0.2V1.8O4.9reach 341,309,282,249,222 and 187 mAh/g at 0.05,0.1,0.2,0.5,1.0 and 2.0 A/g,respectively.When the current density returns to 0.05 A/g,the capacity can be recovered to 298 mAh/g(Fig.3g).Compared to the Ti0.2V1.8O4.9,the V2O5and Ti0.5V1.5O4.75exhibit lower capacities at the same current densities.The above results suggest that a proper amount of Ti doping can boost the cyclability as well as rate performance of V2O5.

    Fig.3h presents the electrochemical impedance spectroscopy(EIS) plots and the equivalent circuit is shown in Fig.S8 (Supporting information).TheRsandRctstands for the solution resistance and the charge transfer resistance between the electrode/electrolyte interface,respectively.TheRctvalues of V2O5,Ti0.2V1.8O4.9and Ti0.5V1.5O4.75are 54,85 and 119Ω,respectively.

    Vanadium oxide based cathode materials generally suffer from serious dissolution in aqueous electrolytes,which causes rapid capacity decay upon cycling.To study the dissolution of active materials in electrolyte,the cathode slices are immersed in 3.0 mol/L ZnSO4aqueous solution,where the dissolution of vanadium based oxides can be told from the color change of the electrolyte (Fig.S9 in Supporting information).After 14 days,the solution with V2O5change into light yellow,suggesting the dissolution of V2O5in aqueous ZnSO4.However,the solution with Ti0.2V1.8O4.9shows a lighter color,suggesting its mitigated dissolution.

    Figs.4a-c show the CV curves of V2O5,Ti0.2V1.8O4.9,and Ti0.5V1.5O4.75at different scan rates.According to power law equation about the relationship between the current (i) and the scanning rate (v) [54–57]:

    whereaandbare adjustable parameters.When the value ofbis close to 0.5,the electrochemical reaction is diffusion-controlled,while ifbis close to 1.0,it indicates a capacitive-controlled process [58,59].Thebvalues of the four redox peaks for V2O5are in the range of 0.83–1.04,while thebvalues for Ti0.2V1.8O4.9and Ti0.5V1.5O4.75are in the ranges of 0.78–0.94 and 0.69–0.90,respectively (Figs.4d-f).The highbvalues (closed to 1) of all three samples suggest the capacitive-controlled electrochemical processes.With the introduction of Ti,thebvalue displays a decreasing trend,demonstrating that the Ti doping enhances the diffusion contribution.

    To further study the structure transformation of Ti0.2V1.8O4.9during the charge and discharge process,ex-situXPS,in-situXRD,andin-situRaman are conducted (Fig.5).In discharged state,the high-resolution V 2p spectrum present three components from V(V),V(IV) and V(III) [60,61],with percentages of 23.68%,61.91%,and 14.36%,respectively.In charged state,only V(V) and V(IV) exist in the sample and their percentages are 49.01% and 50.91%,respectively (Fig.5a).For the high-resolution Zn 2p spectra,the sample in discharged state show much stronger peaks than that in charged state (Fig.5b).The results indicate that the Zn2+is inserted into the Ti0.2V1.8O4.9accompanied by the reduction of V species during discharge and the Zn2+is extracted from the material accompanied by the oxidation of V species during charge process.

    Fig.5. (a) V 2p and (b) Zn 2p ex-situ XPS spectra of the Ti0.2V1.8O4.9 recorded at different electrochemical states.(c) In-situ XRD pattern and (d) in-situ Raman spectra of the Ti0.2V1.8O4.9 recorded at 0.1 A/g.

    Fig.5c presents thein-situXRD pattern,from where the (101),(011) and (301) diffractions are observed at 25.9°,32.9° and 34.9°.During the discharge/charge processes,the diffraction peaks vary in intensity periodically,while the peak position shows negligible change.Thein-situXRD results demonstrate that the Zn2+is intercalated into and extracted from the Ti0.2V1.8O4.9highly reversibly.Fig.5d presents thein-situRaman spectra.The O-V-O (193,283 cm?1),V3-O (303,524 cm?1) and V-O-V (478,697 cm?1) bands weaken gradually during discharge and almost disappear when the potential reaches ~0.87 V and below.During charge,the V3-O and V-O-V bands reappear when the voltage reach over ~1.2 V.For the V=O bands (994 cm?1),it shows a same regular intensity change and shift towards lower wavenumber slightly during discharge and moves back during charge.The periodic change in thein-situRaman spectra demonstrates the excellent reversibility of Ti0.2V1.8O4.9upon Zn2+intercalation/extraction.

    To verify the application potential,a pouch cell was assembled with Ti0.2V1.8O4.9cathode and 3.0 mol/L ZnSO4electrolyte.It shows a capacity of 236 mAh/g and 95.7% capacity retention after 100 cycles at 0.1 A/g (Fig.S10 in Supporting information).These results demonstrate that doping an appropriate amount of Ti effectively enhances the cycling stability of V2O5cathode materials in aqueous ZnSO4electrolyte.Considering the good zinc storage performances in both coin cells and pouch cells,the Ti0.2V1.8O4.9cathode material shows a bright application prospect in AZIBs.

    In conclusion,we synthesized a series of yolk-shell structured titanium vanadium oxides with different Ti content by a simple spray drying method.Doping 10% of Ti reduces the lattice spacing of V2O5but does not alter the crystal structure.Introducing 25% of Ti leads to the formation of anatase/rutile residue phases.With the doping of an appropriate amount of Ti,the dissolution of V2O5in aqueous ZnSO4electrolyte can be alleviated,leading to improved cyclability.When employed as the cathode material for ZIBs,the optimized material,Ti0.2V1.8O4.9,demonstrates not only high capacity (355 mAh/g) but also ideal cyclability (89%after 2500 cycles,1.0 A/g) in aqueous ZnSO4electrolyte.Ex-situXPS,in-situXRD,andin-situRaman characterizations demonstrate the Zn2+intercalation/de-intercalation is highly reversible in the Ti0.2V1.8O4.9.This work provides an effective strategy to mitigate the dissolution issue of cathode material in aqueous electrolytes by transition metal doping.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.52102299),the Independent Innovation Project of Hubei Longzhong Laboratory (No.2022ZZ-18),the Guangdong Basic and Applied Basic Research Foundation (No.2021A1515110059),and the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (No.XHT2020-003).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108421.

    99久国产av精品国产电影| 色5月婷婷丁香| 亚洲精品一区蜜桃| 高清日韩中文字幕在线| 人人妻人人看人人澡| 高清欧美精品videossex| av在线观看视频网站免费| 老熟女久久久| 毛片一级片免费看久久久久| 国产视频内射| 晚上一个人看的免费电影| 国产成人a区在线观看| 人妻 亚洲 视频| 人妻制服诱惑在线中文字幕| 九草在线视频观看| 亚洲在久久综合| 日韩一区二区视频免费看| 在线播放无遮挡| h视频一区二区三区| 亚洲美女搞黄在线观看| 天美传媒精品一区二区| 亚洲高清免费不卡视频| 国产 精品1| 亚洲av综合色区一区| 在线观看免费视频网站a站| 99视频精品全部免费 在线| 91午夜精品亚洲一区二区三区| 色吧在线观看| 毛片一级片免费看久久久久| 亚洲高清免费不卡视频| 日韩欧美精品免费久久| 美女xxoo啪啪120秒动态图| 99九九线精品视频在线观看视频| 国产精品精品国产色婷婷| 一本一本综合久久| 人妻系列 视频| 亚洲高清免费不卡视频| 国精品久久久久久国模美| 亚洲av免费高清在线观看| 色视频www国产| 一级爰片在线观看| 网址你懂的国产日韩在线| 永久免费av网站大全| 国产精品久久久久久久电影| 精品酒店卫生间| h日本视频在线播放| 国产白丝娇喘喷水9色精品| 亚洲精品亚洲一区二区| 少妇人妻一区二区三区视频| 国产精品三级大全| 丰满少妇做爰视频| 日本爱情动作片www.在线观看| 人人妻人人爽人人添夜夜欢视频 | 日本午夜av视频| 久久影院123| 国产淫片久久久久久久久| 香蕉精品网在线| 久久久久久久亚洲中文字幕| 午夜免费男女啪啪视频观看| 精品国产一区二区三区久久久樱花 | 日韩在线高清观看一区二区三区| 午夜老司机福利剧场| 亚洲婷婷狠狠爱综合网| 日本欧美国产在线视频| 日韩欧美一区视频在线观看 | 一区二区三区精品91| 一级二级三级毛片免费看| 久久久久性生活片| 久久亚洲国产成人精品v| 国产极品天堂在线| 久久影院123| 啦啦啦啦在线视频资源| 国产欧美亚洲国产| 观看av在线不卡| 国产精品女同一区二区软件| 蜜桃久久精品国产亚洲av| 亚洲成色77777| 亚洲伊人久久精品综合| 男人和女人高潮做爰伦理| 黄色欧美视频在线观看| 国产女主播在线喷水免费视频网站| 99热网站在线观看| 国产片特级美女逼逼视频| 精品一品国产午夜福利视频| 国产真实伦视频高清在线观看| 日韩强制内射视频| 极品教师在线视频| 免费观看av网站的网址| 国产精品人妻久久久影院| 亚洲国产精品成人久久小说| 亚洲av成人精品一区久久| 亚洲电影在线观看av| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| 91精品一卡2卡3卡4卡| av网站免费在线观看视频| 色哟哟·www| 久久人人爽人人片av| 色5月婷婷丁香| 欧美日韩精品成人综合77777| 国产精品爽爽va在线观看网站| 国产成人aa在线观看| 久久毛片免费看一区二区三区| av网站免费在线观看视频| 久久久久人妻精品一区果冻| 欧美成人精品欧美一级黄| www.av在线官网国产| 看非洲黑人一级黄片| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产亚洲网站| 欧美+日韩+精品| 亚洲精品亚洲一区二区| 亚洲色图综合在线观看| 成年av动漫网址| 亚洲成人av在线免费| 亚洲精品乱久久久久久| 韩国高清视频一区二区三区| 精品国产一区二区三区久久久樱花 | 成人漫画全彩无遮挡| 蜜桃亚洲精品一区二区三区| 亚洲第一区二区三区不卡| 一本色道久久久久久精品综合| 能在线免费看毛片的网站| 久久国产精品男人的天堂亚洲 | 超碰av人人做人人爽久久| 国产精品一二三区在线看| 亚洲久久久国产精品| 视频区图区小说| 欧美成人一区二区免费高清观看| 久久精品国产a三级三级三级| 欧美最新免费一区二区三区| 久久久国产一区二区| 男人和女人高潮做爰伦理| 小蜜桃在线观看免费完整版高清| 中文字幕av成人在线电影| 国产精品三级大全| 99热这里只有是精品在线观看| 80岁老熟妇乱子伦牲交| 亚洲欧美日韩无卡精品| 丰满少妇做爰视频| 人妻一区二区av| 久久精品国产自在天天线| 啦啦啦中文免费视频观看日本| 免费观看的影片在线观看| 啦啦啦啦在线视频资源| 国产有黄有色有爽视频| 男女国产视频网站| av黄色大香蕉| 自拍偷自拍亚洲精品老妇| 男女边吃奶边做爰视频| 七月丁香在线播放| 伊人久久精品亚洲午夜| 秋霞伦理黄片| 极品少妇高潮喷水抽搐| 亚洲经典国产精华液单| 99国产精品免费福利视频| 国产成人a区在线观看| 日韩,欧美,国产一区二区三区| 亚洲久久久国产精品| 国产精品一区二区性色av| 日本wwww免费看| 人人妻人人添人人爽欧美一区卜 | 又爽又黄a免费视频| 男的添女的下面高潮视频| 偷拍熟女少妇极品色| 国产91av在线免费观看| 在线天堂最新版资源| 国产精品三级大全| 新久久久久国产一级毛片| 久久热精品热| 亚洲婷婷狠狠爱综合网| 91狼人影院| 亚洲综合色惰| 国产精品一二三区在线看| av福利片在线观看| 午夜激情久久久久久久| 亚洲成人一二三区av| 国产av码专区亚洲av| 97在线视频观看| 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 在线观看国产h片| 熟妇人妻不卡中文字幕| 久久久久久九九精品二区国产| 国产亚洲最大av| 亚洲人成网站在线播| 肉色欧美久久久久久久蜜桃| 综合色丁香网| 在线观看免费视频网站a站| 婷婷色综合大香蕉| 国产人妻一区二区三区在| 中文资源天堂在线| 各种免费的搞黄视频| 久久精品久久久久久久性| 国产在线视频一区二区| 亚洲精品国产色婷婷电影| 免费黄网站久久成人精品| 国产免费一级a男人的天堂| 黄色怎么调成土黄色| 亚洲人成网站在线播| 欧美精品人与动牲交sv欧美| 日韩免费高清中文字幕av| 欧美日本视频| 国产成人91sexporn| 免费在线观看成人毛片| 永久免费av网站大全| 欧美zozozo另类| h视频一区二区三区| 又大又黄又爽视频免费| 欧美3d第一页| 久久久久久九九精品二区国产| 深爱激情五月婷婷| 国产色婷婷99| 九九久久精品国产亚洲av麻豆| 久久久久网色| 最近中文字幕2019免费版| 亚洲国产精品一区三区| 又黄又爽又刺激的免费视频.| 成人毛片a级毛片在线播放| av国产精品久久久久影院| 大又大粗又爽又黄少妇毛片口| 这个男人来自地球电影免费观看 | 成人漫画全彩无遮挡| tube8黄色片| 哪个播放器可以免费观看大片| 欧美成人一区二区免费高清观看| 人妻一区二区av| 五月玫瑰六月丁香| 丝瓜视频免费看黄片| 亚洲精品乱码久久久久久按摩| 啦啦啦视频在线资源免费观看| av在线app专区| 在线观看免费日韩欧美大片 | 午夜免费鲁丝| 国产色婷婷99| 少妇被粗大猛烈的视频| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| 搡老乐熟女国产| av在线app专区| 少妇人妻一区二区三区视频| 日韩一区二区三区影片| 22中文网久久字幕| 在线 av 中文字幕| 亚洲成色77777| 丰满迷人的少妇在线观看| 99热这里只有是精品50| 国产精品av视频在线免费观看| 热99国产精品久久久久久7| 不卡视频在线观看欧美| 多毛熟女@视频| 亚洲国产精品国产精品| 国产一区二区在线观看日韩| 亚洲av综合色区一区| 中文天堂在线官网| 丰满少妇做爰视频| 久久久久久久久久久免费av| 国产av国产精品国产| 午夜免费男女啪啪视频观看| 国产精品三级大全| 黄色欧美视频在线观看| 日韩制服骚丝袜av| 欧美成人精品欧美一级黄| 男女啪啪激烈高潮av片| 麻豆成人午夜福利视频| 夜夜看夜夜爽夜夜摸| 啦啦啦中文免费视频观看日本| 精品久久久噜噜| 在线观看一区二区三区| 亚洲精品成人av观看孕妇| 夜夜看夜夜爽夜夜摸| 啦啦啦视频在线资源免费观看| 国产淫语在线视频| 国产成人免费观看mmmm| 久久精品国产a三级三级三级| freevideosex欧美| 狂野欧美激情性bbbbbb| 我的老师免费观看完整版| 毛片一级片免费看久久久久| 国产欧美亚洲国产| 日本爱情动作片www.在线观看| 少妇精品久久久久久久| 亚洲综合色惰| 在线亚洲精品国产二区图片欧美 | 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级 | 97在线视频观看| 久久久a久久爽久久v久久| 又大又黄又爽视频免费| av又黄又爽大尺度在线免费看| 韩国av在线不卡| 亚洲第一区二区三区不卡| 天天躁日日操中文字幕| 国产白丝娇喘喷水9色精品| 免费大片18禁| 高清视频免费观看一区二区| 成人漫画全彩无遮挡| 在线观看免费视频网站a站| 国产精品国产三级国产av玫瑰| 欧美xxxx性猛交bbbb| 免费观看在线日韩| 2021少妇久久久久久久久久久| 亚洲无线观看免费| 国产亚洲最大av| 久久婷婷青草| 亚洲内射少妇av| tube8黄色片| 国产成人91sexporn| 欧美极品一区二区三区四区| 精华霜和精华液先用哪个| 青春草国产在线视频| 欧美精品一区二区大全| 夜夜骑夜夜射夜夜干| 欧美最新免费一区二区三区| 免费观看无遮挡的男女| 国产精品.久久久| 人人妻人人添人人爽欧美一区卜 | 亚州av有码| 直男gayav资源| 五月伊人婷婷丁香| 18禁动态无遮挡网站| 只有这里有精品99| 国产69精品久久久久777片| 亚洲av国产av综合av卡| 97精品久久久久久久久久精品| 熟女电影av网| 亚洲婷婷狠狠爱综合网| 黑丝袜美女国产一区| 卡戴珊不雅视频在线播放| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级 | 青青草视频在线视频观看| 国产又色又爽无遮挡免| 成人18禁高潮啪啪吃奶动态图 | 国产成人aa在线观看| 寂寞人妻少妇视频99o| videossex国产| 九草在线视频观看| 男男h啪啪无遮挡| 日韩,欧美,国产一区二区三区| 久久ye,这里只有精品| 国产av一区二区精品久久 | 九九爱精品视频在线观看| 哪个播放器可以免费观看大片| 国产亚洲精品久久久com| 亚洲欧美成人精品一区二区| 国产黄色免费在线视频| 国产精品久久久久久av不卡| 男女无遮挡免费网站观看| 美女脱内裤让男人舔精品视频| 又大又黄又爽视频免费| 丰满乱子伦码专区| 国产精品熟女久久久久浪| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av涩爱| 亚洲真实伦在线观看| 成人18禁高潮啪啪吃奶动态图 | 亚洲av成人精品一二三区| 久久久久国产精品人妻一区二区| 99re6热这里在线精品视频| 久久人人爽人人爽人人片va| av卡一久久| 日本黄色片子视频| 精品一区二区三卡| 大香蕉久久网| 国产一区二区在线观看日韩| 欧美性感艳星| 精品人妻熟女av久视频| 国产在线免费精品| 亚洲欧美成人综合另类久久久| 亚洲欧美清纯卡通| 亚洲欧美日韩东京热| 精品午夜福利在线看| 中文字幕免费在线视频6| 亚洲av欧美aⅴ国产| 亚洲婷婷狠狠爱综合网| 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 午夜老司机福利剧场| 亚洲在久久综合| 中国三级夫妇交换| 在线观看美女被高潮喷水网站| 久久青草综合色| 成年女人在线观看亚洲视频| 日韩伦理黄色片| 简卡轻食公司| 国产成人freesex在线| 久久精品久久久久久噜噜老黄| 欧美性感艳星| 青春草视频在线免费观看| 久久99热这里只有精品18| 欧美丝袜亚洲另类| av视频免费观看在线观看| 亚洲综合色惰| 少妇 在线观看| 亚洲中文av在线| 国产精品免费大片| 建设人人有责人人尽责人人享有的 | 最后的刺客免费高清国语| 成年人午夜在线观看视频| 人妻少妇偷人精品九色| 亚洲精品中文字幕在线视频 | 国产黄色视频一区二区在线观看| 免费人成在线观看视频色| 在线观看免费日韩欧美大片 | 我的女老师完整版在线观看| 蜜桃亚洲精品一区二区三区| 日韩av在线免费看完整版不卡| av国产久精品久网站免费入址| 久久久久久人妻| freevideosex欧美| 成人18禁高潮啪啪吃奶动态图 | 亚洲精华国产精华液的使用体验| 亚洲精品乱码久久久久久按摩| 中国三级夫妇交换| 97热精品久久久久久| 日日啪夜夜爽| 欧美日韩综合久久久久久| av一本久久久久| 干丝袜人妻中文字幕| 色5月婷婷丁香| 激情五月婷婷亚洲| 亚洲人与动物交配视频| 欧美日韩综合久久久久久| 久久国产亚洲av麻豆专区| 国产成人午夜福利电影在线观看| 最近最新中文字幕免费大全7| 日本黄色片子视频| 亚洲精品乱码久久久久久按摩| 91精品伊人久久大香线蕉| 久久久久久久亚洲中文字幕| 亚洲av成人精品一二三区| 国产亚洲一区二区精品| 少妇丰满av| 水蜜桃什么品种好| 久久久久久久久久人人人人人人| 国产精品国产三级国产av玫瑰| 天堂俺去俺来也www色官网| 制服丝袜香蕉在线| 国产高清有码在线观看视频| 精品久久久噜噜| 日本色播在线视频| 国产精品嫩草影院av在线观看| 精品亚洲乱码少妇综合久久| 三级国产精品欧美在线观看| 欧美少妇被猛烈插入视频| 美女高潮的动态| 九草在线视频观看| 日韩精品有码人妻一区| 国产亚洲精品久久久com| 亚洲国产日韩一区二区| 少妇裸体淫交视频免费看高清| 成人综合一区亚洲| 简卡轻食公司| 国产伦精品一区二区三区四那| 免费高清在线观看视频在线观看| 丰满迷人的少妇在线观看| 久久久精品免费免费高清| 麻豆国产97在线/欧美| 成人综合一区亚洲| av又黄又爽大尺度在线免费看| 中文字幕制服av| 国产一区二区在线观看日韩| 国产中年淑女户外野战色| av天堂中文字幕网| 一二三四中文在线观看免费高清| 秋霞伦理黄片| 五月玫瑰六月丁香| 国产91av在线免费观看| 国产精品偷伦视频观看了| 精品一区二区三区视频在线| 欧美最新免费一区二区三区| 免费av中文字幕在线| 99久久人妻综合| 男女免费视频国产| 天堂8中文在线网| 老师上课跳d突然被开到最大视频| 黄色日韩在线| 大片电影免费在线观看免费| 国产淫片久久久久久久久| 国产成人freesex在线| 天堂8中文在线网| 欧美+日韩+精品| 日韩成人av中文字幕在线观看| 日韩欧美一区视频在线观看 | 亚洲怡红院男人天堂| 青春草国产在线视频| 亚洲成人av在线免费| 91久久精品国产一区二区三区| 91精品国产九色| 三级国产精品欧美在线观看| 亚洲精品久久午夜乱码| 在线播放无遮挡| 中国三级夫妇交换| 久热久热在线精品观看| 欧美日韩一区二区视频在线观看视频在线| 有码 亚洲区| 久久久久久久国产电影| 午夜福利网站1000一区二区三区| 我要看日韩黄色一级片| 纯流量卡能插随身wifi吗| 久久久亚洲精品成人影院| 亚洲欧美一区二区三区国产| av在线观看视频网站免费| 麻豆精品久久久久久蜜桃| 婷婷色麻豆天堂久久| 人妻系列 视频| 日本av免费视频播放| 久久人人爽人人片av| 精品人妻偷拍中文字幕| 乱系列少妇在线播放| 在线观看av片永久免费下载| 亚洲四区av| 老司机影院毛片| 亚洲成人手机| 亚洲色图av天堂| 久久99热这里只频精品6学生| 晚上一个人看的免费电影| 日韩av在线免费看完整版不卡| 最近中文字幕高清免费大全6| 精品亚洲成国产av| 少妇人妻一区二区三区视频| 下体分泌物呈黄色| 欧美日韩综合久久久久久| 一级毛片久久久久久久久女| 日韩欧美一区视频在线观看 | 国产亚洲91精品色在线| 免费人成在线观看视频色| 97在线视频观看| 亚洲国产精品999| av在线播放精品| 中国美白少妇内射xxxbb| 18禁在线播放成人免费| 精品一品国产午夜福利视频| 亚洲一级一片aⅴ在线观看| 内地一区二区视频在线| av播播在线观看一区| 熟女人妻精品中文字幕| 欧美xxⅹ黑人| 丝袜脚勾引网站| 亚洲欧美一区二区三区黑人 | 汤姆久久久久久久影院中文字幕| 成人无遮挡网站| 免费看光身美女| 久久ye,这里只有精品| 久久婷婷青草| 伦理电影免费视频| 伊人久久精品亚洲午夜| 一级毛片我不卡| 亚洲精品aⅴ在线观看| 久久久久国产精品人妻一区二区| 在线看a的网站| 亚洲国产精品成人久久小说| 永久免费av网站大全| 韩国av在线不卡| 国产真实伦视频高清在线观看| 秋霞在线观看毛片| 亚洲精品,欧美精品| a级毛色黄片| 欧美日韩视频精品一区| 日本黄色片子视频| 国产一区二区三区av在线| 亚洲精品中文字幕在线视频 | av专区在线播放| 爱豆传媒免费全集在线观看| 新久久久久国产一级毛片| 七月丁香在线播放| 丝袜喷水一区| 亚洲精品色激情综合| 国产高清三级在线| 日韩三级伦理在线观看| 国产色爽女视频免费观看| 97超视频在线观看视频| 国产欧美日韩精品一区二区| 超碰av人人做人人爽久久| 亚洲成色77777| 国产老妇伦熟女老妇高清| 欧美亚洲 丝袜 人妻 在线| 亚洲av不卡在线观看| 国产精品一区二区性色av| 在线 av 中文字幕| 亚洲真实伦在线观看| 99热这里只有是精品在线观看| 国产精品偷伦视频观看了| 建设人人有责人人尽责人人享有的 | 少妇高潮的动态图| 国产精品精品国产色婷婷| 高清视频免费观看一区二区| 最近中文字幕高清免费大全6| 亚洲无线观看免费| 视频中文字幕在线观看| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| 亚洲av二区三区四区| 午夜老司机福利剧场| 精品熟女少妇av免费看| 精品一区二区三区视频在线| 天天躁夜夜躁狠狠久久av| 三级国产精品片| 欧美日韩在线观看h| 久久久久久久国产电影| 少妇人妻久久综合中文| 美女中出高潮动态图| 视频中文字幕在线观看| 免费观看在线日韩| 久久99热6这里只有精品| 亚洲av成人精品一二三区| 美女中出高潮动态图| 色视频在线一区二区三区| 精品国产一区二区三区久久久樱花 | 91久久精品国产一区二区成人| 少妇高潮的动态图| 高清欧美精品videossex| 亚洲av日韩在线播放| 成年人午夜在线观看视频|