• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The compatibly large nonlinear optical effect and high laser-induced damage threshold in a thiophosphate CsInP2S7 constructed with[P2S7]4- and [InS6]9-

    2023-02-18 01:55:46MengjiaLuoXiaohuiLiXingxingJiangZheshuaiLinZhengyangZhou
    Chinese Chemical Letters 2023年12期

    Mengjia Luo ,Xiaohui Li ,Xingxing Jiang ,Zheshuai Lin ,Zhengyang Zhou

    a Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials,Nanchang Institute of Technology,Nanchang 330099,China

    b Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai 200050,China

    c Functional Crystals Lab,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    d Institute of Experimental Physics,Free University Berlin,Berlin D-14195,Germany

    Keywords:Infrared nonlinear optics materials A novel thiophosphate Structure design Structure-activity relationship High laser-induced damage threshold

    ABSTRACT It is challenging to cooperatively improve the nonlinear optical (NLO) efficiency and the laser-induced damage threshold (LIDT).This work reports a novel IR NLO materials CsInP2S7 (CIPS) designed by combination the strategies of alkali metals substitution and microscopic NLO units PS4 introduction based on AgGaS2.CIPS was composed of strongly distorted [InS6]9- octahedra and [P2S7]4- dimers constructed by corner-sharing [PS4]3-,which increase the NLO efficiency and decrease thermal expansion anisotropy simultaneously.Compared with AgGaS2,CIPS exhibited strong phase matchable NLO response ca. 1.1×AGS@2.1 μm,high LIDT ca. 20.8×AgGaS2,and IR transparency up to 15.3 μm.Structural analysis and theoretical investigation confirmed that large SHG effect and ultrahigh LIDT of CIPS originated from the synergistic contribution of [InS6]9- octahedra and [P2S7]4- dimers.These results indicate that CIPS is a promising NLO candidate in the mid-IR region,and this study provides a new approach for developing potential NLO-LIDT compatible materials.

    To release medical diagnostics,atmospheric detection,laser guidance and laser telecommunications,coherent tunable lasers in the mid-IR region (2–20 μm) are very necessary [1,2].Infrared nonlinear optical (IR NLO) materials can convert near IR light to mid-IR bandviafrequency down-conversion,which play important roles in solid state laser technology [3].However,the commercially available middle-IR (MIR) NLO crystals are relatively rare.Notably,AgGaS2(AGS),AgGaSe2and ZnGeP2,featuring large NLO coeffi-cients,are the only available commercial IR NLO materials [4–6].Nonetheless,they still suffer from intrinsic defects such as harmful two-photon absorption (TPA) of ZnGeP2and low laser-induced damage thresholds (LIDTs) of AGS and AgGaSe2,which severely limit their high-power laser applications.As a result,they cannot achieve a good balance between large second-harmonic generation(SHG) and high LIDT.Therefore,systematic explorations of new IR NLO materials to realize NLO-LIDT compatible have become a research hot-spot.

    Alkali-metal possess high electro-positivity and large ionic radius.When alkali-metal was introduced into a compound,the band gap and local structure distortion of this compound will increase [7,8].Therefore,alkali-metal atoms substitution is a common regulation strategy for IR NLO materials to increase properties,such as Rb10Zn4Sn4S17(NLO response: 0.7×AGS;LIDT:5×AGS) [9].In addition,introduction of NLO active units or complex coordinated functional groups is a good strategy to discover new materials whose NLO efficiencies and LIDTs are balanced [10–19].Among numerous active units,PS4has short P-S bond length and small volume,and PS4units can form other active NLO units such as edge-sharing P2S6[20].Moreover,thiophosphates possess wide IR transparency ranges,such as Hg3P2S8(NLO response: 4.2×AGS@2.09 μm,optical transmitting range: 0.45–16.7 μm),Eu2P2S6(0.9×AGS@2.1 μm,0.49–15.4 μm),AgGa2PS6(1×AGS@2.1 μm,0.60–16.7 μm),thus attracting extensive attention [13,21,22].

    In this work,a new compound CsInP2S7(CIPS) was obtained by combination the strategies of alkali metals substitution and microscopic NLO units PS4introduction based on AgGaS2.Ag+was replaced by Cs+cation and PS4unit was introduced to replace S site.In order to maintain structural stability,In3+cation with flexible coordination number (4,6,and 8) was introduced to coordinate with S atoms of [PS4]3-(Fig.1a).The CIPS exhibits a wide optical transmittance in the range of 0.414–15.3 μm,strong phasematchable NLO responseca.1.1×AGS@2.1 μm,and high LIDTca.20.8×AGS.Through the structural analysis and first-principles calculations,the origin of optical properties from cooperation of the[InS6]9-and [P2S7]4-groups was revealed.It was proposed that alkali metals substitution combined with microscopic NLO units introduction based on known mother materials could be a new method for materials design,which could maintain the original structural framework with large effects and modulate the LIDT performance.

    Fig.1. (a) Schematic diagram of the structural evolution from AgGaS2 to CsInP2S7.(b) 2D [InP2S7]- anionic framework of CIPS,Cs+ cations are filled in the interlayer space.(c) [InP2S11]9- ring in red circle and layer in the ab plane.

    Light yellow plate-like crystals of CIPS were obtained through solid-state reaction with mixture containing In,P2S5,S,and CsCl at 1223 K (see detailed description in Supporting information).The powder X-ray diffraction (PXRD) pattern matches well with the calculated results based on single-crystal XRD analysis (Fig.S1 in Supporting information).The corresponding crystallographic data are summarized in Tables S1–S3 (Supporting information).Energy dispersive spectroscopy (EDS) analysis confirms the presence of Cs,In,P,and S elements with the approximate molar ratio of 1:1:2.02:6.97 (Fig.S2 in Supporting information),which is consistent with the single-crystal XRD analysis.

    CIPS crystallizes in the Non centrosymmetric monoclinic space groupC2 (No.5) and features a 2D [InP2S7]-layer with Cs+cations filled in the interlayer space (Fig.1b).The [InS6]9-octahedra and the [P2S7]4-dimers share S2 atoms to form [InP2S11]9-rings (Fig.1c).The [InP2S11]9-rings connected to another oneviaedge-sharing and then form the 2D [InP2S7]-anionic framework.To maintain charge balance,Cs+cations get filled in the interlayer space.The In?S bond lengths in the [InS6]9-polyhedra range from 2.587(3)to 2.686(3)(Fig.S3a in Supporting information),which are in accordance with CuInP2S6[23].The P-S bond lengths in [P2S7]4-dimers,ranging from 2.007(5)to 2.142(3)(Fig.S3b in Supporting information),are close to those in SnPS3,Zn3P2S8[24,25].The distances between Cs and S in [CsS10]19-polyhedra range from 3.533(3)to 4.062(3)(Fig.S3c in Supporting information),comparable to those in CsVP2S7[26].

    Details of the structure evolution from AGS to CIPS were shown in Fig.S4 (Supporting information).The red-line circled part (A)and blue-line circled part (B) in the structure of CIPS correspond to an infinitely extended [InP2] layer and [CsInP3] layer (Figs.S4b and c),which is highly similar with the red-line circled part (A?)and blue-line circled part (B?) in the structure of AGS,respectively(Figs.S4e and f).Compared with the two isolated four-connected S atoms in AGS,the PS4units in CIPS are linked to form [P2S7]4-dimers due to the introduction of the strongly distorted [InS6]9-octahedron,which makes CIPS with alkali metal inherit the effective framework from AGS,and still brings about the effective superposition of microscopic second-order nonlinear susceptibility.

    The Rietveld refinement against the PXRD patterns of the samples used for SHG response evaluation on dry powder reveals that almost no impurity is involved,and this confirms that the measured result is intrinsic property of CIPS (Fig.2a).According to the TG-DTA result,CIPS starts to lose weight significantly at around 192°C,corresponding to the decomposition (Fig.S5 in Supporting information).CIPS exhibits typical phase-matching behavior,i.e.,a tendency to increase gradually to platform of SHG intensities with the increase in particle size (Fig.2b).The SHG response of pure polycrystalline dry CIPS powder (Fig.2c) was measured using a Qswitch laser (2.1 μm),and AGS was used as the Ref.[27].Moreover,the SHG efficiency of CIPS is ~1.1×AGS at the largest particle size range of 200–250 μm.Such SHG responses are moderate compared with other promising IR-NLO chalcogenides,including LiZnPS4(0.8×AGS),Sn7Br10S2(1.5×AGS),and LaBS3(1.2×AGS)[28–30].Hitherto,some thiophosphates (Table S4 in Supporting information) with good NLO performances were studied.However,most of them are formed with [PS4]3-units and [P2S6]4-dimers,except for Rb2Ga2P2S9(0.1×AGS) with [P2S7]4-dimers [31].

    Fig.2. (a) Rietveld refinement for the powder X-ray diffraction pattern of CIPS.(b) SHG signals of CIPS and AGS for particle sizes of 200–250 μm.(c) The size-dependent SHG responses of CIPS and AGS when irradiated by a 2.1 μm laser.(d) UV–vis–NIR diffuse reflectance spectra and FT-IR spectra for CIPS.

    The experimentalEgof CIPS was deduced from the UV–vis–NIR transmittance spectrum to be 3.0 eV (Fig.2d),larger than that of the commercial AGS (2.56 eV) and enough to get away from the drawback of TPA (2.33 eV,532 nm).The IR cutoff edge of CIPS was verified by IR transmittance spectra,and it was measured to be about 15.3 μm,which covers two atmospheric windows of 3–5 and 8–12 μm.Several absorption peaks are present at 8–11 μm in the IR transmittance spectra,which is possibly caused by multi-phonon absorption and the similar phenomenon is also found in Hg3P2S8and CuZnPS4.Therefore,CIPS shows a transparency of 0.414–15.3 μm,superior to that of the commercial mid-IR NLO crystals of AGS (0.48–11.4 μm) and similar to the other reported thiophosphates,such as CuHgPS4(0.54–16.7 μm)and CuZnPS4(0.43–16.5 μm) [21,32,33].

    Corresponding to the larger band gap,the LIDT is always higher.Through the evaluation of LIDT,CIPS shows 20.8 times higher LIDT than AGS (Table S5 in Supporting information),which is consistent with the general observation that theEgand LIDT are somewhat positively correlated.Apart from the influence of band gap,materials with a smaller thermal expansion anisotropy (TEA) could suffer greater thermal shock due to the temperature increase under laser irradiation and exhibits higher LIDT [34].Fig.3a shows the unit-cell variations in parameters of CIPS as a function of temperature byinsituPXRD characterization in the range of 293–473 K.Based on these data,the TEA of CIPS (0.84) is smaller than that of AGS (1.60) (Table 1).According to the above-mentioned structural analysis,the two S sites in AGS are isolated without interaction,so that AGS exhibits negative thermal expansion (NTE) behaviors alongcdirection.However,in CIPS,the S sites are replaced with two [PS4]3-units linked with S to form [P2S7]4-dimers and possesses the interaction alongadirection,which prevents CIPS to have NTE capability and reduces the TEA of CIPS,leading to significant increase in LIDT value.The LIDT of CIPS is better than or comparable with those of the recently reported distinguished IR-NLO chalcogenides,such as SnI4·(S8)2(16.4×AGS),Ga2Se3(16.7×AGS),and Na2Ga2GeS6(18.1×AGS) [35–37].Such an ultrahigh LIDT indicates that CIPS may undergo high-power laser radiation and may offer potential application prospects in the laser frequency conversion system.Overall,comparison among NLO thiophosphates (Fig.3b) indicates that CIPS is a promising IR NLO candidate.

    Table 1 Thermal expansion coefficients αL (× 10–5 K?1) of the a,b,and c axis,and the thermal expansion anisotropy.

    Fig.3. (a) Comparison of LIDT among NLO thiophosphates.(b) Temperature-dependent lattice parameters of CIPS.

    To better understanding the relationships between structure and property of CIPS,first-principles theoretical calculations,including electronic structure,density of states (DOSs),and optical property were performed.CIPS is an indirect band gap semiconductor with a band gap of 2.01 eV based on theoretical calculation result (Fig.4a).The simulated value is slightly smaller than that of the measured value (3.0 eV) originating from the intrinsic drawbacks of the PBE functional.Fig.4b exhibits the total density of state (TDOS) and the partial density of state (PDOS) curves.The upper region of valence bands (VBs) is primarily derived from P 3p,S 3p,and In 4p orbitals,while the bottom part of conduction bands (CBs) mainly consists of P 3s3p,S 3p,and In 4s orbitals.It indicates the existence of strong covalent interactions among In,P,and S atoms.This result reveals that the electronic states close to the Fermi level are mainly contributed by [InS6]9-and [P2S7]4-units.The optical property of a crystal principally arises from the electron transition across the forbidden bands,as a result,the SHG efficiency mainly originates from synergistic interactions between[InS6]9-and disordered [P2S7]4-units.

    Fig.4. Theoretical calculation results for CIPS.(a) Band structure.(b) The TDOS and PDOS of CIPS.(c) SHG-density maps of CIPS.(d) Calculated birefringence curve.

    CIPS crystallizes in theC2 space group and exhibits four (χ14,χ21,χ22,andχ23) independent non-zero SHG tensors according to the Kleinman’s symmetry rule.The SHG tensorsχ14,χ21,χ22andχ23were calculated to be 16.43,20.19,16.89,and ?4.74 pm/V,respectively,which agree well with the results of SHG measurement.To unveil the main contribution in generating the SHG effect,the SHG-density analysis was conducted.Fig.4c and Fig.S6 (Supporting information) exhibit that SHG-weighted electronic clouds are mostly localized on [InS6]9-and [P2S7]4-units,while no SHG density occurs around Cs+cations.It confirms that the SHG response originates from the [InS6]9-and [P2S7]4-units,matching the conclusion of electronic structure analysis.The birefringence indexΔnof CIPS are 0.10@1064 nm and 0.094@2100 nm (Fig.4d),which meets the requirements of moderate birefringenceΔn(~0.03–0.10) [39].Noteworthy,this moderateΔncould achieve its phase matching capacity in the mid-IR region,which is consistent with the experimental results.

    Simultaneously,the structure of CIPS (1.1×AGS) is comparable with that of Rb2Ga2P2S9(0.1×AGS),which also contains [P2S7]4-dimers,thus it can be used to better comprehend the role of geometry distortion of [InS6]9-and [P2S7]4-dimers to improve NLO properties.Herein,it is observed that the basic unit of Rb2Ga2P2S9is a derivative adamantane-like [Ga2P2S10]4-cluster,which is the combination of two [GaS4]5-tetrahedron and [P2S7]4?dimer (Fig.S7 in Supporting information).It is found that [P2S7]4-dimers adopt a highly twisted conformation in the CIPS (29.347°) due to the increase in coordination of In3+inducing the torsion of [PS4]3-unit (Fig.S8 in Supporting information).The large calculated dipole moments of [InS6]9?octahedra and [PS4]3?tetrahedral in CIPS also prove the strong geometry distortion (Table S6 in Supporting information).Combination of theoretical calculations and structure analysis shows that the coupling of strong distortion [InS6]9-octahedron and highly twisted [P2S7]4-dimers in CIPS significantly contributes to SHG response.It is similar with the situation that the more distorted [P2O7]4-dimers in the high-temperature phase of RbNaMgP2O7exhibit larger SHG response than that in the lowtemperature phase [40].

    In summary,CIPS was obtained through high-temperature solid-state method.CIPS is a potential NLO material with balanced performance in the MIR region,which is well verified by the experimental results,including a strong phase-matchable SHG response of 1.1×AGS,and large laser-induced damage threshold of 20.8×AGS.Structural analysis and theoretical calculations results show that the coupling of [InS6]9-octahedra and [P2S7]4-dimers make a synergistic contribution to the superior NLO performance.Alkali-metal ion Cs+enlarge the band gap and the interaction between [InS6]9-and [P2S7]4-reduce the TEA,which leads to the large LIDTs.This study coupled multiple strategies and design a potential high-performance thiophosphates CIPS,which provide new means for the design of NLO-LIDT compatible materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was financially supported by the Natural Science Foundation of China (No.22105218).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.109108.

    国产精品99久久久久久久久| 欧美中文日本在线观看视频| 久久精品91蜜桃| 色精品久久人妻99蜜桃| 99国产精品一区二区蜜桃av| 干丝袜人妻中文字幕| 无人区码免费观看不卡| 淫妇啪啪啪对白视频| 国产毛片a区久久久久| 在线观看av片永久免费下载| 精品人妻偷拍中文字幕| 亚洲专区中文字幕在线| 日本成人三级电影网站| 国产精品国产高清国产av| 日本五十路高清| 午夜影院日韩av| 波多野结衣高清作品| 制服丝袜大香蕉在线| 搡老妇女老女人老熟妇| 亚洲av中文av极速乱 | 午夜福利高清视频| 日本-黄色视频高清免费观看| 日本成人三级电影网站| 色哟哟哟哟哟哟| 人妻夜夜爽99麻豆av| 人妻制服诱惑在线中文字幕| 小说图片视频综合网站| 午夜福利高清视频| 国产一区二区在线观看日韩| 国产私拍福利视频在线观看| 国产精品爽爽va在线观看网站| 欧美成人性av电影在线观看| 久久久久国内视频| 人妻少妇偷人精品九色| 特大巨黑吊av在线直播| 国产成人a区在线观看| 日韩国内少妇激情av| 久久国内精品自在自线图片| 日本黄大片高清| 久久久久久久久大av| 亚洲国产精品成人综合色| 精品日产1卡2卡| 亚洲欧美日韩东京热| 国产一区二区三区av在线 | 黄色配什么色好看| 久久99热这里只有精品18| 欧美激情在线99| 极品教师在线视频| 伦理电影大哥的女人| 91av网一区二区| а√天堂www在线а√下载| 免费看日本二区| 国产伦一二天堂av在线观看| 午夜福利欧美成人| 日韩欧美精品免费久久| 午夜精品一区二区三区免费看| 一区二区三区激情视频| 十八禁网站免费在线| 男人和女人高潮做爰伦理| 淫妇啪啪啪对白视频| 精品一区二区三区人妻视频| 欧美性猛交黑人性爽| 中文字幕精品亚洲无线码一区| 麻豆一二三区av精品| 中文字幕av成人在线电影| 女生性感内裤真人,穿戴方法视频| 男插女下体视频免费在线播放| av黄色大香蕉| 国产熟女欧美一区二区| 免费高清视频大片| 国产精品一区www在线观看 | 成人无遮挡网站| 亚洲第一电影网av| 国产女主播在线喷水免费视频网站 | 欧美一区二区精品小视频在线| 亚洲内射少妇av| 欧美精品国产亚洲| 国产精品av视频在线免费观看| 国产黄色小视频在线观看| 麻豆精品久久久久久蜜桃| 国产欧美日韩精品一区二区| 久久人人精品亚洲av| 白带黄色成豆腐渣| 不卡一级毛片| 亚洲专区中文字幕在线| 亚洲av美国av| 午夜激情欧美在线| 久久精品国产亚洲av涩爱 | 又爽又黄a免费视频| 日韩一区二区视频免费看| 日本免费一区二区三区高清不卡| 欧美黑人欧美精品刺激| 在现免费观看毛片| 真实男女啪啪啪动态图| 人人妻,人人澡人人爽秒播| 精品午夜福利在线看| 麻豆国产av国片精品| 特大巨黑吊av在线直播| 999久久久精品免费观看国产| 精品人妻视频免费看| 日日干狠狠操夜夜爽| 好男人在线观看高清免费视频| 窝窝影院91人妻| 国产毛片a区久久久久| 丰满的人妻完整版| 午夜亚洲福利在线播放| 国产色爽女视频免费观看| 亚洲最大成人中文| 国产免费av片在线观看野外av| 少妇猛男粗大的猛烈进出视频 | 美女高潮喷水抽搐中文字幕| 国产黄色小视频在线观看| 国产伦在线观看视频一区| 国产高潮美女av| 国产精品无大码| 国产精品精品国产色婷婷| 亚洲七黄色美女视频| 两个人视频免费观看高清| 不卡视频在线观看欧美| 精品久久久噜噜| 亚洲成av人片在线播放无| 亚洲av二区三区四区| 欧美三级亚洲精品| 久久久久久久久大av| a级毛片免费高清观看在线播放| 亚洲va在线va天堂va国产| 天天躁日日操中文字幕| 欧美xxxx黑人xx丫x性爽| 亚洲精华国产精华精| 校园春色视频在线观看| 欧美潮喷喷水| 色综合婷婷激情| 12—13女人毛片做爰片一| 老熟妇乱子伦视频在线观看| 国产伦一二天堂av在线观看| 波多野结衣高清无吗| 成人三级黄色视频| 久久婷婷人人爽人人干人人爱| 精品午夜福利在线看| 日本免费a在线| 99在线视频只有这里精品首页| 国产成人av教育| 国产探花在线观看一区二区| 在线天堂最新版资源| 日本色播在线视频| 极品教师在线免费播放| 亚洲五月天丁香| 日本黄色片子视频| 精品久久久久久成人av| 午夜精品一区二区三区免费看| 国产高清三级在线| 特级一级黄色大片| 国产乱人伦免费视频| 国产精品一区二区性色av| 久久99热这里只有精品18| 变态另类丝袜制服| 狂野欧美激情性xxxx在线观看| 俺也久久电影网| 欧美3d第一页| 亚洲人成网站在线播| 午夜日韩欧美国产| 少妇熟女aⅴ在线视频| 一区二区三区激情视频| 身体一侧抽搐| 男人舔奶头视频| www.色视频.com| 长腿黑丝高跟| 国产成年人精品一区二区| 色播亚洲综合网| 国产精品久久久久久av不卡| 日本欧美国产在线视频| 99久久成人亚洲精品观看| 国产在线精品亚洲第一网站| 国产av一区在线观看免费| 精品久久久久久久久久久久久| 国产精品乱码一区二三区的特点| 我的老师免费观看完整版| 欧美区成人在线视频| 国产精品亚洲美女久久久| 欧美日本视频| 国产一区二区三区视频了| 亚洲国产欧洲综合997久久,| 欧美性感艳星| 春色校园在线视频观看| 国产精品久久视频播放| 午夜爱爱视频在线播放| 成年女人毛片免费观看观看9| 国产伦精品一区二区三区四那| 天天一区二区日本电影三级| 一区二区三区高清视频在线| 国产成人福利小说| 国产成人福利小说| 乱人视频在线观看| 日日干狠狠操夜夜爽| 亚洲精品色激情综合| 亚洲欧美清纯卡通| 日韩欧美在线二视频| 国产精品电影一区二区三区| 99久久成人亚洲精品观看| 内射极品少妇av片p| 精品福利观看| 亚洲第一区二区三区不卡| 一进一出好大好爽视频| 精品久久久久久久末码| 亚洲欧美精品综合久久99| 欧美+日韩+精品| 国产精品98久久久久久宅男小说| 日韩强制内射视频| 亚洲欧美日韩卡通动漫| 女的被弄到高潮叫床怎么办 | 成人高潮视频无遮挡免费网站| 搡老岳熟女国产| 日本欧美国产在线视频| 亚洲av二区三区四区| a级毛片免费高清观看在线播放| 九九爱精品视频在线观看| 国产 一区 欧美 日韩| 成人av一区二区三区在线看| 亚洲美女视频黄频| 国产欧美日韩一区二区精品| 真实男女啪啪啪动态图| 国产精品亚洲一级av第二区| 婷婷色综合大香蕉| 久久中文看片网| 观看美女的网站| 女的被弄到高潮叫床怎么办 | 大型黄色视频在线免费观看| 91在线精品国自产拍蜜月| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 精品久久国产蜜桃| 51国产日韩欧美| 日日摸夜夜添夜夜添小说| 亚洲,欧美,日韩| 亚洲美女黄片视频| 嫩草影院入口| 欧美最黄视频在线播放免费| 搡女人真爽免费视频火全软件 | 成人特级av手机在线观看| 亚洲国产精品久久男人天堂| 国产老妇女一区| 最近视频中文字幕2019在线8| 色尼玛亚洲综合影院| 国产精品久久久久久亚洲av鲁大| 国内精品宾馆在线| 久久精品国产亚洲av涩爱 | 亚洲自拍偷在线| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美精品v在线| 床上黄色一级片| 非洲黑人性xxxx精品又粗又长| 国产熟女欧美一区二区| 精品久久久久久久久av| 精品久久久噜噜| 亚洲 国产 在线| 亚洲欧美清纯卡通| 亚洲成av人片在线播放无| 88av欧美| 日本黄色片子视频| 老熟妇仑乱视频hdxx| 十八禁网站免费在线| 在线观看午夜福利视频| 色5月婷婷丁香| 99视频精品全部免费 在线| 亚洲狠狠婷婷综合久久图片| 一卡2卡三卡四卡精品乱码亚洲| 国产欧美日韩精品一区二区| 亚洲av成人av| 国产成人av教育| 免费观看在线日韩| 一级a爱片免费观看的视频| 欧美xxxx性猛交bbbb| 国产白丝娇喘喷水9色精品| 久久精品国产清高在天天线| 精品午夜福利视频在线观看一区| 免费无遮挡裸体视频| 国产精品爽爽va在线观看网站| 久99久视频精品免费| 亚洲成人免费电影在线观看| 国产精品一区二区三区四区久久| 色尼玛亚洲综合影院| 老司机深夜福利视频在线观看| 色综合站精品国产| 日本撒尿小便嘘嘘汇集6| 国产老妇女一区| 久久精品国产亚洲av香蕉五月| 国产欧美日韩精品亚洲av| 无人区码免费观看不卡| 国产女主播在线喷水免费视频网站 | 午夜免费成人在线视频| 99久久无色码亚洲精品果冻| 免费看光身美女| 国产主播在线观看一区二区| 欧美成人免费av一区二区三区| 欧美最新免费一区二区三区| 亚洲av一区综合| 免费黄网站久久成人精品| 中文字幕av成人在线电影| 成人午夜高清在线视频| 在线国产一区二区在线| 久久久久久久久大av| 婷婷丁香在线五月| 久久人人精品亚洲av| 桃红色精品国产亚洲av| 小说图片视频综合网站| 午夜老司机福利剧场| 日韩,欧美,国产一区二区三区 | 欧美黑人巨大hd| 日日摸夜夜添夜夜添小说| 国产在线男女| 国产精品av视频在线免费观看| 欧美3d第一页| av.在线天堂| 亚洲av熟女| 精品一区二区三区av网在线观看| 丰满的人妻完整版| 久久久久性生活片| 国内少妇人妻偷人精品xxx网站| 乱人视频在线观看| 国产午夜精品论理片| 人人妻人人澡欧美一区二区| 乱系列少妇在线播放| 亚洲av成人精品一区久久| 韩国av一区二区三区四区| 天天一区二区日本电影三级| 国产爱豆传媒在线观看| 亚洲性夜色夜夜综合| 最近最新免费中文字幕在线| 99久国产av精品| 成年女人看的毛片在线观看| 日韩一本色道免费dvd| 日韩欧美免费精品| 亚洲国产色片| 久久人妻av系列| 国内精品宾馆在线| 91在线观看av| 此物有八面人人有两片| 欧美成人性av电影在线观看| 免费看日本二区| 成人综合一区亚洲| 亚洲av中文av极速乱 | 男人和女人高潮做爰伦理| 老司机深夜福利视频在线观看| 此物有八面人人有两片| 日日撸夜夜添| 夜夜爽天天搞| 国内精品久久久久久久电影| 国产黄片美女视频| 免费电影在线观看免费观看| 99精品久久久久人妻精品| 国产精品不卡视频一区二区| 国产精品自产拍在线观看55亚洲| 乱码一卡2卡4卡精品| 国产精品av视频在线免费观看| 中文字幕精品亚洲无线码一区| 国产乱人视频| 午夜激情福利司机影院| 亚洲精品一区av在线观看| 久久久久性生活片| 日本五十路高清| 桃红色精品国产亚洲av| 国产老妇女一区| 亚洲精品久久国产高清桃花| 熟女电影av网| 丝袜美腿在线中文| 在线a可以看的网站| 日韩大尺度精品在线看网址| 色综合婷婷激情| 国产av不卡久久| 99久久成人亚洲精品观看| 国内揄拍国产精品人妻在线| 一级黄片播放器| 大型黄色视频在线免费观看| 午夜福利在线观看吧| 国产乱人伦免费视频| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 动漫黄色视频在线观看| 男人和女人高潮做爰伦理| av在线亚洲专区| 国产精品自产拍在线观看55亚洲| 亚洲不卡免费看| 一区福利在线观看| 蜜桃久久精品国产亚洲av| 又粗又爽又猛毛片免费看| 成人性生交大片免费视频hd| 国产精品98久久久久久宅男小说| 男人的好看免费观看在线视频| 欧美日韩综合久久久久久 | 女人十人毛片免费观看3o分钟| 久久久久久久久久成人| 88av欧美| 麻豆一二三区av精品| 男女下面进入的视频免费午夜| 内地一区二区视频在线| 香蕉av资源在线| 久久久久性生活片| 国产精品一区二区性色av| 91久久精品国产一区二区成人| 成人国产综合亚洲| 91在线精品国自产拍蜜月| 赤兔流量卡办理| 欧美性猛交╳xxx乱大交人| 精品久久久噜噜| 色哟哟·www| 九色国产91popny在线| 国产男人的电影天堂91| 性欧美人与动物交配| 国产 一区精品| 高清毛片免费观看视频网站| 91久久精品电影网| 久久午夜福利片| 国产视频一区二区在线看| www.www免费av| 国产亚洲精品av在线| 午夜亚洲福利在线播放| 美女被艹到高潮喷水动态| 男女边吃奶边做爰视频| 亚洲国产日韩欧美精品在线观看| 国产伦人伦偷精品视频| 欧美最新免费一区二区三区| 亚洲欧美日韩高清专用| 精品人妻偷拍中文字幕| 久久精品国产99精品国产亚洲性色| 国产 一区精品| 九九爱精品视频在线观看| 99久久中文字幕三级久久日本| 久久久精品大字幕| 国产精品日韩av在线免费观看| 欧美日本视频| 啪啪无遮挡十八禁网站| 亚洲中文字幕日韩| 国产麻豆成人av免费视频| 人人妻,人人澡人人爽秒播| 亚洲精品456在线播放app | 国产精品久久电影中文字幕| 深夜精品福利| 国产亚洲精品综合一区在线观看| 女人十人毛片免费观看3o分钟| 麻豆成人av在线观看| 日韩亚洲欧美综合| 国产三级在线视频| 日本三级黄在线观看| 深夜精品福利| netflix在线观看网站| 制服丝袜大香蕉在线| 黄色配什么色好看| 免费观看的影片在线观看| 久久热精品热| 蜜桃亚洲精品一区二区三区| 我的女老师完整版在线观看| 可以在线观看毛片的网站| 偷拍熟女少妇极品色| 日韩,欧美,国产一区二区三区 | 啪啪无遮挡十八禁网站| 久久久久免费精品人妻一区二区| 欧美一区二区亚洲| 婷婷亚洲欧美| 精品欧美国产一区二区三| 欧美又色又爽又黄视频| 国产精品久久电影中文字幕| 国产男人的电影天堂91| 91狼人影院| 岛国在线免费视频观看| 色综合色国产| 久久九九热精品免费| 国内少妇人妻偷人精品xxx网站| 亚洲一区高清亚洲精品| 日本 av在线| 亚洲在线观看片| 欧美日韩中文字幕国产精品一区二区三区| 熟妇人妻久久中文字幕3abv| 久久午夜福利片| 12—13女人毛片做爰片一| 麻豆av噜噜一区二区三区| 九九久久精品国产亚洲av麻豆| 啦啦啦观看免费观看视频高清| 国产国拍精品亚洲av在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲熟妇熟女久久| 看黄色毛片网站| 一夜夜www| 国产高清不卡午夜福利| 给我免费播放毛片高清在线观看| 色哟哟哟哟哟哟| 午夜精品久久久久久毛片777| 人妻夜夜爽99麻豆av| 中文字幕精品亚洲无线码一区| 亚洲真实伦在线观看| 中文字幕免费在线视频6| www.色视频.com| 精品久久久噜噜| 亚洲18禁久久av| 国产综合懂色| 国产精品日韩av在线免费观看| 波多野结衣巨乳人妻| 在线观看美女被高潮喷水网站| 日本熟妇午夜| 国产黄色小视频在线观看| 成年版毛片免费区| 一本久久中文字幕| 免费在线观看影片大全网站| 男女啪啪激烈高潮av片| 一区二区三区高清视频在线| 俺也久久电影网| 国产探花极品一区二区| 亚洲最大成人av| 午夜精品一区二区三区免费看| 婷婷六月久久综合丁香| 中文字幕人妻熟人妻熟丝袜美| 国产高清激情床上av| 极品教师在线视频| 国产精品无大码| 韩国av在线不卡| 在线观看av片永久免费下载| 男人的好看免费观看在线视频| 免费无遮挡裸体视频| 国产黄色小视频在线观看| 免费人成在线观看视频色| 99热只有精品国产| 亚洲久久久久久中文字幕| 婷婷色综合大香蕉| 干丝袜人妻中文字幕| 日日啪夜夜撸| 在现免费观看毛片| av.在线天堂| 欧美xxxx黑人xx丫x性爽| 白带黄色成豆腐渣| 一夜夜www| 欧美xxxx性猛交bbbb| 亚洲无线观看免费| 国产一区二区在线av高清观看| 精品午夜福利视频在线观看一区| 色5月婷婷丁香| 国产不卡一卡二| 久久久国产成人免费| 伦理电影大哥的女人| 露出奶头的视频| 欧美绝顶高潮抽搐喷水| 国产高清激情床上av| 久久久精品大字幕| 18禁在线播放成人免费| 午夜精品一区二区三区免费看| 国产精品女同一区二区软件 | 此物有八面人人有两片| 国产精品永久免费网站| 国产爱豆传媒在线观看| 久久精品国产亚洲av天美| 久久久久久大精品| 欧美高清成人免费视频www| 午夜老司机福利剧场| 久久人人精品亚洲av| 亚洲精品456在线播放app | 干丝袜人妻中文字幕| 久久中文看片网| 国产精品99久久久久久久久| 欧美成人性av电影在线观看| 22中文网久久字幕| 直男gayav资源| 免费电影在线观看免费观看| 欧美激情国产日韩精品一区| 狠狠狠狠99中文字幕| 中文亚洲av片在线观看爽| 又爽又黄无遮挡网站| 哪里可以看免费的av片| 看十八女毛片水多多多| 久久精品国产亚洲网站| 国产91精品成人一区二区三区| 成人永久免费在线观看视频| 国内精品宾馆在线| 三级男女做爰猛烈吃奶摸视频| 亚洲精品久久国产高清桃花| 不卡一级毛片| 18禁黄网站禁片免费观看直播| 成人综合一区亚洲| 久久精品国产清高在天天线| 老女人水多毛片| 男女下面进入的视频免费午夜| 日本一本二区三区精品| 少妇的逼好多水| 天堂网av新在线| 狂野欧美激情性xxxx在线观看| 男女那种视频在线观看| 国产精品三级大全| 国产大屁股一区二区在线视频| 色哟哟·www| 欧美高清性xxxxhd video| av在线蜜桃| 最新在线观看一区二区三区| 永久网站在线| 成年女人毛片免费观看观看9| 国产精品国产三级国产av玫瑰| 欧美最黄视频在线播放免费| 欧美一区二区亚洲| 国产免费男女视频| 亚洲精华国产精华精| 欧美日韩瑟瑟在线播放| 真人一进一出gif抽搐免费| 99国产极品粉嫩在线观看| 久久精品国产亚洲网站| 2021天堂中文幕一二区在线观| 18禁裸乳无遮挡免费网站照片| 此物有八面人人有两片| 99热这里只有精品一区| 搡老岳熟女国产| 97超级碰碰碰精品色视频在线观看| 国产老妇女一区| 可以在线观看的亚洲视频| 999久久久精品免费观看国产| 国产麻豆成人av免费视频| 午夜福利在线观看免费完整高清在 | 中国美女看黄片| 国产精品人妻久久久久久| 亚洲精品色激情综合|