• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cost-effective natural graphite reengineering technology for lithium ion batteries

    2023-02-18 01:55:48PeiLiuHonginWngToHungLiewuLiWeiXiongSholunHungXingzhongRenXiopingOuyngJingtoHuQinlingZhngJinhongLiu
    Chinese Chemical Letters 2023年12期

    Pei Liu ,Hongin Wng ,To Hung ,Liewu Li ,Wei Xiong ,Sholun Hung ,Xingzhong Ren,Xioping Ouyng,c,Jingto Hu,?,Qinling Zhng,?,Jinhong Liu,,?

    a Graphene Composite Research Center,College of Chemistry and Environmental Engineering,Shenzhen University,Shenzhen 518060,China

    b Shenzhen Eigen–Equation Graphene Technology Co.,Ltd.,Shenzhen 518000,China

    c School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China

    Keywords:Natural graphite Reengineering technology Liquid-polyacrylonitrile Lithium ion batteries High performance

    ABSTRACT Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite tailings (NGT),a liquid-polyacrylonitrile (LPAN) is used to modify the NGT fragments and aggregate them together to form secondary graphite particles with low surface area and high tap density.Moreover,the modified NGT show much better electrochemical performances than those of original one.When tested in full cells coupled with NMC532 cathode,the material achieves a high rate capability and cycle stability at the cutoff voltage of 4.25 V as well as 4.45 V,which maintains 84.32% capacity retention after 500 cycles at 1 C rate (4.25 V),higher than that of the pristine one (73.65%).The enhanced performances can be attributed to the use of LPAN to create a unique carbon layer upon graphite tailings to reconstruct surface and repair defects,and also to granulate an isotropic structure of secondary graphite particles,which can help to weaken the anisotropy of Li+ diffusion pathway and form a uniform,complete and stable solid-electrolyte-interface (SEI) on the surface of primary NGT fragments to promote a fast Li+ diffusion and suppress lithium metal dendrites upon charge and discharge.

    Strategies have been made to whittle down the adoption of fossil energy and promote the development of global low-carbon economy to step into a new energy era as early as possible [1].Lithium ion batteries (LIBs) as one of the promising techniques with high capacity,high energy-density,less memory effect and slower self-discharge [2],have experienced swift and violent development in the past decades,but this is just the beginning,and the social demands would be more staggering in view of the everincreasing needs for electric vehicles and renewable grid-level energy storage [3–5].Graphite remains the major choice of anode in commercial LIBs by means of its high capacity (372 mAh/g),low working voltage (~0.1 Vvs.Li/Li+),and long cycle life [6–8],and the demand would increase substantially with further development of LIBs,leading to a high-cost proportion when considering its limited resource and/or sluggish production capacity[9].In view of the rapid increasing in the number of LIBs and scrapped LIBs,waste graphite recycling has attracted much attention in both academia and industries [10–13],which can make the waste graphite re-adopted as adequate anode materials for LIBs and even processed into high-performance graphene [14].

    Graphite can be normally divided into two types,artificial graphite (AG) and natural graphite (NG).AG is a kind of graphite produced under a high temperature calcination condition,which is quite different from NG formed by the extreme power of nature with long-term high temperature and high pressure geological environments [15].By means of the outstanding structural stability,AG performs better than NG in function batteries,which can be mainly attributed to the easy surface exfoliation and particle cracking of NG during the repeat cycling [16,17].However,when taking material cost,specific capacity and material manufacture in practical applications into consideration,NG is superior to AG.It is noticed that the market occupancies of both AG and NG experience rapid increase in the past decade.For instance,the proportion of NG is increasing year by year (Fig.1a),which accounts for 39%of the whole anode material market compared with 58% of AG in 2020,and it will further increase up to 49% in 2030 higher than that of AG (41%) expectedly [15].The NG mined in the Earth’s crust is defective in structure and massive in volume,so it cannot be used directly,and the manufacturing procedures including crushing,granulation,washing,graphitization,particle screening,etc.are required.However,during these processes,especially for the granulation,there produce a lot of tailings wastes,which are usually thrown away,resulting in resource waste and environmental burden [18].Thus the reutilization of nature graphite tailings (NGT)can contribute to the pressure relief of graphite market and the material cost reduction of LIBs [19].

    Fig.1. (a) Total production of natural graphite and its market occupancies in anode materials in recent years.(b) Schematic illustration of NGT production and synthesis diagram of NGT@LPAN.

    Surface carbon coating is an effective way to improve the electrochemical performance of graphite anode,which can suppress the parasitic reactions with organic electrolyte and promote the formation of dense solid electrolyte interface (SEI) on the surface,thus achieving superior cyclability and rate performance [20,21].However,as to NGT,it is hard to produce a high tap-density graphite anode by traditional carbon coating treatment due to the ultra-high surface area.The large contact area with electrolyte would increase the first irreversible capacity,and the processing of slurry fabrication is also full of difficulties and challenges,making it stumbling to scale up.Hence,it would be significant to develop a unique method to realize carbon coating on primary particle,defect repairing,gap filling and secondary granulation of NGT fragments at one time to improve the processability and electrochemical performances.

    In this work,a unique and polyfunctional liquidpolyacrylonitrile (LPAN) was exploited as carbon source for the recycle of NGT.Benefiting from polyfunctional structure of LPAN polymer,a tight coating layer was formed on the primary NGT particle to modify surface and repair defects after carbonization,and a secondary graphite particle with low surface area and high tap density was constructed.The material shows superior electrochemical performances than the origin one in the aspects of first discharge capacity (400.33 mAh/g) and Coulombic efficiency (92.07%) in half cells.When coupled with NMC532(Ni:Mn:Co=5:3:2) cathode,the graphite||NMC532 full cell exhibits stable cycling performance with a capacity retention of 84.32%after 500 cycles at 1 C rate.

    Graphite is a common anode material and widely used in commercial LIBs,in which NG has attracted more attention recently due to the price advantage as compared to artificial one.NG exploited from Earth’s crust is defective in structure and massive in volume,which has to undergo steps of crushing,granulation and particle screening before used as commercial NG anode in LIBs.During these processes,large amounts of NGT are generated,which are always considered as garbage to be buried underground.In view of the ever-increasing demands for LIBs,NGT resource needs to be utilized to avoid waste of resources.Based on this,NGT with large surface area is reengineered using a unique liquidpolyacrylonitrile (LPAN) as carbon source (Fig.1b).LPAN is purchased from Shenzhen Eigen-Equation Graphene Technology Co.,Ltd.,which is polyfunctional (nitrile,oxygen-contained groups,etc.)and can be well compatible with NGT for close contact,thus capable of modifying the surface and repairing the defects of NGT after carbonization.Apart from this,LPAN is unique and easy to be graphited after pre-oxidation at 220 °C in muffle furnace,which tends to undergo denitrification reaction to bridge chainlike neighbor molecules and form a 2D-structured carbon plane with high conductivity.

    NGT@LPAN was synthesized by mixing NGT with LPAN followed by spray drying and carbonization.Three samples with different LPAN addition amounts of 7%,10% and 15% were compared here with NGT,named as NGT@LPAN-7%,NGT@LPAN-10%and NGT@LPAN-15%,respectively.The specific surface area of the sample decreases with the rise of LPAN amount (Fig.2a,Fig.S1 and Table S1 in Supporting information),accompanied by the increase of tap density (Fig.2a),illustrating the addition of LPAN can help to optimize the microstructure features of NGT,which would be beneficial to the processability and electrochemical performances substantially.According to the first charge/discharge curves,NGT@LPAN-10% shows both high discharge capacity (400.33 mAh/g) and Coulomb efficiency (CE,92.07%),which is the best choice as compared to other three samples and will be used for the following studies.The capacities and CEs of NGT,NGT@LPAN-7%and NGT@LPAN-15% are 403.17,394.94,388.93 mAh/g and 89.05%,91.63%,92.16%,respectively (Fig.2b).Although origin NGT exhibits the highest first discharge capacity of 403.17 mAh/g,corresponding first CE is the lowest (89.05%) of all,indicating a more irreversible capacity for NGT caused by more side reaction with electrolyte due to the large surface area and defective structure.From the scanning electron microscopy (SEM) images shown in Figs.2c and d and Fig.S2 (Supporting information),it can be seen that origin NGT presents a monodisperse sheet-like morphology with sizes of several micrometers,while NGT@LPAN mainly presents a compact spherical particle morphology (~5 μm) with some graphite fragments.Small amounts of graphite fragments may be conducive to the rise of compact density for electrode.Further TEM images show that there exists lots of defect in NGT structure (Fig.2e),which almost disappears after carbon coating (Fig.2f).Moreover,a thin carbon layer with thickness of 1–2 nm emerges on the graphite surface of NGT@LPAN as compared to NGT (Figs.2e and f).The surface carbon layer can passivate the active surface(outer surface and internal defect) of graphite with organic electrolyte to prevent graphite layers from Li+ions co-embedding with organic solvents during the discharging process,and reduce the electrolyte decomposition to form SEI film more effectively,thus exhibiting higher first CE and gram capacity,and also improved cycling performances.X-ray diffraction (XRD) and Raman results(Figs.S3 and S4 in Supporting information) show that layered graphite structure (PDF#41–1487),crystallinity and graphitization degree are almost unchanged after carbon coating treatment.Overall,large numbers of structure gaps and defects (between flake layers and even through some of them) exist in the NGT,making larger active graphite surface exposed to the electrolyte for more side reaction.After carbon coating modification,these gaps and defects would disappear,as can be reflected by the reduced surface area of NGT@LPAN,indicating that LPAN could not only modify the surface of graphite,but also penetrate into the interior and fill up the gaps and defects during carbonization process.

    Fig.2. (a) Specific surface area and tap density of NGT with different LPAN coating contents.(b) Charge/discharge curves of NGT with different LPAN coating contents.SEM images of (c) NGT and (d) NGT@LPAN.TEM images of (e) NGT and (f)NGT@LPAN.

    In order to make clear the carbon coating modification on the affection of electrochemical performances,full cells coupled with NMC532 were assembled and tested under the voltage range of 2.7–4.25 V (Fig.3).The cells were activated at 0.1 C and then operated at 0.33 C for 100 cycles.It is clear that NGT@LPAN cell shows a good cycle life with no capacity loss with top capacity of 150.1 mAh/g,which is much better than that of NGT with capacity loss from 144.9 mAh/g to 125.8 mAh/g (capacity retention of 86.82%) (Fig.3a).Further increasing the rate to 1 C for 500 cycles,the cycle life of NGT@LPAN is also superior to that of NGT,with capacity retention of 84.32% (from 129.5 mAh/g to 109.2 mAh/g)vs.73.65% (from 124.5 mAh/g to 91.7 mAh/g) (Fig.3b).The result can also be confirmed by comparing the charge-discharge curves of 25th,50th,100th,250thand 500th,showing that the improvement of charge/discharge capacities is remarkable (Figs.3c and d).The improved cycling performance for NGT@LPAN as relative to NGT is closely in connection with the carbon modification on the graphite surface and the defect repairing inside,which make the material compatible well with the electrolyte to form a uniform and dense SEI film on the active surface,preventing from the coembedding of solventized lithium ions and the solvent reduction to strip the structure layer and gas generation.Moreover,the complete and compact carbon layer formed on the surface and filled in the gaps can play a key role in buffering the expansion and contraction of graphite layer structure caused by Li+(de)intercalation,which makes the structure of primary graphite particles more stable,thus improving the cycling performance accordingly.

    Fig.3. Cycle performances of NGT and NGT@LPAN at the voltage range of 2.7–4.25 V,and the corresponding rates are (a) 0.33 C and (b) 1 C.Before cycling,the prepared cells were firstly tested at C/10 for the initial formation cycles.Charge/discharge curves of (c) NGT and (d) NGT@LPAN.

    To further study the deeper charge and discharge ability of the materials,full cells test with higher cutoff voltage of 2.7–4.45 V was also carried out (on condition that others are same with 2.7–4.25 V) (Fig.4a).It turned out as expected that NGT@LPAN is better than NGT in both capacity and cycle stability.To clarify the reason of difference in performance,full cells with NGT and NGT@LPAN cycled for 60 cycles were disassembled and analyzed.It can be seen that there presents a gray substance with large area on the surface of NGT electrode,while such substance is undetected on the electrode of NGT@LPAN (Figs.4b-d).The gray substance can be explained by the lithium metal deposition,which has a great impact on capacity decay and even on the safety issues of cells [22].It can be concluded that NGT modified with a carbon layer can help to suppress the generation of lithium metal dendrites.There may be two reasons for the result: One is the anisotropy weakening after granulation,the other is the SEI film enhancement.Further comparative characterization on SEI film is also done.Clearly,SEI film formed on NGT@LPAN is dense,uniform and continuous with typical thickness of 5 nm,while it is not continuous in NGT particle (part of the graphite is almost exposed to the electrolyte)(Fig.4e).A complete coating of SEI film on NGT surface can passivate the active surface of graphite to prevent sustained electrolyte decomposition for side reaction during cycling,which contributes to a higher capacity retention (Fig.4f and Fig.S5 in Supporting information).Besides the micro morphologies,the chemical components of SEI film are also important to the electrochemical performances,so X-ray photoelectron spectroscopy (XPS) test is performed here (Figs.4g-k,Figs.S6 and S7 in Supporting information).In general,the more the decomposition of organic electrolyte is,the higher the content of Li2CO3will be [23–25].According to the XPS analysis (Fig.4h),the content of Li2CO3is 2.70% in NGT as fitted from C 1s spectrum,which is higher than that in NGT@LPAN (1.07%),and a similar trend of Li2CO3content is also observed in O 1s spectrum,confirming the side reaction between graphite and electrolyte is significantly inhibited after carbon modification.LiF is another important component for SEI film,and the SEI film rich in LiF has the function of stabilizing structure and improve the electrochemical performances [26–28].In contradiction with the trend of Li2CO3content,LiF content in NGT (18.15%)is less than that in NGT@LPAN (25.98%),indicating a more stable SEI film formed on the surface of NGT@LPAN.The P 2p spectrum shows that the lithium hexafluorophosphate (LiPFxand LixPOyFz)decomposited mainly from LiPF6are almost consistent in content.The reason for the better SEI film component and amount of NGT@LPAN can be explained by the reaction activity inhibition of NGT surface and defect with the organic electrolyte by interface reconstruction and defect repairing after carbon modification.It can be concluded that the post-generated carbon modifier on NGT surface formed from unique LPAN cannot only aggregate the graphite fragments together for secondary granulation to ameliorate surface area and tap density and enhance the isotropy of Li+ion diffusion,but also modify the NGT surface and repair the defects to optimize the electrolyte decomposition and form a complete SEI film with high stability for superior electrochemical performances[29,30],thus capable of recycling NGT for waste reuse to lower the material cost of commercial LIBs.

    Fig.4. (a) Cycle performances of NGT and NGT@LPAN at 0.33 C under 2.7–4.45 V.Before cycling,the prepared cells were firstly tested at C/10 for the initial formation cycles.SEM images of (b,c) NGT and (d) NGT@LPAN after 60 cycles with the cutoff voltage of 4.45 V.TEM images of (e) NGT and (f) NGT@LPAN.(g) The surface element percentages for the cycled NGT and NGT@LPAN electrodes collected from XPS data.XPS spectra of (h) C 1s,(i) O 1s,(j) F 1s and (k) P 2p for the cycled NGT and NGT@LPAN electrodes.

    In summary,a unique LPAN with polyfunctional groups is used to reengineer NGT to form secondary graphite particles with low surface area and high tap density.NGT@LPAN shows much better electrochemical performances than the origin one in first discharge capacity (400.33 mAh/g) and coulombic efficiency (92.07%) in half cells.When coupled with a NMC532 cathode for a full cell,the graphite||NMC532 exhibits higher rate capability and more stable capacity retention (84.32%,tested for 500 cycles at 1 C rate).The superior performances of NGT@LPAN can be explained by the reason that the carbon layer reconstruct the NGT surface and repair the structure defect,and then optimize the side reactions with electrolyte to form a uniform,complete and stable SEI film to promote a fast Li+diffusion and suppress lithium metal dendrites.The goal of this work is to shed new light on a promising way to reengineer wasted graphite resources including but not limited to NGT,such as the graphite wastes from scrapped LIBs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are grateful to the financial support of National Key Research and Development Program of China (No.2020YFC1909604),National Natural Science Foundation (NNSF)of China (Nos.52202269,52002248),Shenzhen Key Projects of Technological Research (No.JSGG20200925145800001),and Shenzhen Basic Research Project (Nos.JCYJ20190808145203535,JCYJ20190808163005631) for providing financial support for this work.We are also grateful to the Instrumental Analysis Center of Shenzhen University (Xili Campus) for providing the facilities for our material analyzes.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108330.

    51国产日韩欧美| 亚洲精品自拍成人| 少妇精品久久久久久久| 亚洲精品日本国产第一区| 久久99热这里只频精品6学生| 美女国产视频在线观看| 这个男人来自地球电影免费观看 | 免费av不卡在线播放| 大又大粗又爽又黄少妇毛片口| 中文字幕亚洲精品专区| 久久久色成人| 亚洲精品日本国产第一区| 久久综合国产亚洲精品| 免费久久久久久久精品成人欧美视频 | 99视频精品全部免费 在线| 久久久久久久亚洲中文字幕| 国产中年淑女户外野战色| 午夜老司机福利剧场| 观看美女的网站| 爱豆传媒免费全集在线观看| 中文欧美无线码| 免费高清在线观看视频在线观看| 精品熟女少妇av免费看| 少妇高潮的动态图| 美女中出高潮动态图| 免费在线观看成人毛片| 国产男人的电影天堂91| 精品国产三级普通话版| 大陆偷拍与自拍| 日日摸夜夜添夜夜添av毛片| 大香蕉久久网| 在线看a的网站| 欧美日韩精品成人综合77777| 国产国拍精品亚洲av在线观看| videossex国产| 日本黄色片子视频| 久久久久久久大尺度免费视频| 丝袜喷水一区| 九草在线视频观看| 内射极品少妇av片p| 亚洲欧美成人精品一区二区| 国产在线免费精品| 亚洲久久久国产精品| 人人妻人人看人人澡| 国产精品国产av在线观看| 一级毛片aaaaaa免费看小| 国产成人午夜福利电影在线观看| 免费少妇av软件| videos熟女内射| h视频一区二区三区| 成人综合一区亚洲| 成人综合一区亚洲| 国产成人a区在线观看| 老熟女久久久| 国产欧美日韩一区二区三区在线 | 色网站视频免费| 亚洲在久久综合| 欧美老熟妇乱子伦牲交| 成年女人在线观看亚洲视频| 极品少妇高潮喷水抽搐| 欧美极品一区二区三区四区| 免费看日本二区| 韩国高清视频一区二区三区| 国产美女午夜福利| 在现免费观看毛片| 美女cb高潮喷水在线观看| 国产成人a∨麻豆精品| 国产成人免费无遮挡视频| 最近中文字幕高清免费大全6| 亚洲国产精品一区三区| 天天躁日日操中文字幕| 啦啦啦视频在线资源免费观看| 久久6这里有精品| 在现免费观看毛片| 乱系列少妇在线播放| 亚洲精品第二区| 极品教师在线视频| 狠狠精品人妻久久久久久综合| 最近的中文字幕免费完整| 伊人久久国产一区二区| 99热这里只有精品一区| 国产欧美日韩一区二区三区在线 | 最近中文字幕2019免费版| 人人妻人人澡人人爽人人夜夜| 国产精品久久久久久久电影| 大话2 男鬼变身卡| 国产免费福利视频在线观看| 永久免费av网站大全| 1000部很黄的大片| 日本与韩国留学比较| 你懂的网址亚洲精品在线观看| 国产有黄有色有爽视频| 黄片无遮挡物在线观看| 婷婷色综合大香蕉| 最近最新中文字幕免费大全7| 成人18禁高潮啪啪吃奶动态图 | 亚洲欧美日韩另类电影网站 | 久热这里只有精品99| 99久久精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 日韩,欧美,国产一区二区三区| 黄色日韩在线| 1000部很黄的大片| 哪个播放器可以免费观看大片| 高清日韩中文字幕在线| 久久人人爽人人爽人人片va| 国产男女内射视频| 男女国产视频网站| 视频中文字幕在线观看| 日本爱情动作片www.在线观看| 亚洲国产最新在线播放| 国产亚洲一区二区精品| 日本黄色片子视频| 久久久久久久国产电影| 国产精品久久久久久久久免| 国产精品麻豆人妻色哟哟久久| 99热这里只有是精品50| 国产淫语在线视频| 久久毛片免费看一区二区三区| 人妻一区二区av| 性高湖久久久久久久久免费观看| 欧美变态另类bdsm刘玥| 成人美女网站在线观看视频| 美女高潮的动态| 免费观看的影片在线观看| 国产黄色视频一区二区在线观看| 熟妇人妻不卡中文字幕| 丝袜喷水一区| 内射极品少妇av片p| 黄色配什么色好看| 女人久久www免费人成看片| 国产精品久久久久久久电影| 国产永久视频网站| 亚洲精品久久久久久婷婷小说| 免费播放大片免费观看视频在线观看| 亚洲自偷自拍三级| 欧美性感艳星| 91精品伊人久久大香线蕉| 国语对白做爰xxxⅹ性视频网站| 久久久久网色| 丝袜脚勾引网站| 青春草国产在线视频| 亚洲人成网站在线播| 男人添女人高潮全过程视频| 亚洲三级黄色毛片| 91狼人影院| 亚洲最大成人中文| 精品国产一区二区三区久久久樱花 | 成年免费大片在线观看| 特大巨黑吊av在线直播| 极品少妇高潮喷水抽搐| 亚洲丝袜综合中文字幕| 蜜桃在线观看..| 欧美激情国产日韩精品一区| 在线天堂最新版资源| 久久久亚洲精品成人影院| 欧美bdsm另类| 夫妻午夜视频| 亚洲色图综合在线观看| 能在线免费看毛片的网站| 亚洲欧美中文字幕日韩二区| 美女高潮的动态| 高清毛片免费看| 国产在线男女| 国产精品一区二区三区四区免费观看| 亚洲色图av天堂| 女人久久www免费人成看片| 老司机影院毛片| 久久久久久久久久人人人人人人| 国产乱人视频| 精品人妻视频免费看| 国产精品国产三级国产av玫瑰| 久久ye,这里只有精品| 91久久精品国产一区二区成人| 女人十人毛片免费观看3o分钟| 亚洲综合精品二区| 韩国av在线不卡| 高清在线视频一区二区三区| 亚洲av中文字字幕乱码综合| 欧美日韩在线观看h| 久久精品久久久久久噜噜老黄| 精品久久久久久电影网| 国国产精品蜜臀av免费| 日日摸夜夜添夜夜爱| 99久国产av精品国产电影| 亚洲精品乱码久久久v下载方式| 伊人久久国产一区二区| 高清视频免费观看一区二区| 欧美变态另类bdsm刘玥| 国产精品.久久久| 夫妻性生交免费视频一级片| 成年美女黄网站色视频大全免费 | 亚洲,一卡二卡三卡| 成人无遮挡网站| 精品一区二区三区视频在线| 久久久久久久国产电影| 国产成人a区在线观看| 国产毛片在线视频| 免费观看av网站的网址| 午夜福利在线在线| 亚洲综合色惰| 欧美性感艳星| 国内精品宾馆在线| 18禁动态无遮挡网站| 精品亚洲成国产av| 亚洲国产日韩一区二区| 欧美日韩综合久久久久久| 男女边摸边吃奶| 日韩精品有码人妻一区| 国产亚洲午夜精品一区二区久久| 国产黄片视频在线免费观看| 嫩草影院入口| 大香蕉97超碰在线| 99热6这里只有精品| 直男gayav资源| 精品久久久噜噜| 亚洲久久久国产精品| 高清午夜精品一区二区三区| 国产黄频视频在线观看| 国产男人的电影天堂91| 免费观看无遮挡的男女| 国产黄色视频一区二区在线观看| 建设人人有责人人尽责人人享有的 | 欧美日韩视频高清一区二区三区二| 高清欧美精品videossex| 婷婷色综合www| 水蜜桃什么品种好| 国产精品久久久久成人av| 国产在视频线精品| 欧美 日韩 精品 国产| 欧美激情国产日韩精品一区| 亚洲天堂av无毛| 亚洲精品国产色婷婷电影| 国产高清有码在线观看视频| 免费在线观看成人毛片| 国产欧美日韩精品一区二区| 国产成人精品久久久久久| 亚洲精品视频女| 国产伦精品一区二区三区视频9| 黑人猛操日本美女一级片| 亚洲,一卡二卡三卡| 麻豆精品久久久久久蜜桃| 精品人妻一区二区三区麻豆| 欧美变态另类bdsm刘玥| 欧美xxⅹ黑人| 99热国产这里只有精品6| 国产高清国产精品国产三级 | 在线精品无人区一区二区三 | 国产精品久久久久久精品电影小说 | 亚洲人成网站高清观看| 中文资源天堂在线| 插逼视频在线观看| 国产亚洲5aaaaa淫片| 国产一区亚洲一区在线观看| 久久国产亚洲av麻豆专区| 国产成人aa在线观看| 大又大粗又爽又黄少妇毛片口| 大陆偷拍与自拍| 五月伊人婷婷丁香| 少妇裸体淫交视频免费看高清| 男人和女人高潮做爰伦理| 女的被弄到高潮叫床怎么办| 18+在线观看网站| 成年美女黄网站色视频大全免费 | 久久久久性生活片| 夜夜爽夜夜爽视频| 国产精品一区二区在线观看99| 亚洲电影在线观看av| 欧美亚洲 丝袜 人妻 在线| 亚洲综合色惰| 深爱激情五月婷婷| 国内精品宾馆在线| 国产欧美日韩一区二区三区在线 | av一本久久久久| 五月天丁香电影| 国产在线一区二区三区精| 亚洲在久久综合| 亚洲真实伦在线观看| 久久久国产一区二区| 黄色视频在线播放观看不卡| 在线观看人妻少妇| 亚洲中文av在线| 亚洲熟女精品中文字幕| 在线观看国产h片| 成人国产av品久久久| 亚洲精品一区蜜桃| 国产一区二区三区综合在线观看 | 免费播放大片免费观看视频在线观看| 免费观看性生交大片5| 日韩一区二区三区影片| 男人添女人高潮全过程视频| 欧美日韩一区二区视频在线观看视频在线| 精品国产三级普通话版| 一区二区三区四区激情视频| 啦啦啦啦在线视频资源| 91精品一卡2卡3卡4卡| 精品人妻偷拍中文字幕| 久久ye,这里只有精品| 国产69精品久久久久777片| 高清视频免费观看一区二区| av国产免费在线观看| 午夜老司机福利剧场| 人妻 亚洲 视频| 国产乱人视频| 丰满乱子伦码专区| 狂野欧美白嫩少妇大欣赏| 精品视频人人做人人爽| 寂寞人妻少妇视频99o| 大码成人一级视频| 中文乱码字字幕精品一区二区三区| 亚洲人成网站高清观看| 全区人妻精品视频| www.色视频.com| 亚洲国产最新在线播放| 国产在线一区二区三区精| 黄色日韩在线| 免费不卡的大黄色大毛片视频在线观看| 欧美成人一区二区免费高清观看| 午夜精品国产一区二区电影| 女人久久www免费人成看片| 欧美日韩在线观看h| 91在线精品国自产拍蜜月| 老女人水多毛片| 日韩av在线免费看完整版不卡| 日韩强制内射视频| 久久人人爽人人片av| 亚洲国产日韩一区二区| 婷婷色综合大香蕉| 91精品伊人久久大香线蕉| 亚洲不卡免费看| 欧美日韩综合久久久久久| 高清日韩中文字幕在线| 日韩免费高清中文字幕av| 国产久久久一区二区三区| 永久网站在线| 91久久精品国产一区二区三区| 亚洲国产精品成人久久小说| 99热这里只有是精品50| 深夜a级毛片| 插阴视频在线观看视频| 在线观看人妻少妇| 亚洲av中文av极速乱| 国产视频首页在线观看| 婷婷色综合www| 午夜视频国产福利| 亚洲第一区二区三区不卡| 色婷婷av一区二区三区视频| 欧美xxxx黑人xx丫x性爽| av专区在线播放| 制服丝袜香蕉在线| 十分钟在线观看高清视频www | 免费观看av网站的网址| 亚洲国产精品专区欧美| 国产精品熟女久久久久浪| 国产av一区二区精品久久 | 中国国产av一级| 美女高潮的动态| 久久鲁丝午夜福利片| 一区二区av电影网| 麻豆成人午夜福利视频| h日本视频在线播放| 久久人人爽人人爽人人片va| 热re99久久精品国产66热6| 网址你懂的国产日韩在线| 亚洲一级一片aⅴ在线观看| 在线 av 中文字幕| 国产伦精品一区二区三区四那| 国产黄色免费在线视频| 久久久久人妻精品一区果冻| 国产精品久久久久久久久免| 波野结衣二区三区在线| 精品久久久久久电影网| 2021少妇久久久久久久久久久| 秋霞伦理黄片| 亚洲精品,欧美精品| 欧美成人a在线观看| kizo精华| 有码 亚洲区| 国产一区有黄有色的免费视频| 日韩伦理黄色片| 青春草国产在线视频| 久久久久久久久久成人| 国产亚洲91精品色在线| 性色av一级| 免费av不卡在线播放| 日韩三级伦理在线观看| 最近2019中文字幕mv第一页| 在线精品无人区一区二区三 | 韩国av在线不卡| 久久鲁丝午夜福利片| 日日撸夜夜添| 日韩 亚洲 欧美在线| 欧美+日韩+精品| 九九久久精品国产亚洲av麻豆| 老司机影院成人| 国产伦在线观看视频一区| 亚洲美女视频黄频| 国产老妇伦熟女老妇高清| 三级经典国产精品| 日本色播在线视频| 18禁裸乳无遮挡免费网站照片| 日韩一区二区视频免费看| 亚洲欧美精品专区久久| 99久久综合免费| 久久久精品免费免费高清| 爱豆传媒免费全集在线观看| 伊人久久国产一区二区| 黄片wwwwww| a级毛色黄片| 日韩一本色道免费dvd| 日本一二三区视频观看| 人人妻人人澡人人爽人人夜夜| 欧美一区二区亚洲| a级一级毛片免费在线观看| 亚洲国产欧美在线一区| 精品人妻熟女av久视频| 伦精品一区二区三区| 在线观看国产h片| 免费在线观看成人毛片| 亚洲欧美一区二区三区黑人 | 亚洲精品自拍成人| 国内精品宾馆在线| av福利片在线观看| 国产成人免费无遮挡视频| 国产毛片在线视频| 国产亚洲午夜精品一区二区久久| videos熟女内射| 欧美精品人与动牲交sv欧美| 一区二区三区免费毛片| 成人美女网站在线观看视频| 一区在线观看完整版| 久久久久精品性色| 国产黄片美女视频| 久久国产亚洲av麻豆专区| 成人美女网站在线观看视频| 少妇被粗大猛烈的视频| 人妻系列 视频| 亚洲av中文av极速乱| 男人和女人高潮做爰伦理| 女性生殖器流出的白浆| 观看美女的网站| 亚洲性久久影院| 国产视频首页在线观看| 成人午夜精彩视频在线观看| 国产成人精品婷婷| 最近最新中文字幕大全电影3| av播播在线观看一区| 国内精品宾馆在线| 波野结衣二区三区在线| 噜噜噜噜噜久久久久久91| 亚洲图色成人| 日韩一本色道免费dvd| 卡戴珊不雅视频在线播放| kizo精华| 777米奇影视久久| 亚洲精品国产av蜜桃| 国产精品偷伦视频观看了| 插阴视频在线观看视频| 99re6热这里在线精品视频| 18禁裸乳无遮挡动漫免费视频| 妹子高潮喷水视频| 欧美日韩综合久久久久久| 亚洲av电影在线观看一区二区三区| videos熟女内射| 哪个播放器可以免费观看大片| 成年人午夜在线观看视频| 五月开心婷婷网| 免费av中文字幕在线| 老熟女久久久| 久久久久国产网址| 男人舔奶头视频| 能在线免费看毛片的网站| 国产伦理片在线播放av一区| 精品久久久久久久久av| 亚洲人成网站在线播| 亚洲天堂av无毛| 日本黄色片子视频| 久久久亚洲精品成人影院| 卡戴珊不雅视频在线播放| 国产午夜精品一二区理论片| 色吧在线观看| 中文字幕亚洲精品专区| 欧美日韩在线观看h| 国产中年淑女户外野战色| 久久人妻熟女aⅴ| 啦啦啦视频在线资源免费观看| 国产精品不卡视频一区二区| 777米奇影视久久| 日日啪夜夜爽| 这个男人来自地球电影免费观看 | 一二三四中文在线观看免费高清| 亚洲久久久国产精品| 中国国产av一级| 成人综合一区亚洲| 国产精品一及| 在线亚洲精品国产二区图片欧美 | 狂野欧美激情性bbbbbb| 最近中文字幕2019免费版| 午夜免费鲁丝| 欧美变态另类bdsm刘玥| 日韩大片免费观看网站| 中文字幕亚洲精品专区| 午夜日本视频在线| 国产精品嫩草影院av在线观看| 亚洲色图av天堂| 久久影院123| 少妇的逼水好多| 国产精品国产三级国产av玫瑰| 国产爽快片一区二区三区| 街头女战士在线观看网站| 亚洲精品成人av观看孕妇| 日韩欧美 国产精品| 男人和女人高潮做爰伦理| 永久网站在线| 国产亚洲精品久久久com| 九九在线视频观看精品| 丰满少妇做爰视频| 欧美人与善性xxx| 色视频在线一区二区三区| 成人高潮视频无遮挡免费网站| 国精品久久久久久国模美| 九草在线视频观看| 啦啦啦视频在线资源免费观看| av福利片在线观看| 国内精品宾馆在线| 欧美精品一区二区大全| 亚洲人与动物交配视频| 男女啪啪激烈高潮av片| 在线 av 中文字幕| 寂寞人妻少妇视频99o| 国产精品久久久久成人av| 欧美三级亚洲精品| 国产淫片久久久久久久久| 22中文网久久字幕| 亚洲精品成人av观看孕妇| 欧美三级亚洲精品| 国产黄色视频一区二区在线观看| 国产精品成人在线| 18禁动态无遮挡网站| 精品久久久久久电影网| 亚洲精品一区蜜桃| 在线观看三级黄色| 少妇的逼水好多| 欧美日韩视频高清一区二区三区二| 亚洲欧美日韩东京热| 一级毛片我不卡| 国产爱豆传媒在线观看| 干丝袜人妻中文字幕| 欧美日韩精品成人综合77777| 日韩免费高清中文字幕av| 我的老师免费观看完整版| 午夜激情福利司机影院| 国产高潮美女av| 国产乱来视频区| 午夜日本视频在线| 精品人妻熟女av久视频| 人人妻人人澡人人爽人人夜夜| 亚洲婷婷狠狠爱综合网| 久久国产精品大桥未久av | av不卡在线播放| 中文字幕av成人在线电影| 婷婷色av中文字幕| 26uuu在线亚洲综合色| 精品亚洲乱码少妇综合久久| 99热网站在线观看| 在线观看人妻少妇| 一边亲一边摸免费视频| 尾随美女入室| 日日摸夜夜添夜夜爱| 成人亚洲精品一区在线观看 | 伊人久久国产一区二区| 久久久久视频综合| av专区在线播放| 超碰av人人做人人爽久久| 久久久久久久久久成人| 国产免费视频播放在线视频| h日本视频在线播放| 婷婷色综合www| 欧美精品人与动牲交sv欧美| 一级黄片播放器| 亚洲天堂av无毛| 亚洲av在线观看美女高潮| 日韩三级伦理在线观看| 联通29元200g的流量卡| 中国国产av一级| 亚洲中文av在线| 男人和女人高潮做爰伦理| 在线观看一区二区三区| 97超碰精品成人国产| 国内精品宾馆在线| 国内揄拍国产精品人妻在线| 欧美老熟妇乱子伦牲交| 五月天丁香电影| 亚洲怡红院男人天堂| 人人妻人人爽人人添夜夜欢视频 | 国产v大片淫在线免费观看| 精品久久国产蜜桃| 插逼视频在线观看| 18禁动态无遮挡网站| 狂野欧美激情性xxxx在线观看| 欧美xxⅹ黑人| 国产深夜福利视频在线观看| 偷拍熟女少妇极品色| 成人毛片a级毛片在线播放| 亚洲精品一区蜜桃| 天美传媒精品一区二区| 日韩av不卡免费在线播放| 一个人免费看片子| 卡戴珊不雅视频在线播放| 国产黄频视频在线观看| 成人一区二区视频在线观看| 成人无遮挡网站| 美女主播在线视频| 国产精品不卡视频一区二区| 中文乱码字字幕精品一区二区三区|