• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Alkyl-thiophene-alkyl linkers to construct double-cable conjugated polymers for single-component organic solar cells

    2023-02-18 01:55:48WenbinLaiSafakathKaruthedathChengyiXiaoLeiMengFrriLaquaiWeiweiLiYongfangLi
    Chinese Chemical Letters 2023年12期

    Wenbin Lai ,Safakath Karuthedath ,Chengyi Xiao ,Lei Meng ,Frédéri Laquai ,Weiwei Li ,Yongfang Li

    a Beijing National Laboratory for Molecular Sciences,Key Laboratory of Organic Solids,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    b Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology,Beijing 100029,China

    c King Abdullah University of Science and Technology (KAUST),KAUST Solar Center (KSC),Physical Sciences and Engineering Division (PSE),Material Science and Engineering Program (MSE),Thuwal 23955-6900,Kingdom of Saudi Arabia

    d University of Chinese Academy of Sciences,Beijing 100049,China

    e Institute of Materials Research,Tsinghua Shenzhen International Graduate School,Tsinghua University,Shenzhen 518055,China

    Keywords:Double-cable conjugated polymer Single-component organic solar cell Crystallinity Semirigid linkers Alkyl-thiophene-alkyl

    ABSTRACT In this work,semirigid linkers of the alkyl-thiophene-alkyl structure are developed to construct doublecable polymers.Three alkyl units,propyl (C3H6),hexyl (C6H12),and dodecyl (C12H24),are applied as semirigid linkers,yielding three double-cable polymers: PBC6-T,PBC12-T,and PBC24-T,respectively.PBC12-T which uses C6H12-thiophene-C6H12 linkers is found to exhibit the best device efficiency of 5.56%,while PBC6-T and PBC24-T with shorter or longer linkers yield device efficiencies of only 2.65% and 1.09% in single-component organic solar cells (SCOSCs).Further studies reveal that PBC12-T exhibits higher crystallinity and improved charge transport,resulting in better efficiencies.Our work provides an approach to construct double-cable conjugated polymers with long alkyl linkers,and it shows the importance of the linker length for the photovoltaic performance of SCOSCs.

    Recent development of non-fullerene acceptors with nearinfrared absorptions has propelled power conversion efficiencies(PCEs) of organic solar cells (OSCs) to over 19% [1–8].However,in the laboratory to commercial product translation,one needs to consider the “golden triangle”: A combination of low cost,high PCEs,and long-term stability [9,10].In particular,the long-term stability of bulk-heterojunction (BHJ) OSCs has impeded their wide-scale commercialization [11,12].As an alternative,double-cable conjugated polymers,with covalently-linked donor and acceptor segments,have been used in single-component OSCs (SCOSCs),exhibiting improved shelf,photo and thermal stability [13–17].Furthermore,SCOSCs offer less processing complexity,which effectively lowers the cost of the photoactive layers and fabrication processes [18–23].However,the PCEs of double-cable conjugated polymer-based SCOSCs are still lacking behind the BHJOSCs due to limited materials and the difficulty to tune the nanoscale donor–acceptor separation in thin films [16].

    In the search for high-performance SCOSC materials,block polymers,molecular dyads,and double-cable polymers have been developed,of which double-cable polymers contain conjugated polymers as the electron-donating backbone and aromatic side units as acceptors [15-17,24,25].For example,the incorporation of nearinfrared non-fullerene acceptors as side units into double-cable polymers with an asymmetric structure has promoted the PCEs of SCOSCs to more than 10% due to enhanced photo-current generation [15].Meanwhile,various strategies have been used to obtain well-ordered nanoscale phase separation for double-cable conjugated polymers,including rational material design (such as symmetric or asymmetric structures) and post-processing treatment[26–31].For instance,the miscibility between the conjugated backbone and pendant acceptors can provide a large donor/acceptor interface area,particularly in the amorphous regions,which is beneficial for exciton dissociation and improves the fill factor (FF) of SCOSCs.This miscibility control has promoted the PCE to 8.4% with FF values approaching 0.7 in SCOSCs [24,32].In addition to the conjugated donor and acceptor units,the linkers,which determine the degree of freedom of conjugated backbones and side units,are equally important,since they modulate molecular orientation and nano-scale phase separation.Our previous works have demonstrated that the length of the alkyl linkers can significantly change the morphology of thin films and it can reduce non-radiative recombination of charge carriers in SCOSCs [33–35].However,it remains challenging to obtain materials with very long alkyl linkers due to the intrinsic low solubility of alkyl molecules longer than C20H40which usually are waxy oils or solids,and the highly challenging synthesis.

    In this work,we have successfully incorporated semirigid linkers,specifically 2,5-disubstituted alkyl thiophene,into naphthalene diimides-based double-cable conjugated polymers (Scheme 1).This molecular design provided a route to realize long linkers with improved solubility in common organic solvents.Three different alkyl chains,ranging from propyl (C3H6) over hexyl (C6H12) to dodecyl(C12H24),were introduced into 2,5-disubstituted thiophenes.Further material characterizations show that the length of the semirigid linker has a distinct impact on the aggregation and crystallinity of the polymer films.These differences resulted in different exciton dynamics and carrier recombination kinetics,as well as photovoltaic performance.Our results emphasize the importance of semirigid linkers in tuning the crystallinity and photophysical processes in SCOSCs.

    Scheme 1. (a) Schematic diagram and (b) chemical structures of double-cable conjugated polymers with semirigid linkers in this work.

    The structures of the double-cable polymers with semirigid linkers developed in this work are shown in Scheme 1.The detailed synthesis procedures are summarized in Scheme S1 (Supporting information).The double-cable conjugated polymers were obtained throughStillecoupling polymerization by using the“functionalization-polymerization” method according to previous reports [35–37].These polymers are denoted as PBC6-T,PBC12-T and PBC24-T corresponding to propyl (C3H6),hexyl (C6H12),and dodecyl (C12H24) disubstituted thiophene linkers,respectively.All these polymers exhibited good solubility in chlorobenzene,orthodichlorobenzene (o-DCB),and toluene as solvents.Their molecular weights were measured by gel permeation chromatography (GPC)measurements witho-DCB as the eluent against polystyrene standards at 140 °C.As shown in Table 1,the number-average molecular weights (Mn) of PBC6-T,PBC12-T and PBC24-T are 62.2,38.9 and 23.8 kg/mol,and the polydispersity indexes (PDIs) are 1.50,2.12 and 1.66,respectively.

    Table 1 Molecular weight and optical properties of the polymers.

    The absorption spectra of these double-cable conjugated polymers are shown in Figs.1a and b,and optical properties are summarized in Table 1.The peaks at 300–400 nm can be attributed to the contribution of pendant naphthalene diimide (NDI) units,while the peaks in the range of 500–700 nm can be attributed to the conjugated backbone.Bathochromic shifts of ~50 nm are observed between solution and thin films in all polymers.The larger shifts observed for PBC12-T and PBC24-T indicate stronger aggregations in thin films.The higher0-0peaks than0-1peaks indicate a typicalJ-type aggregation [38].PBC12-T exhibited larger0-0/0-1intensity ratios than those of PBC6-T and PBC24-T,suggesting enhanced aggregation of the conjugated backbones [15].The excellent thermal stability of these polymers was demonstrated by thermal gravimetric analysis (TGA) measurements with only 5% weight loss at above 400 °C (Fig.S1 in Supporting information).Heating and cooling traces determined by differential scanning calorimetry (DSC) measurements are shown in Fig.1c.PBC6-T and PBC24-T showed no phase transition peaks,while PBC12-T shows several transition peaks,indicating crystallization during the cooling cycle.As shown in Fig.1d and Table 1,the cyclic voltammetry (CV)measurements (Fig.S2 in Supporting information) determined the similar highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of these polymers due to the identical donor and acceptor structures.

    Fig.1. The optical absorption spectra of PBC6-T,PBC12-T and PBC24-T in (a) chloroform solution and (b) thin films (with absorption coefficients).(c) The DSC heating and cooling traces (second cycle) and (d) the energy levels of the polymer PBC6-T,PBC12-T and PBC24-T.

    These double-cable conjugated polymers with semirigid linkers were then applied in SCOSCs using the inverted layout ITO/ZnO/active layers/MoO3/Ag [15].RepresentativeJ-Vcurves of devices are shown in Fig.2a and the figures-of-merit are summarized in Table 2.After optimization of the processing conditions,including processing additives and post-processing thermalannealing,the highest performance SCOSCs were obtained from toluene solution with 0.5 vol% 1,8-diiodooctane (DIO) as an additive and thermal annealing at 150 °C for 10 min (Tables S1-S6 in Supporting information).As shown in Fig.2a and Table 2,all the SCOSCs exhibited similarVOCs (open-circuit voltages) of 0.91–0.93 V due to the similar frontier orbital energy levels.Compared with PBC6-T and PBC24-T,PBC12-T-based SCOSCs exhibited a higherJSC(short-circuit current density) of 9.78 mA/cm2and FF of 0.61,resulting in a PCE of 5.56%.The enhancedJSCin PBC12-Tbased SCOSCs is also reflected in their high EQE (external quantum efficiency) spectra approaching 60%,as shown in Fig.2b.Moreover,although the PBC24-T-based devices showed similar FF values compared to PBC6-T,the lowerJSClimited the PCE to only 1.09%.Next,we fabricated organic field-effect transistors (OFETs) on a commercial Si/SiO2substrate using the bottom-gate bottom contact device structure and an octadecyltrichlorosilane (OTS) monolayer [39,40].All the polymers exhibited p-type characteristics,while the electron mobility was too low to be measured.As shown in Fig.2c,the calculated hole mobilities (μh) are plotted in Fig.2d and summarized also in Table 2.The OFET based on PBC6-T showed a relatively highμhof 2.3×10?3cm2V?1s?1,which was enhanced to 5.1×10?3cm2V?1s?1for PBC12-T based devices and decreased to 6.4×10?5cm2V?1s?1for PBC24-T,respectively.The hole mobilities in the SCLC measurement showed a similar trend to those in the OFETs measurement as shown in Fig.S3 (Supporting information).The different charge carrier mobilities are partially responsible for the differentJSCs in SCOSCs.The significantly lower hole mobility of PBC24-T is surprising and requires further investigation.In fact,the very long linkers influence the backbone packing of PBC12-T [34],which could be confirmed in this work,but the precise relation between the morphology and charge carrier mobility remains unclear and requires further studies.

    Table 2 Photovoltaic performances of these polymers.Charge carrier mobilities determined by SCLC measurement.

    Fig.2. (a) J-V characteristics and (b) the corresponding EQE spectra of SCOSCs based on PBC6-T,PBC12-T and PBC24-T.(c) Typical p-type transfer curves of representative OFET devices of these polymers.(d) The μhs of these polymers calculated from the OFET measurements.

    The thin film morphology of the polymers was characterized by atomic force microscopy (AFM) measurement.As shown in Fig.3,all these polymers exhibited “fiber-like” microstructures in both the height and phase images.However,the fibers in PBC6-T and PBC24-T films were significantly smaller with low root-meansquare (RMS) roughness of 0.58 nm and 0.50 nm (Figs.3a and c),respectively.Due to the better crystallinity of PBC12-T,the corresponding films showed larger microfibers in films with a higher RMS value of 0.82 nm as shown in Fig.3b.The larger “fiber-like”grains and better nano-scale phase separation of PBC12-T facilitate exciton-to-charge conversion and charge carrier transport,enhancing its PCE in SCOSCs [37].

    Fig.3. The tapping mode AFM (a-c) height and (d-f) phase images (3×3 μm) of these polymer films.

    Fig.4. (a-c) GIWAXS and (d-f) GIMAXS profiles on the Si substrates of PBC6-T,PBC12-T and PBC24-T thin films.(g) In-plane and (h) out-of-plane plots of the corresponding GIWAXS images.(i) In-plane cutlines of the GIMAXS images.

    Next,we employed two-dimensional grazing-incidence X-ray scattering with wide-angle (GIWAXS) and medium-angle (GIMAXS)to investigate the molecular packing of the polymers.The GIWAXS profiles are shown in Figs.4a-c and the crystallographic parameters are summarized in Table S8 (Supporting information).From the GIWAXS patterns in Figs.4a-c,it appears that all three polymers preferentially show a “face-on” orientation [41,42] with inplane (IP) lamellar (h00) peaks and out-of-plane (OOP)π-πstacking (010) peak.The intensities of all these peaks were significantly enhanced after thermally annealing at 150 °C (Fig.S3 in Supporting information and Figs.4a-c,Fig.S4 in Supporting information and Figs.4d-f).According to the GIMAXS images in Figs.4d-f,all polymers exhibited multiple scattering peaks in the IP direction,which have been assigned to the (100) to (300) lattice planes as shown in Figs.4g-i.Clearly,as shown in Table S8,the calculated lamellard-spacing in the alkyl chain direction increased significantly from 37.0 ?A for PBC6-T to 45.5 ?A for PBC12-T and to 58.2 ?A for PBC24-T,respectively,as a consequence of the increased linker lengths and indicates no ordering transition,which is also consistent with the NDI-based double-cable conjugated polymers [34,35].The PBC12-T-based films exhibited the largest coherence length (CL) value of 10.5 nm compared to PBC6-T (5.84 nm) and PBC24-T (3.16 nm) due to the improved crystallinity of PBC12-T as indicated by the DSC measurements.For the OOP direction,all three polymers showed similarπ-πstacking with similard(010)values of 3.66–3.68 nm and correspondingCLvalues of 1.20–2.35 nm.Hence,we conclude that the increased linkers increase the degree of freedom of the covalent-linked donor backbone and NDI acceptors,which helps the packing of the polymers in thin films.However,excessively long linkers corrupt the interaction between the donor and acceptor parts,and the high crystallinity of NDI hampers the crystallization of the polymer donor backbone [30].

    Next,we performed ultrafast transient absorption (TA) spectroscopy on thin films to unravel the photo-excited state dynamics.Figs.5a-d show the picosecond to nanosecond (ps-ns) TA spectra of thin films after excitation at 650 nm.The positiveΔT/Tsignal represents the material’s ground state bleach (PB),and the negativeΔT/Tis caused by photo-induced absorption (PA) of excited states [43].Fig.5a shows the ps-ns TA spectra of a PBC6-T film.We assigned the PA band at ~1.02 eV to singlet state-induced absorption of PBEH as it matches with the neat TA spectra of neat PBEH films (Fig.S5 in Supporting information).We note that the PA band at 1.02 eV decayed faster than the bands at 1.3–1.34 eV and 1.65–1.75 eV.This implies that the bands originate from different species,namely singlet states and charge carriers.Notably,the ps-ns TA spectra of both PBC12-T and PBC24-T showed a similar spectral evolution (Figs.5b and c).However,we note that the ps-ns TA spectra of BHJ films point to very limited charge generation,in line with the poor PCE of the devices based on BHJ-type films (Fig.5d).Fig.5e shows the kinetics of selected spectral regions (0.9–1.0 eV for singlet states and 1.65–1.75 eV for charges).However,in all samples,the charge generation is concluded within ~20–30 ps.We note that,though the PCE is low,the BHJ film showed some charge generation in the first 20–30 ps,while most of the singlet excited states decayed back to the ground state without undergoing charge transfer.

    Fig.5. The ps-ns TA spectra of (a) PBC6-T,(b) PBC12-T,(c) PBC24-T and (d) BHJ films after exciting at 650 nm.(e) ps-ns TA kinetics of charge-dominated (1.65–1.75 eV) and singlet-dominated (0.9–1 eV) spectral regions.(f) ns-μs TA kinetics of 1.65–1.75 eV band after exciting at 532 nm.

    Having discussed the impact of linker length on charge generation,we now discuss charge carrier recombination.The BHJ film showed fast charge carrier recombination,suggesting that BHJ devices are not only limited by inefficient charge generation,but also by fast charge carrier recombination.This points to the importance of using linkers that enhance the charge carrier generation and simultaneously reduce the charge carrier recombination.The charge carriers in PBC6-T and PBC12-T thin films showed similar charge carrier decay dynamics,while PBC24-T exhibited significantly faster charge carrier decay.Since the ps-ns TA cannot probe the entire charge recombination process,we conducted nsμs TA experiments to monitor the entire charge carrier recombination dynamics to understand its impact on device performance.On the ns-μs time scale,singlet excited states are no longer observed and charge carriers dominate the TA spectra and dynamics.Fig.5f shows the ns-μs charge carrier decay dynamics of all four films after excitation at 532 nm.The corresponding ns-μs TA spectra are provided in Fig.S6.Clearly,the decay of the charge-induced absorption is slower for PB12-T than for PBC6-T.The charge carrier decay is even faster in PBC24-T and BHJ films.

    In conclusion,we introduced three linkers with different lengths (C6H12,C12H24and C24H48) using alkyl-thiophene-alkyl linkers into double-cable polymers.PBC12-T with intermediate linker length exhibited enhanced crystallinity due to the increased degree of freedom provided by the linker,which was found to be beneficial for charge transport in SCOSCs.The best compromise of charge carrier generation and recombination kinetics provided PCEs of 5.56% for PBC12-T-based SCOSCs,while PBC6-T with shorter linkers and PBC24-T with longer linkers showed lower efficiencies.Our results provide guidance on the design of linkers in double-cable conjugated polymers and emphasize the importance of linker length in controlling intermolecular packing,photophysical processes,and photon-to-electron conversion yields.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This study is jointly supported by the Beijing Natural Science Foundation (No.JQ21006),the Ministry of Science and Technology (No.2018YFA0208504),and the National Natural Science Foundation (Nos.92163128,52073016,21905018) of China.This work was further supported by the Fundamental Research Funds for the Central Universities (Nos.buctrc201828,XK1802-2),Open Project of State Key Laboratory of Organic-Inorganic Composites(No.oic-202201006),and Open Project of State Key Laboratory of Supramolecular Structure and Materials (No.sklssm202209).The research reported in this publication was supported by funding from the King Abdullah University of Science and Technology(KAUST).

    国产麻豆成人av免费视频| 国产精品电影一区二区三区| 又黄又爽又免费观看的视频| 村上凉子中文字幕在线| 亚洲狠狠婷婷综合久久图片| 中文字幕精品亚洲无线码一区| 男女那种视频在线观看| 日本熟妇午夜| 国产三级在线视频| 国产伦人伦偷精品视频| 欧美日韩一级在线毛片| 亚洲人成网站高清观看| 麻豆久久精品国产亚洲av| 国产伦精品一区二区三区视频9 | 真人做人爱边吃奶动态| 日韩欧美 国产精品| 大型黄色视频在线免费观看| 欧美黑人欧美精品刺激| 日韩av在线大香蕉| 18禁黄网站禁片午夜丰满| 最近最新中文字幕大全电影3| 欧美日韩精品网址| 亚洲自拍偷在线| 国产精品爽爽va在线观看网站| 久久久色成人| 国产精品野战在线观看| av中文乱码字幕在线| 国产一区二区激情短视频| 国产精品嫩草影院av在线观看 | 欧美成人一区二区免费高清观看| 国产亚洲欧美98| 亚洲国产欧美网| 久久精品人妻少妇| 免费看美女性在线毛片视频| x7x7x7水蜜桃| 内射极品少妇av片p| 国产野战对白在线观看| 国产高清有码在线观看视频| 色尼玛亚洲综合影院| 国产乱人伦免费视频| 啦啦啦免费观看视频1| 亚洲av一区综合| 国产亚洲欧美98| 欧美乱码精品一区二区三区| 最好的美女福利视频网| 国产精品自产拍在线观看55亚洲| 久久草成人影院| 国产精品99久久久久久久久| 一区福利在线观看| 午夜福利在线观看吧| 国产精品 欧美亚洲| 白带黄色成豆腐渣| 久久中文看片网| 在线观看午夜福利视频| 天堂影院成人在线观看| 人妻夜夜爽99麻豆av| 亚洲熟妇中文字幕五十中出| 黄色片一级片一级黄色片| a级一级毛片免费在线观看| 日韩欧美 国产精品| 老汉色av国产亚洲站长工具| 99热6这里只有精品| 久久精品国产综合久久久| 亚洲av成人不卡在线观看播放网| 日本免费a在线| 最新在线观看一区二区三区| 欧美不卡视频在线免费观看| 国产精品,欧美在线| 在线观看午夜福利视频| 午夜精品一区二区三区免费看| 国产亚洲精品久久久久久毛片| 草草在线视频免费看| 老鸭窝网址在线观看| 内地一区二区视频在线| 国产午夜福利久久久久久| 亚洲精品色激情综合| 欧美成狂野欧美在线观看| 日本一本二区三区精品| 亚洲成人久久性| 床上黄色一级片| 国产成人aa在线观看| 中文字幕av在线有码专区| 男人舔奶头视频| 国产一区二区三区在线臀色熟女| 欧美丝袜亚洲另类 | 成人欧美大片| 女人高潮潮喷娇喘18禁视频| 男女视频在线观看网站免费| 久久久精品大字幕| 日本免费一区二区三区高清不卡| 国产欧美日韩一区二区三| 欧美性感艳星| 俄罗斯特黄特色一大片| 亚洲av第一区精品v没综合| 国产精品 国内视频| 午夜激情欧美在线| 亚洲第一电影网av| 国产亚洲精品综合一区在线观看| 欧美日韩黄片免| 国产一区在线观看成人免费| 国产国拍精品亚洲av在线观看 | 亚洲精品乱码久久久v下载方式 | 97碰自拍视频| 一区福利在线观看| 国产午夜精品久久久久久一区二区三区 | 丁香欧美五月| 久久久久国内视频| a级一级毛片免费在线观看| 午夜福利在线在线| 中亚洲国语对白在线视频| 最新美女视频免费是黄的| 精品一区二区三区视频在线观看免费| 久久精品综合一区二区三区| 色视频www国产| 亚洲欧美日韩东京热| 最新中文字幕久久久久| 欧美色视频一区免费| 波多野结衣巨乳人妻| av中文乱码字幕在线| 日日干狠狠操夜夜爽| 日本在线视频免费播放| 国产一区二区三区视频了| 久久香蕉国产精品| 成人亚洲精品av一区二区| 久久久久国产精品人妻aⅴ院| 国产蜜桃级精品一区二区三区| 嫁个100分男人电影在线观看| 一级毛片女人18水好多| 国产成人系列免费观看| 一边摸一边抽搐一进一小说| 啦啦啦韩国在线观看视频| 国产精品久久久久久亚洲av鲁大| 中亚洲国语对白在线视频| 天堂网av新在线| 在线观看av片永久免费下载| 一个人免费在线观看电影| 一卡2卡三卡四卡精品乱码亚洲| 黄色成人免费大全| 九九热线精品视视频播放| 少妇的丰满在线观看| h日本视频在线播放| 黄片小视频在线播放| 99精品久久久久人妻精品| 亚洲国产日韩欧美精品在线观看 | 国产成人av激情在线播放| 又粗又爽又猛毛片免费看| 日本免费a在线| 丰满人妻熟妇乱又伦精品不卡| 老汉色∧v一级毛片| 国产一区二区三区在线臀色熟女| 一卡2卡三卡四卡精品乱码亚洲| 在线天堂最新版资源| 久久香蕉国产精品| 99久国产av精品| 女同久久另类99精品国产91| 精品久久久久久久毛片微露脸| 91麻豆av在线| av在线蜜桃| av在线天堂中文字幕| 熟女少妇亚洲综合色aaa.| 国产亚洲精品久久久久久毛片| 女生性感内裤真人,穿戴方法视频| 国产69精品久久久久777片| 亚洲色图av天堂| 亚洲精品美女久久久久99蜜臀| 中文字幕精品亚洲无线码一区| 岛国在线观看网站| 欧美黄色片欧美黄色片| 美女 人体艺术 gogo| 在线十欧美十亚洲十日本专区| 91麻豆精品激情在线观看国产| 在线观看日韩欧美| 国产欧美日韩精品一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 日韩亚洲欧美综合| 欧美3d第一页| 老司机深夜福利视频在线观看| 欧美bdsm另类| 国产精品 国内视频| 97超级碰碰碰精品色视频在线观看| 在线播放无遮挡| 麻豆久久精品国产亚洲av| 久久中文看片网| 精品免费久久久久久久清纯| 女警被强在线播放| 级片在线观看| 老司机深夜福利视频在线观看| 午夜福利18| 亚洲性夜色夜夜综合| 噜噜噜噜噜久久久久久91| 热99在线观看视频| 亚洲内射少妇av| 两个人视频免费观看高清| 欧美丝袜亚洲另类 | 99久久精品热视频| 老鸭窝网址在线观看| 欧美另类亚洲清纯唯美| 少妇熟女aⅴ在线视频| 最好的美女福利视频网| 99国产综合亚洲精品| 午夜激情福利司机影院| 啦啦啦韩国在线观看视频| 国内精品美女久久久久久| 天堂√8在线中文| 熟女人妻精品中文字幕| 亚洲成av人片在线播放无| 国产不卡一卡二| 国产欧美日韩一区二区精品| 久久国产精品影院| 51午夜福利影视在线观看| 久久久久久久亚洲中文字幕 | 性色av乱码一区二区三区2| 午夜久久久久精精品| 午夜免费成人在线视频| 最近视频中文字幕2019在线8| 亚洲最大成人手机在线| 一区福利在线观看| 国产精品爽爽va在线观看网站| 精品一区二区三区视频在线 | 久久久国产精品麻豆| 亚洲男人的天堂狠狠| 在线观看av片永久免费下载| 给我免费播放毛片高清在线观看| 国产成+人综合+亚洲专区| 在线免费观看的www视频| 国产亚洲欧美98| 一区二区三区激情视频| 最近视频中文字幕2019在线8| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产伦在线观看视频一区| 99久久精品热视频| 老司机福利观看| 99久久久亚洲精品蜜臀av| 久久6这里有精品| 啦啦啦韩国在线观看视频| 最新中文字幕久久久久| 精品无人区乱码1区二区| 精品不卡国产一区二区三区| 亚洲av一区综合| 亚洲欧美日韩高清在线视频| 久久久久久久久大av| 色视频www国产| 免费在线观看影片大全网站| 久久久久久久精品吃奶| 国产成+人综合+亚洲专区| 欧美黄色片欧美黄色片| 亚洲人与动物交配视频| 国产av一区在线观看免费| 一本一本综合久久| 高潮久久久久久久久久久不卡| 久久香蕉精品热| 国产成人福利小说| 两人在一起打扑克的视频| 亚洲精品一卡2卡三卡4卡5卡| 99精品欧美一区二区三区四区| xxxwww97欧美| 欧美绝顶高潮抽搐喷水| 亚洲美女黄片视频| 成人午夜高清在线视频| 精品熟女少妇八av免费久了| 91九色精品人成在线观看| 欧美在线黄色| 在线观看美女被高潮喷水网站 | 久久久国产精品麻豆| 亚洲欧美日韩高清专用| 99久久成人亚洲精品观看| 高潮久久久久久久久久久不卡| 中文字幕av成人在线电影| 亚洲熟妇中文字幕五十中出| 久久久久九九精品影院| 亚洲不卡免费看| 少妇熟女aⅴ在线视频| 欧美av亚洲av综合av国产av| 极品教师在线免费播放| 老司机午夜十八禁免费视频| 成人欧美大片| 身体一侧抽搐| 亚洲国产欧洲综合997久久,| 少妇人妻精品综合一区二区 | 欧美日韩中文字幕国产精品一区二区三区| 久久午夜亚洲精品久久| 精品久久久久久久人妻蜜臀av| 午夜福利在线在线| 99国产精品一区二区蜜桃av| 欧洲精品卡2卡3卡4卡5卡区| 国产极品精品免费视频能看的| 国产精品三级大全| e午夜精品久久久久久久| 日韩精品中文字幕看吧| 美女黄网站色视频| 中文字幕精品亚洲无线码一区| 免费看光身美女| 久久精品国产清高在天天线| 在线观看日韩欧美| 久久精品亚洲精品国产色婷小说| 丰满的人妻完整版| 日韩有码中文字幕| 天天一区二区日本电影三级| 在线免费观看的www视频| 真人一进一出gif抽搐免费| netflix在线观看网站| 亚洲精品成人久久久久久| 国产成人影院久久av| 日日夜夜操网爽| 人人妻人人澡欧美一区二区| 少妇人妻精品综合一区二区 | 国产 一区 欧美 日韩| 1000部很黄的大片| or卡值多少钱| 免费看日本二区| 女同久久另类99精品国产91| 久久久久久久午夜电影| 首页视频小说图片口味搜索| 国产精品国产高清国产av| 国产欧美日韩一区二区三| 男插女下体视频免费在线播放| 99久久精品一区二区三区| 亚洲成人精品中文字幕电影| 色精品久久人妻99蜜桃| 看免费av毛片| 欧美日本亚洲视频在线播放| 老鸭窝网址在线观看| av专区在线播放| 美女免费视频网站| 免费观看的影片在线观看| 搡老熟女国产l中国老女人| 久久久成人免费电影| 久99久视频精品免费| 欧美精品啪啪一区二区三区| 五月玫瑰六月丁香| 美女高潮的动态| 九九在线视频观看精品| 色综合站精品国产| 亚洲av中文字字幕乱码综合| 午夜福利免费观看在线| 日韩欧美在线乱码| 叶爱在线成人免费视频播放| 亚洲国产日韩欧美精品在线观看 | 伊人久久精品亚洲午夜| 日本a在线网址| 香蕉久久夜色| 午夜亚洲福利在线播放| 少妇熟女aⅴ在线视频| 一个人免费在线观看电影| 久久久久免费精品人妻一区二区| 在线观看美女被高潮喷水网站 | 99视频精品全部免费 在线| 亚洲aⅴ乱码一区二区在线播放| 天天一区二区日本电影三级| 久久精品综合一区二区三区| 成人亚洲精品av一区二区| 99精品在免费线老司机午夜| 国产av一区在线观看免费| 亚洲一区二区三区色噜噜| 欧美日韩乱码在线| 午夜久久久久精精品| 国产爱豆传媒在线观看| 亚洲七黄色美女视频| 夜夜躁狠狠躁天天躁| 国产成人系列免费观看| 国产欧美日韩一区二区精品| 99久久九九国产精品国产免费| 天堂√8在线中文| 亚洲av不卡在线观看| 人妻夜夜爽99麻豆av| 欧美黑人巨大hd| 午夜日韩欧美国产| 男插女下体视频免费在线播放| 91在线观看av| 精品乱码久久久久久99久播| 老司机午夜福利在线观看视频| 村上凉子中文字幕在线| 欧美成人免费av一区二区三区| 欧美av亚洲av综合av国产av| 亚洲男人的天堂狠狠| 国产高清激情床上av| 亚洲不卡免费看| 久久婷婷人人爽人人干人人爱| 亚洲精品乱码久久久v下载方式 | 在线播放国产精品三级| 免费电影在线观看免费观看| 午夜精品一区二区三区免费看| 十八禁网站免费在线| 亚洲在线观看片| 亚洲精品美女久久久久99蜜臀| 啦啦啦韩国在线观看视频| 国产精品三级大全| 中文资源天堂在线| 欧美成人性av电影在线观看| 国语自产精品视频在线第100页| 久久精品91无色码中文字幕| 精品国产超薄肉色丝袜足j| 久久午夜亚洲精品久久| 中文字幕av成人在线电影| 非洲黑人性xxxx精品又粗又长| 日本五十路高清| 欧美黄色淫秽网站| 日本 av在线| 久久久久精品国产欧美久久久| 午夜免费观看网址| 99精品在免费线老司机午夜| 国产精品精品国产色婷婷| 国产成+人综合+亚洲专区| 日本a在线网址| 99国产精品一区二区三区| 有码 亚洲区| 亚洲av熟女| 精品熟女少妇八av免费久了| 欧美绝顶高潮抽搐喷水| 国产精品日韩av在线免费观看| 久久久久性生活片| 不卡一级毛片| 亚洲黑人精品在线| 在线观看舔阴道视频| 九九久久精品国产亚洲av麻豆| 国产麻豆成人av免费视频| 欧美最新免费一区二区三区 | 国产高潮美女av| 欧美xxxx黑人xx丫x性爽| 国产伦在线观看视频一区| 国产国拍精品亚洲av在线观看 | 九九在线视频观看精品| 亚洲av第一区精品v没综合| 真人做人爱边吃奶动态| 精品乱码久久久久久99久播| 日韩欧美在线二视频| 在线视频色国产色| 少妇人妻精品综合一区二区 | 国产v大片淫在线免费观看| 在线观看av片永久免费下载| 桃红色精品国产亚洲av| 1000部很黄的大片| 日本黄色片子视频| 男女做爰动态图高潮gif福利片| 久久人妻av系列| 亚洲精品美女久久久久99蜜臀| 欧美一区二区精品小视频在线| 亚洲国产色片| 男女午夜视频在线观看| 成熟少妇高潮喷水视频| 丰满的人妻完整版| 淫妇啪啪啪对白视频| 国产三级黄色录像| 特级一级黄色大片| 日本 欧美在线| 一区二区三区激情视频| bbb黄色大片| 精品久久久久久,| 成人亚洲精品av一区二区| 香蕉av资源在线| 99热这里只有是精品50| 丰满乱子伦码专区| 久久精品国产亚洲av涩爱 | 精品久久久久久久久久久久久| 99热只有精品国产| 在线国产一区二区在线| 国产高清有码在线观看视频| 99视频精品全部免费 在线| av女优亚洲男人天堂| 欧美又色又爽又黄视频| 欧美日韩亚洲国产一区二区在线观看| 97超视频在线观看视频| 日韩欧美在线乱码| 啪啪无遮挡十八禁网站| 亚洲电影在线观看av| 国产成人av教育| 亚洲国产精品999在线| 高清在线国产一区| 哪里可以看免费的av片| 国产熟女xx| 天天躁日日操中文字幕| 悠悠久久av| 美女高潮的动态| 久久婷婷人人爽人人干人人爱| 黑人欧美特级aaaaaa片| 久久久久久大精品| 99久久九九国产精品国产免费| 国产亚洲av嫩草精品影院| 又粗又爽又猛毛片免费看| 亚洲精品456在线播放app | 亚洲精品成人久久久久久| 制服人妻中文乱码| 国产一区二区三区在线臀色熟女| 欧美激情久久久久久爽电影| 国产亚洲精品久久久com| 久久久久亚洲av毛片大全| 精品日产1卡2卡| 国产精品,欧美在线| 看黄色毛片网站| 女人十人毛片免费观看3o分钟| 麻豆成人av在线观看| 午夜精品在线福利| 2021天堂中文幕一二区在线观| 国产成人啪精品午夜网站| 天堂√8在线中文| 搡老熟女国产l中国老女人| 国产精品久久久久久人妻精品电影| 日本黄大片高清| 中文字幕精品亚洲无线码一区| 国产一区二区在线观看日韩 | 成人三级黄色视频| 99热这里只有是精品50| 亚洲av一区综合| 九九在线视频观看精品| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| 老司机午夜十八禁免费视频| 色综合婷婷激情| 欧美日韩精品网址| 国产亚洲欧美在线一区二区| 国产高清三级在线| 久久久成人免费电影| 精品99又大又爽又粗少妇毛片 | 性欧美人与动物交配| 国产三级在线视频| 色视频www国产| 亚洲欧美日韩无卡精品| 国产精品久久久久久久久免 | 一区二区三区高清视频在线| 亚洲av免费高清在线观看| 国产极品精品免费视频能看的| 久久久色成人| 国产高清视频在线播放一区| 熟女人妻精品中文字幕| 午夜福利在线在线| 97超级碰碰碰精品色视频在线观看| 免费看a级黄色片| 国产69精品久久久久777片| 91av网一区二区| 欧美另类亚洲清纯唯美| 他把我摸到了高潮在线观看| 久久国产精品人妻蜜桃| 在线免费观看的www视频| 看免费av毛片| 色综合站精品国产| 香蕉久久夜色| 91在线精品国自产拍蜜月 | 国产精品久久视频播放| 国产三级中文精品| 久久久久久久久大av| 男女那种视频在线观看| 日本精品一区二区三区蜜桃| 看免费av毛片| 丰满乱子伦码专区| 国产伦一二天堂av在线观看| 天美传媒精品一区二区| h日本视频在线播放| 亚洲最大成人手机在线| 国产精品影院久久| 校园春色视频在线观看| 色吧在线观看| 18+在线观看网站| 久久久久久久精品吃奶| 亚洲国产高清在线一区二区三| 熟女人妻精品中文字幕| 国产av在哪里看| 亚洲人成伊人成综合网2020| 日韩欧美精品v在线| 蜜桃久久精品国产亚洲av| 五月玫瑰六月丁香| 在线观看舔阴道视频| 国产精品 国内视频| 国内精品美女久久久久久| 国内精品久久久久久久电影| 男人舔女人下体高潮全视频| 精品久久久久久久久久免费视频| 19禁男女啪啪无遮挡网站| 小蜜桃在线观看免费完整版高清| 国产精品精品国产色婷婷| 欧美激情久久久久久爽电影| 男插女下体视频免费在线播放| 色哟哟哟哟哟哟| 免费在线观看亚洲国产| 日本 av在线| 脱女人内裤的视频| 叶爱在线成人免费视频播放| 欧美日韩精品网址| 免费观看的影片在线观看| 国产精品影院久久| 蜜桃久久精品国产亚洲av| 天堂√8在线中文| 99久久99久久久精品蜜桃| 久久久久久久精品吃奶| 夜夜看夜夜爽夜夜摸| 无人区码免费观看不卡| 五月伊人婷婷丁香| 亚洲人成网站高清观看| 免费大片18禁| 小说图片视频综合网站| 午夜激情福利司机影院| 国产一区在线观看成人免费| 精品一区二区三区av网在线观看| 极品教师在线免费播放| 在线观看66精品国产| 黄色片一级片一级黄色片| 国产精品香港三级国产av潘金莲| 亚洲在线观看片| 少妇裸体淫交视频免费看高清| 又紧又爽又黄一区二区| 午夜精品在线福利| 免费看a级黄色片| 欧美中文综合在线视频| 国产一区二区在线av高清观看| 99国产精品一区二区三区| 久久性视频一级片| 2021天堂中文幕一二区在线观| 国产av一区在线观看免费| 麻豆国产97在线/欧美| 又黄又粗又硬又大视频| 一边摸一边抽搐一进一小说| 国产精品综合久久久久久久免费| 97超级碰碰碰精品色视频在线观看| av欧美777| 啦啦啦观看免费观看视频高清| 一夜夜www|