• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    How ligand coordination and superatomic-states accommodate the structure and property of a metal cluster: Cu4(dppy)4Cl2 vs.Cu21(dppy)10 with altered photoluminescence

    2023-02-18 01:55:46HimingWuGyAndrewRjiniAnumulZhixunLuo
    Chinese Chemical Letters 2023年12期

    Himing Wu ,Gy N.Andrew ,Rjini Anumul ,Zhixun Luo,b,?

    a Beijing National Laboratory for Molecular Sciences (BNLMS),State Key Laboratory for Structural Chemistry of Unstable and Stable Species,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    b School of Chemistry,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords:Copper nanocluster Yellow emission Dual emission Superatomic states Ligand dppy

    ABSTRACT We have synthesized two copper nanoclusters (NCs) with a protection of the same ligand diphenylphosphino-2-pyridine (C17H14NP,dppy for short),formulated as Cu4(dppy)4Cl2 and Cu21(dppy)10,respectively.The former one bears a distorted tetrahedron Cu4 core with its six edges fully protected by chlorine and dppy ligands,while the latter presents a symmetric Cu21 core on which ten dppy molecules function as monolayer protection via well-organized monodentate or bidentate coordination.Interestingly,the Cu4(dppy)4Cl2 cluster exhibits a strong yellow emission at ~577 nm,while Cu21(dppy)10 displays dual emissions in purple (~368 nm) and green (~516 nm) regions respectively.In combination with TD-DFT calculations,we demonstrate the origin of altered emissions and unique stability of the two copper nanoclusters pertaining to the ligand coordination and metallic superatomic states.

    Ligand-protected metal nanoclusters (NCs for short) allow for tuneable charge distribution and energy transfer between the metallic core and organic ligands,giving rise to a diversity of structures,compositions and crystalline forms [1–4].Due to the unique electron configuration (n-1)d10ns1[5],coinage metal NCs have shown their advantages of facile synthesis and distinctive optical,electrical and chemical properties with promising applications in chemo-sensing,bio-labelling and catalysis [6–9].The Cu NCs are of special interest because they usually exhibit earth-abundant,costefficient and luminesce properties due to weak spin-orbit coupling interaction and high reorganization energy under photoexcitation[10–12].However,the single crystal synthesis of Cu NCs is challenging due to the lower MI/M0half-cell potential of Cu (0.52 V)compared with that of Ag (0.80 V) and Au (1.68 V) [13–15].Difficult as was the work,significant advances have been made to synthesize the ligand-protected Cu NCs,such as those of thiolate[16,17],phosphine [18],selenate [19],alkynyl [20] and halogen ligands [21–23],shedding light on the powerful ligand engineering which causes a diversity of cluster structures.

    Along with the significant advances in synthesizing atomically precise metal NCs,it is recognized that superatomic electron configuration profits to thermal stability of metal NCs [24,25];also,both ligand accommodation and superatomic states are sensitive to cluster sizes [26–29].Some stable metal NCs are rationalized with a magic number of valence electrons simply by considering that the highly electrophilic ligands capture electrons of the metallic core.This has been applied for 2e-superatomic [Cu13(S2CNnBu2)6(acetylide)4]+[30],8e-superatomic [Ag21{S2P(OiPr)2}12]+[31],18e-superatomic Au44(DMBT)26[32],20e-superatomic Pd55(PiPr3)12(CO)20[33],34esuperatomic [Ag78(iPrPhS)30(dppm)10Cl10]4+[34],58e-superatomic[Au69(PR3)20Cl12]–and Au102(p-MBA)44NCs [35,36].Apart from the successful synthesis of diverse metal NCs,ongoing efforts have been devoted to understanding how ligand coordination and metal superatomic-states accommodate the structure and property of a metal cluster,thus beneficial to rational design of cluster-based functional materials.

    A versatile ligand,diphenylphosphino-2-pyridine (dppy for short),has been widely applied in the synthesis of luminescent metal NCs [37–39],and the flexibility of its bidentate or monodentate coordination enables for tuneable accommodation [40–43].Here we report a comparative study on the contributions of both superatomic stability and ligand coordination to the copper NCs by utilizing the dppy as ligand.With reduction of [Cu(OAc)2]in the presence of NaBH4,we have synthesized the single-crystals of two luminescent clusters,Cu4(dppy)4Cl2and Cu21(dppy)10NCs.Amongst them,the Cu21(dppy)10cluster shows a superatomic metallic core but allow for well-organized monodentate and bidentate coordination of the dppy ligands.Interestingly,the Cu21NCs exhibit dual emissions in purple and green regions;in comparison,the Cu4(dppy)4Cl2cluster has a tetrahedron Cu4coreviafull protection by bridged sulfur of the monodentate dppy ligands,giving rise to a broad band of yellow emission at ~577 nm.

    Fig.1a displays the single-crystal structure of the Cu4(dppy)4Cl2NCs (Figs.S1 and S2,Table S1 in Supporting information).Singlecrystal parsing results at 110 K show that the Cu4(dppy)4Cl2NCs are crystallized in a monoclinic crystal system with a space group of I2/a.The single-crystal composition is determined to be Cu4P4N4C70H60Cl9,with two additional non-coordination moieties CH2Cl2and Cl3being involved in the single crystals [44–50].Interestingly,the metallic core displays a slightly distorted tetrahedron Cu4of which each Cu atom is coordinated with its adjacent three Cu atoms with average Cu-Cu distance at 2.821 ?A (2.651–2.956 ?A).Meanwhile,four dppy ligands form bidentate coordination on four edges of the tetrahedron Cu4core of which the other two edges are linked with chlorine bridges,giving rise to full protection of the six edges of the Cu4core.Also,each Cu atom binds to its adjacent three Cu atoms,and is simultaneously coordinated with N,P and Cl atoms.Natural population analysis (NPA) shows that the charge distribution on each Cu and Cl atom is 0.20e and ?0.60e respectively (Fig.S15 and Table S2 in Supporting information),indicative of electron attraction of chlorine rendering a 2e-superatomic Cu4core (4e -0.6e×2 -0.2e×4=2e).The saturated hexa-coordinate of copper,and the well-organized charge transfer interactions account for the prominent stability of such a 2e-superatomic copper cluster [51–54].

    Fig.1. Single-crystal structures of (a) Cu4(dppy)4Cl2,with a CH2Cl2 and a Cl3 involved and (b) Cu21(dppy)10.The insets include the natural population analysis (NPA) of charge distribution of Cu21 nanocluster.Cu in orange,P pink,N blue,Cl green,and C grey.For clarity,H atoms are omitted.Capped sticks and ball-stick styles (instead of thermal ellipsoids) are displayed for the two kinds of Cu clusters.

    We have synthesized a larger copper cluster Cu21(dppy)10with the same ligand and similar procedure,but find there is a different case of the structure and coordination modes.Fig.1b dissects the single crystal structure of the as-prepared Cu21NCs (Figs.S3–S5 and Table S1 in Supporting information).The single-crystal parsing reveals that the Cu21(dppy)10is crystallized in a trigonal space group with a precise composition of Cu21C170H140N10P10.ThequasiC3-symmetric Cu21core can be viewed as the connection of a gyroscopic-like Cu8and a bottom bowl-like Cu13along the line through the atoms of Cu9,Cu2 and Cu8.In the Cu13moiety,the Cu-Cu average distance is 2.652 ?A (2.477–2.994 ?A),which is almost equal to the Cu-Cu bond length (averaged at 2.651 ?A) in the Cu8moiety (Fig.S16 and Table S3 in Supporting information),but smaller than the average Cu-Cu bond length in Cu4(dppy)4Cl2.The varied Cu-Cu bond lengths are also consistent with the previously reported Cu NCs [55–58],due to flexible Cu coordination.Different from Cu4(dppy)4Cl2,the Cu21core is stabilized by ten dppy ligands which form two types of coordination bonds.Four of the ten dppy ligands bind to four Cu atoms through Cu-P bonds,while the other six ligands bind to twelve Cu atoms by six Cu-P bonds and six Cu-N bonds,and additional five Cu atoms do not link to the ligand(including the central atom Cu8).This is different from the other Cu NCs protected by the dppy ligands [59].The average Cu-P bond length in Cu21(dppy)10is similar to that of the Cu(I) phosphine complex [60] and the [Cu25H22(PPh3)12]Cl cluster [61].The calculated NPA charge distribution (based on the single crystal structure) reveals that there are different types of Cu atoms involved in the Cu21(dppy)10.Specifically,the body-centred Cu atom (Cu2)and bottom-centred Cu atom (Cu8) are largely negative (?0.36 and?0.20|e|);the three vertex atoms of the gyroscopic-like Cu8moiety (i.e.,Cu1,Cu10,Cu19) are positively charged (0.24,0.23 and 0.25|e|);the three face-centred (Cu5,Cu13,Cu19) and three vertex Cu atoms (Cu3,Cu11,Cu17) of the three heptagons are slightly negative,while the other Cu atoms are slightly positive or close to zero.Note that,the total NPA charge of the capping gyroscopic-like Cu8region is 0.29|e|,while the total NPA of bottom bowl-like Cu13is ?0.19|e|.Although a diversity of the NPA charge distribution on the coper atoms,the total NPA charge on the Cu21core is close to zero (Fig.S17 and Tables S4–S6 in Supporting information),which is in sharp contrast to that of the Cu4core at 0.80|e|,showing a different mechanism of stability.

    Fig.2 presents the typical mass spectra of the two copper NCs,collected in a positive modeviaan electrospray ionization mass spectrometer (ESI-MS).Notably,there are two prominent peaks for the Cu4(dppy)4Cl2NCs atm/z1379.01 and 1422.96,corresponding to [Cu4(dppy)4Cl2+H]+and [Cu4(dppy)4Cl2+2Na]+.Besides,the peak atm/z1466.93 could be assigned to[Cu4(dppy)4Cl2·CH2Cl2+5H]+.The absence of other strong abundance peaks suggests high chemical purity and stability of the Cu4(dppy)4Cl2NCs.Note that the experimental isotopic pattern and simulated mass distribution match well with each other(insets in Fig.2a).Similarly,Fig.2b shows the ESI-MS spectrum of Cu21NCs,where a small peak atm/z1991.76 is assigned to[Cu21(DPPY)10+17H]2+,of which the isotopic patterns match with the simulated mass distribution (insets in Fig.2b).A few fragment peaks are also seen atm/z1707.64,1838.28 and 1903.24,corresponding to dissociation and hydrogenation of the copper core as well as the loss of a few dppy ligands.This also agrees with the phosphine-protected Ag clusters due to weak bonding interactions[62].

    Fig.2. ESI-MS of (a) Cu4(dppy)4Cl2 and (b) Cu21(dppy)10 NCs in the positive ion mode,respectively.Insets display the experimental spectrum in a comparison with the simulated isotopic patterns.

    We have studied the absorption and photoluminescence properties of the two copper NCs.Fig.3a shows the absorption spectrum of Cu4(dppy)4Cl2NCs in DCM,where a characteristic peak at 260 nm and a weak broad band at 472 nm are observed.For this small cluster,we have conducted TD-DFT calculations and check out all the likely electronic excitation transitions at the optimized S0minima of Cu4(dppy)4Cl2(Table S7 in Supporting information).As a result,the 260 nm peak is primarily caused by somequasi-degenerate electronic transitions (e.g.,HOMO →LUMO+30/31).Considering that the HOMO is mainly located on the Cu4metal core,while the LUMO+30/31 are contributed by the ligands,the electronic transition at ~260 nm corresponds to metal-to-ligand charge transfer (MLCT) transition.This is consistent with the previous reported study [63].Besides,the TD-DFT calculations also find electronic transitions at 436,518 and 546 nm,associated with the frontier molecular orbitals,which interprets the experimental observation of a broad weak band at 400–600 nm.Fig.3b shows the photoluminescence spectrum of the Cu4(dppy)4Cl2NCs in DCM,where a remarkable yellow emission band at 577 nm is displayed.The quantum yield of the copper NC at room temperature is estimated to be ~1.83%.This is consistent with the previously reported halogen-protected copper NCs which also exhibit yellow emission at ~600 nm [64,65].Timeresolved decay measurements were also carried out for the Cu4NC in DCM (Fig.3c),where the yellow emission is associated with a relatively long lifetime of 121.87 ns.Furthermore,we measured the emission spectra of the Cu4(dppy)4Cl2NCs in altered low temperatures (Fig.3d),and found that the luminescence shows enhanced intensity with decreasing temperature from 298 K to 150 K,while minor attenuation of intensity from 125 K to 78 K.Notably,the emission at 78 K shows a much longer lifetime up to microsecond (with fitted values at 46.03 μs and 95.50 μs).This is different from the monotonic increase tendency of low temperature phosphorus emission of small organic molecules.It is inferred that the dramatic changes of emission intensity and lifetime of such copper NCs could be associated with both electronic transitions between singlet and triplet states,as well as vibrational relaxation of the structure.

    Fig.3. (a,b) The absorption and photoluminescence spectra of the Cu4(dppy)4Cl2 NCs in DCM.(c) Time-resolved emission decay at 298 K (λex=330 nm).(d) Temperaturedependant emission spectra at 78–298 K in DCM.(e,f) The absorption and photoluminescence spectra of the Cu21(dppy)10 NCs in DCM.(g,h) Time-resolved emission decay at 298 K (λex=270 nm).

    Similarly,Fig.3e shows a typical UV–vis absorption spectrum of the Cu21(dppy)10NCs in DCM,where a characteristic peak appears at 258 nm.This is consistent with the excitation spectrum(Fig.S12 in Supporting information),and similar to the absorption spectrum of the aforementioned Cu4(dppy)4Cl2NCs because their frontier orbitals are mainly contributed by copper.Further,we examined the luminescent property (Fig.3f),where dual emissions at two bands are observed,namely,the purple at 368 nm and green at 516 nm regions.By changing the excitation wavelength to 290 nm (Fig.S13 in Supporting information),the two-band emissions retain and display minor redshifts.Notably,the green emission at 516 nm is much stronger than the purple emission,contributed by the dppy ligand which has an emission at 500 nm (Fig.S11 in Supporting information).It is worth mentioning that the FWHM of the 516 nm emission of Cu21(dppy)10NCs is relatively narrower than that of the Cu4(dppy)4Cl2NCs (143 nmvs.160 nm).The fluorescence variation of the two copper NCs could be related to the symmetry of the protective ligands and the different copper core.Time-resolved fluorescence decay measurements were also carried out for the Cu21(dppy)10NCs.As shown in Figs.3g and h,the purple and green emissions are associated with short lifetime,with fitted values for purple emission at 3.37 ns and green emission at 0.08 ns and 2.81 ns.This short lifetime of copper NCs is consistent with previous studies [66].For the purple and green emissions,we have also measured the quantum yield in DCM but found very small values (ca.0.2% and 2%,respectively).

    To elucidate the origin of the stability and optical properties of the two copper NCs,by DFT-calculations we have performed an analysis on the canonical molecular orbitals (CMOs),Kohn-Sham molecular orbital energy levels,total and partial density of states(DOSs) of both Cu4(dppy)4Cl2and Cu21(dppy)10NCs (Fig.4).It is noteworthy that the Cu atoms significantly contribute to the orbitals ranging from HOMO to HOMO-19 (>50%) at optimized S0minima of Cu4(dppy)4Cl2,with a large HOMO-LUMO energy gap up to 2.34 eV,which is consistent with the DOS patterns shown in Fig.4a (Table S8 in Supporting information).Notably,the HOMO of Cu4(dppy)4Cl2exhibits superatomic S orbital pattern,shedding light on the 2e-superatomic feature.In comparison,the CMOs of Cu21(dppy)10reflect more superatomic states,as shown in Fig.4b (Figs.S18–S21 and Table S9 in Supporting information),where the superatomic 1S,1P and 1D orbitals can be recognized,indicative of 18e-superatomic stability.As a comparison,we have also conducted a calculation on the cationic [Cu21(dppy)10]+and find similar superatomic orbitals (1S|1P|1D||) along with an enlarged HOMO-LUMO gap.The inherent superatomic states in such metal NCs,embodied by partly itinerant (/delocalized) electrons,enable to balance the nuclear-electron interactions and thus optimal accommodation on the metal-metal bonding and metal-ligand interactions [67,68].

    Fig.4. Total and partial density of states (DOSs) and orbital energy levels of (a) Cu4(dppy)4Cl2 based on the single-crystal structure and DFT-optimized S0 minima,and (b)Cu21(dppy)10 based on the single crystal structure.Each orbital is drawn with colour labels to indicate the relative contributions of the atomic orbitals.The isosurface value of molecular orbitals is ±0.03 au H atoms are omitted for clarity.

    Considering the moderate luminescence and relatively stable emission of the Cu4(dppy)4Cl2NCs,we have evaluated its chemo sensing for ions detection.As shown in Fig.5,a few common ions including Cu2+,Fe3+,K+,Mg2+,HCO3?,CO32?,I?,Cl?(1.0 mmol/L for all) have been tested.It is found that the presence of Cl?ions results in apparent increase of the emission intensity,which contrasts with all the other tested cationic and anionic ions.The chemo sensing toward Cl?ions is likely associated with the distinct coordination interactions between Cl?and the Cu4(dppy)4Cl2NCs.

    Fig.5. The varied relative intensities of Cu4(dppy)4Cl2 NCs (1 mg/mL,λex=330 nm)in the presence of typical testing ions (1.0 mmol/L).All the anions are sodium salts,while the cations are sulphates.The insets display the emission spectra of the Cu4(dppy)4Cl2 nanoclusters in DMSO.

    In summary,we report here a comparative study of two phosphine-protected Cu NCs,Cu4(dppy)4Cl2and Cu21(dppy)10.The former has a tetrahedral Cu4core of which the six edges are fully protected by bridged chlorine and bidentate dppy ligands,while the latter has a Cu21core pertaining to vivid superatomic states.The full passivation of the 2e-superatomic Cu4core accounts for its enhanced stability;in comparison,the stability of the larger cluster Cu21(dppy)10is associated with its superatomic states of the Cu21core,as well as well-organized ligand coordination and surface charge distribution.The ten dppy ligands form two types of coordination on the symetric Cu21core,with four monodentate dppy ligands on the top one and bottom three Cu atoms through PCu bonds,while the other six dppy molecules as bidentate ligands to link 12 outside Cu atoms through both P-Cu bonds and N-Cu bonds.Interestingly,the Cu4(dppy)4Cl2NCs find an interesting yellow emission,while the Cu21(dppy)10NCs exhibit dual emissions in the purple and green regions.We have conducted a chemo-sensing experiment by utilizing the red emission of Cu4(dppy)4Cl2NCs and find distinctive response to the chlorine anions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors thank Prof.Chunxi Zhang for friendly discussion.This work was financially supported by the National Natural Science Foundation of China (Nos.22003072 and 21722308),the Ministry of Science and Technology of the People’s Republic of China(No.2020YFA0714602).

    成人免费观看视频高清| 嫁个100分男人电影在线观看| 午夜老司机福利片| 国产人伦9x9x在线观看| 一二三四在线观看免费中文在| 午夜福利18| 免费在线观看完整版高清| 欧美在线一区亚洲| 老司机午夜福利在线观看视频| 成人精品一区二区免费| 亚洲人成网站在线播放欧美日韩| 国产精品久久久人人做人人爽| 国产成人精品久久二区二区91| bbb黄色大片| 久久精品91无色码中文字幕| 好看av亚洲va欧美ⅴa在| 伦理电影免费视频| 一卡2卡三卡四卡精品乱码亚洲| 国产av一区在线观看免费| 级片在线观看| 在线十欧美十亚洲十日本专区| 午夜免费成人在线视频| 叶爱在线成人免费视频播放| 少妇的丰满在线观看| 亚洲精品av麻豆狂野| 欧美亚洲日本最大视频资源| 两个人免费观看高清视频| 日本a在线网址| 夜夜夜夜夜久久久久| 精品久久久久久久人妻蜜臀av | 久久人人97超碰香蕉20202| 中文字幕人妻丝袜一区二区| 久久久国产成人免费| 国产精品 欧美亚洲| e午夜精品久久久久久久| 日韩 欧美 亚洲 中文字幕| 日本五十路高清| 亚洲精品一区av在线观看| 国产亚洲精品第一综合不卡| 婷婷精品国产亚洲av在线| 午夜a级毛片| 国产精品日韩av在线免费观看 | 色婷婷久久久亚洲欧美| av欧美777| 久久久久久久精品吃奶| 多毛熟女@视频| 久久久久国产精品人妻aⅴ院| www.自偷自拍.com| 欧美日韩乱码在线| 成人亚洲精品av一区二区| 亚洲专区字幕在线| 男女下面进入的视频免费午夜 | 亚洲五月婷婷丁香| xxx96com| 一区二区三区高清视频在线| 亚洲中文av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 波多野结衣巨乳人妻| 少妇粗大呻吟视频| 日韩视频一区二区在线观看| 国产97色在线日韩免费| 午夜福利影视在线免费观看| 在线观看一区二区三区| 亚洲人成电影观看| 国产精品电影一区二区三区| 午夜免费成人在线视频| 亚洲av熟女| 精品久久久久久成人av| 欧美精品亚洲一区二区| 久久天堂一区二区三区四区| 制服诱惑二区| 精品久久久久久久人妻蜜臀av | 给我免费播放毛片高清在线观看| 精品国内亚洲2022精品成人| 神马国产精品三级电影在线观看 | 人人妻人人爽人人添夜夜欢视频| 欧美日韩一级在线毛片| 亚洲午夜理论影院| 国产真人三级小视频在线观看| 日本免费a在线| 首页视频小说图片口味搜索| 日韩精品中文字幕看吧| 欧美黑人精品巨大| 午夜福利视频1000在线观看 | 免费高清在线观看日韩| 久久久国产成人精品二区| 中文字幕精品免费在线观看视频| 97人妻精品一区二区三区麻豆 | 桃红色精品国产亚洲av| 亚洲色图综合在线观看| 神马国产精品三级电影在线观看 | 国产午夜精品久久久久久| 国产欧美日韩一区二区精品| 免费一级毛片在线播放高清视频 | 多毛熟女@视频| 久久国产精品影院| 国产一区二区激情短视频| 日本一区二区免费在线视频| 国产精品乱码一区二三区的特点 | 精品国产乱子伦一区二区三区| 国产成人欧美| 中文字幕另类日韩欧美亚洲嫩草| 日本三级黄在线观看| 国产乱人伦免费视频| 欧美黑人精品巨大| 久久性视频一级片| 色综合婷婷激情| 免费看a级黄色片| 男女之事视频高清在线观看| 国产av一区在线观看免费| 一区二区三区激情视频| 91成年电影在线观看| 最新在线观看一区二区三区| 亚洲色图av天堂| 国产精品久久久久久精品电影 | 高潮久久久久久久久久久不卡| 亚洲成人久久性| 亚洲av美国av| 黑丝袜美女国产一区| 精品少妇一区二区三区视频日本电影| 国产激情欧美一区二区| 在线观看舔阴道视频| 国产乱人伦免费视频| 国产野战对白在线观看| videosex国产| 丝袜人妻中文字幕| 亚洲成a人片在线一区二区| 91老司机精品| 老熟妇乱子伦视频在线观看| 91成人精品电影| 美女高潮到喷水免费观看| 最近最新免费中文字幕在线| 首页视频小说图片口味搜索| 咕卡用的链子| 侵犯人妻中文字幕一二三四区| 女同久久另类99精品国产91| 国语自产精品视频在线第100页| ponron亚洲| 男人舔女人下体高潮全视频| 一a级毛片在线观看| 88av欧美| 啦啦啦 在线观看视频| 久久精品国产亚洲av高清一级| 久久精品成人免费网站| 桃红色精品国产亚洲av| 成人亚洲精品av一区二区| 黄色a级毛片大全视频| 成人三级做爰电影| 午夜免费鲁丝| 香蕉久久夜色| 日本黄色视频三级网站网址| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美激情在线| 日韩欧美国产在线观看| 亚洲午夜理论影院| 国产精品1区2区在线观看.| 男人舔女人的私密视频| 他把我摸到了高潮在线观看| 欧美日韩亚洲综合一区二区三区_| 99在线视频只有这里精品首页| 亚洲男人的天堂狠狠| 精品卡一卡二卡四卡免费| 国产精品亚洲一级av第二区| 亚洲美女黄片视频| 19禁男女啪啪无遮挡网站| 一区二区三区精品91| 欧美另类亚洲清纯唯美| 免费在线观看视频国产中文字幕亚洲| 人人妻人人澡欧美一区二区 | 麻豆一二三区av精品| 91成人精品电影| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频| 日韩 欧美 亚洲 中文字幕| 91国产中文字幕| 波多野结衣巨乳人妻| 啦啦啦免费观看视频1| 国产亚洲av嫩草精品影院| 99久久99久久久精品蜜桃| 日本 av在线| 国产色视频综合| 午夜日韩欧美国产| 国产蜜桃级精品一区二区三区| 真人一进一出gif抽搐免费| 99久久99久久久精品蜜桃| 日韩欧美一区视频在线观看| 久久久精品国产亚洲av高清涩受| 少妇 在线观看| 欧美激情极品国产一区二区三区| 成人三级做爰电影| 乱人伦中国视频| cao死你这个sao货| 免费一级毛片在线播放高清视频 | 黄片播放在线免费| av欧美777| 国产极品粉嫩免费观看在线| 国产成+人综合+亚洲专区| 啦啦啦免费观看视频1| 99在线人妻在线中文字幕| 一级毛片高清免费大全| 999久久久精品免费观看国产| 欧美+亚洲+日韩+国产| 91成年电影在线观看| 一a级毛片在线观看| 国产精品,欧美在线| 中国美女看黄片| 大码成人一级视频| 精品国产国语对白av| 一本综合久久免费| 国产精品乱码一区二三区的特点 | 国产精品免费一区二区三区在线| 好男人在线观看高清免费视频 | 热99re8久久精品国产| 午夜久久久在线观看| 中文字幕精品免费在线观看视频| 伊人久久大香线蕉亚洲五| 久久久国产欧美日韩av| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看一区二区三区| 精品国产乱码久久久久久男人| 国产av又大| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区| 乱人伦中国视频| 国产三级黄色录像| 久久久久久久久久久久大奶| 两人在一起打扑克的视频| 国产精品电影一区二区三区| 中文亚洲av片在线观看爽| av在线播放免费不卡| 日韩欧美免费精品| 国产99久久九九免费精品| 中文亚洲av片在线观看爽| 99re在线观看精品视频| 国产一区二区激情短视频| 国产极品粉嫩免费观看在线| 成人三级做爰电影| 亚洲欧美日韩另类电影网站| 亚洲中文字幕一区二区三区有码在线看 | 老汉色∧v一级毛片| 1024香蕉在线观看| 亚洲五月天丁香| 久久精品成人免费网站| 高清在线国产一区| 日韩大尺度精品在线看网址 | 18禁美女被吸乳视频| 很黄的视频免费| 亚洲情色 制服丝袜| 国产1区2区3区精品| 色哟哟哟哟哟哟| 大型黄色视频在线免费观看| 国产91精品成人一区二区三区| 国产成年人精品一区二区| 亚洲精品中文字幕一二三四区| 波多野结衣一区麻豆| 精品国内亚洲2022精品成人| 亚洲成人久久性| 久久婷婷人人爽人人干人人爱 | 美女国产高潮福利片在线看| 12—13女人毛片做爰片一| 亚洲少妇的诱惑av| av视频免费观看在线观看| 嫁个100分男人电影在线观看| 精品国内亚洲2022精品成人| 国产熟女xx| 天天一区二区日本电影三级 | 色播亚洲综合网| 极品人妻少妇av视频| 亚洲欧洲精品一区二区精品久久久| 午夜激情av网站| 黄网站色视频无遮挡免费观看| 国产一区在线观看成人免费| 亚洲激情在线av| 国内毛片毛片毛片毛片毛片| 两人在一起打扑克的视频| 九色国产91popny在线| 亚洲中文字幕日韩| 午夜福利,免费看| 亚洲精品粉嫩美女一区| 亚洲av日韩精品久久久久久密| 国内毛片毛片毛片毛片毛片| 亚洲一码二码三码区别大吗| 久久天躁狠狠躁夜夜2o2o| 级片在线观看| 黑人欧美特级aaaaaa片| 女性被躁到高潮视频| 久久中文看片网| 日本 欧美在线| 久久久久久久久免费视频了| 日韩中文字幕欧美一区二区| 亚洲狠狠婷婷综合久久图片| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区二区三区色噜噜| 国内毛片毛片毛片毛片毛片| 国产精品亚洲av一区麻豆| 精品久久久精品久久久| 婷婷六月久久综合丁香| 欧美乱妇无乱码| 一本大道久久a久久精品| 岛国视频午夜一区免费看| x7x7x7水蜜桃| 变态另类成人亚洲欧美熟女 | 国产激情欧美一区二区| 一级a爱片免费观看的视频| 久久久久九九精品影院| 国产亚洲精品av在线| 美女大奶头视频| 一级片免费观看大全| 丝袜美足系列| 国产欧美日韩一区二区三| 非洲黑人性xxxx精品又粗又长| 国产片内射在线| 一区二区三区高清视频在线| 精品免费久久久久久久清纯| 日韩大码丰满熟妇| 国产精品野战在线观看| 久久国产乱子伦精品免费另类| 少妇裸体淫交视频免费看高清 | 一级黄色大片毛片| 久久精品91蜜桃| 在线十欧美十亚洲十日本专区| 欧美乱码精品一区二区三区| 久久国产精品男人的天堂亚洲| 黄频高清免费视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲三区欧美一区| 日本免费a在线| 精品久久久久久久久久免费视频| 九色亚洲精品在线播放| 深夜精品福利| 日本免费a在线| 国产精品永久免费网站| 久久精品91蜜桃| 国产在线观看jvid| 深夜精品福利| 久久中文字幕人妻熟女| 成年人黄色毛片网站| av片东京热男人的天堂| 一级毛片精品| 亚洲精品久久成人aⅴ小说| 亚洲一码二码三码区别大吗| 成人18禁高潮啪啪吃奶动态图| 免费在线观看日本一区| 黄色 视频免费看| 国产又色又爽无遮挡免费看| 亚洲av美国av| 亚洲欧美精品综合久久99| 一级a爱视频在线免费观看| 88av欧美| 少妇的丰满在线观看| 国产精品亚洲一级av第二区| 久久久久久久久免费视频了| 日本五十路高清| 中文字幕人妻熟女乱码| 欧美不卡视频在线免费观看 | 在线十欧美十亚洲十日本专区| 美女高潮喷水抽搐中文字幕| 99精品久久久久人妻精品| 国产精品久久视频播放| 亚洲aⅴ乱码一区二区在线播放 | 免费女性裸体啪啪无遮挡网站| 国产精品电影一区二区三区| 在线观看一区二区三区| 国产麻豆69| 日本黄色视频三级网站网址| 国产成人精品久久二区二区91| 国产99久久九九免费精品| av中文乱码字幕在线| 夜夜爽天天搞| 国产成人精品久久二区二区免费| 亚洲精品久久成人aⅴ小说| 国产国语露脸激情在线看| 侵犯人妻中文字幕一二三四区| 亚洲人成77777在线视频| 最新美女视频免费是黄的| 亚洲美女黄片视频| 青草久久国产| 欧美绝顶高潮抽搐喷水| 日韩三级视频一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 97碰自拍视频| 在线观看免费日韩欧美大片| 不卡av一区二区三区| 老汉色av国产亚洲站长工具| 国产激情久久老熟女| av中文乱码字幕在线| 国产色视频综合| av免费在线观看网站| 亚洲九九香蕉| 午夜久久久久精精品| 99re在线观看精品视频| 女警被强在线播放| 国产成人欧美| 久久九九热精品免费| 国产精品一区二区精品视频观看| 最近最新中文字幕大全免费视频| 久久精品亚洲精品国产色婷小说| 久久久国产精品麻豆| 国产1区2区3区精品| 国产黄a三级三级三级人| 淫妇啪啪啪对白视频| 一区二区日韩欧美中文字幕| 亚洲一区高清亚洲精品| 最好的美女福利视频网| 免费在线观看黄色视频的| 国产一级毛片七仙女欲春2 | 亚洲一码二码三码区别大吗| 国产在线精品亚洲第一网站| 免费少妇av软件| bbb黄色大片| 亚洲电影在线观看av| 亚洲aⅴ乱码一区二区在线播放 | 视频在线观看一区二区三区| av电影中文网址| АⅤ资源中文在线天堂| 欧美中文综合在线视频| 久久久久亚洲av毛片大全| 高清毛片免费观看视频网站| 757午夜福利合集在线观看| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看 | 欧美日韩黄片免| 99精品久久久久人妻精品| 久久欧美精品欧美久久欧美| 女人被狂操c到高潮| 男女下面进入的视频免费午夜 | 久久 成人 亚洲| 成在线人永久免费视频| 不卡av一区二区三区| 亚洲五月天丁香| 激情视频va一区二区三区| 亚洲人成电影免费在线| 久久国产乱子伦精品免费另类| 成人三级做爰电影| 在线免费观看的www视频| 国产成人影院久久av| 国产视频一区二区在线看| 如日韩欧美国产精品一区二区三区| 国产99白浆流出| 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| 香蕉国产在线看| 精品国产国语对白av| 亚洲一区中文字幕在线| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 91成人精品电影| 国产亚洲av嫩草精品影院| 欧美绝顶高潮抽搐喷水| 国产精品一区二区三区四区久久 | 国产真人三级小视频在线观看| 中亚洲国语对白在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲无线在线观看| 久久人人爽av亚洲精品天堂| 亚洲少妇的诱惑av| 久99久视频精品免费| 亚洲中文字幕日韩| 国产成人精品久久二区二区91| 91在线观看av| 久久久久久久午夜电影| xxx96com| 国产欧美日韩一区二区三| 欧美中文综合在线视频| 国产在线观看jvid| 国产成人欧美在线观看| 女人高潮潮喷娇喘18禁视频| 三级毛片av免费| 日本免费一区二区三区高清不卡 | 日本黄色视频三级网站网址| a级毛片在线看网站| 手机成人av网站| 欧美日韩乱码在线| 好看av亚洲va欧美ⅴa在| 成人免费观看视频高清| 国产精品野战在线观看| 国产精品二区激情视频| 欧美最黄视频在线播放免费| 午夜亚洲福利在线播放| 亚洲中文字幕日韩| 99久久精品国产亚洲精品| 亚洲片人在线观看| 人妻丰满熟妇av一区二区三区| 天天添夜夜摸| 麻豆成人av在线观看| 一区在线观看完整版| 99国产极品粉嫩在线观看| 亚洲男人的天堂狠狠| 天堂动漫精品| 好看av亚洲va欧美ⅴa在| 久久精品91无色码中文字幕| 亚洲 国产 在线| 久久久精品国产亚洲av高清涩受| 韩国精品一区二区三区| 亚洲五月天丁香| 波多野结衣一区麻豆| 亚洲五月色婷婷综合| 亚洲国产精品成人综合色| 欧美激情久久久久久爽电影 | 免费在线观看影片大全网站| 1024视频免费在线观看| 亚洲最大成人中文| 搡老妇女老女人老熟妇| 两性午夜刺激爽爽歪歪视频在线观看 | 久久热在线av| 黄片小视频在线播放| 级片在线观看| 久久中文看片网| 两个人看的免费小视频| 99热只有精品国产| xxx96com| 天堂动漫精品| 成人欧美大片| 女生性感内裤真人,穿戴方法视频| 日日夜夜操网爽| 99在线人妻在线中文字幕| 可以在线观看毛片的网站| 在线天堂中文资源库| 一区二区三区国产精品乱码| 天天添夜夜摸| 亚洲自偷自拍图片 自拍| 国产成人精品无人区| 午夜激情av网站| 又大又爽又粗| 亚洲熟女毛片儿| 国产色视频综合| 激情在线观看视频在线高清| 日本免费一区二区三区高清不卡 | 日韩精品中文字幕看吧| 国产精品久久久久久人妻精品电影| 9热在线视频观看99| 日本 欧美在线| 妹子高潮喷水视频| 欧美日韩福利视频一区二区| 欧美日韩黄片免| 精品一区二区三区四区五区乱码| 亚洲伊人色综图| 99久久精品国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 狂野欧美激情性xxxx| 亚洲成人精品中文字幕电影| 欧美中文日本在线观看视频| 亚洲精品一区av在线观看| 成人国语在线视频| 欧美在线黄色| 日本在线视频免费播放| 亚洲第一青青草原| 中文字幕久久专区| 久久久久久大精品| av电影中文网址| 最近最新中文字幕大全免费视频| 老熟妇乱子伦视频在线观看| 欧美成人一区二区免费高清观看 | 99re在线观看精品视频| 亚洲精品国产一区二区精华液| 国产精品久久久人人做人人爽| 欧美久久黑人一区二区| 黄色视频不卡| 欧美日本视频| 69av精品久久久久久| 在线观看免费视频日本深夜| 精品欧美国产一区二区三| 乱人伦中国视频| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三| 成人18禁高潮啪啪吃奶动态图| 十八禁网站免费在线| 国产1区2区3区精品| 天天添夜夜摸| 老司机深夜福利视频在线观看| 国产成人精品久久二区二区91| 97人妻天天添夜夜摸| 最近最新免费中文字幕在线| 国产亚洲精品久久久久久毛片| 欧美成狂野欧美在线观看| 天天躁夜夜躁狠狠躁躁| 欧美黄色淫秽网站| 国产主播在线观看一区二区| 国产aⅴ精品一区二区三区波| 国产精品二区激情视频| 波多野结衣巨乳人妻| 51午夜福利影视在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 美女扒开内裤让男人捅视频| 婷婷六月久久综合丁香| 国产精品一区二区在线不卡| 欧美老熟妇乱子伦牲交| 国产99久久九九免费精品| 久久久精品欧美日韩精品| 欧美国产精品va在线观看不卡| 亚洲国产精品成人综合色| 亚洲国产高清在线一区二区三 | 制服诱惑二区| 人人妻,人人澡人人爽秒播| 精品久久蜜臀av无| 黄色女人牲交| 午夜免费鲁丝| 他把我摸到了高潮在线观看| 中文字幕av电影在线播放| 亚洲av第一区精品v没综合| 又紧又爽又黄一区二区| 日本一区二区免费在线视频| 一a级毛片在线观看| 国内精品久久久久精免费| 国产伦人伦偷精品视频| 一级a爱视频在线免费观看| 香蕉国产在线看| www.自偷自拍.com| 一卡2卡三卡四卡精品乱码亚洲| 亚洲第一青青草原| 国产一区二区三区在线臀色熟女| 欧美乱码精品一区二区三区| 夜夜爽天天搞| 999久久久国产精品视频| 大码成人一级视频|