• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Selective separation of pyrene from mixed polycyclic aromatic hydrocarbons by a hexahedral metal-organic cage

    2023-02-18 01:55:46YaLiangLaiJuanSuLeXiongWuDongLuoXueZhiWangXianChaoZhouChuangWeiZhouXiaoPingZhouDanLi
    Chinese Chemical Letters 2023年12期

    Ya-Liang Lai,Juan Su,Le-Xiong Wu,Dong Luo,Xue-Zhi Wang,Xian-Chao Zhou,Chuang-Wei Zhou,Xiao-Ping Zhou,Dan Li

    College of Chemistry and Materials Science,Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications,Jinan University,Guangzhou 510632,China

    Keywords:Polycyclic aromatic hydrocarbons Metal-organic cage Host-guest chemistry Selective separation

    ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) play an important role in the industry,and the development of new materials for the selective separation of PAHs is of great significance.In this work,we report a hexahedral metal-organic cage with low symmetry by subcomponent self-assembly.In this cage,the eight ZnII centers adopt an interesting ΛΛ/ΔΔΔΔΔΔ or ΛΛΛΛΛΛ/ΔΔ configuration.This cage with a cavity volume of 520 ?A3 can bind anthracene,phenanthrene,and pyrene to form 1:1 host-guest complexes,while the bigger triphenylene,chrysene,perylene,and coronene cannot be encapsulated.The binding constant Ka of pyrene is about 1.110×103 (mol/L)?1,which is more than an order of magnitude larger than that of anthracene and phenanthrene (111 (mol/L)?1,277 (mol/L)?1,respectively).X-ray structure studies reveal that the pyrene is located in the cavity and stabilized by multiple C–H···π interactions.After separation from a mixture of PAHs,pyrene with >96.1% purity can be obtained.This work provides a useful method for the first time for the selective separation of pyrene from PAHs mixture by utilizing a metal-organic cage as the material,making it a useful tool for purifying and separating specific compounds from complex mixtures.

    Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds formed by the fusion of two or more benzene rings in a linear,angular,or cluster arrangement [1,2].Pyrene,one of the important components of PAHs,has been widely used in various areas due to its rigid structure,excellent fluorescence properties,and electron-rich conjugation properties [3–6].In industry,pyrene is mainly derived from the destructive distillation of coal tar,and the separation and purification process usually consumes huge energy.Therefore,it is emergent to develop new technologies for the selective separation of pyrene from the mixture of PAHs with high efficiency.

    Metal-organic frameworks (MOFs) are crystalline porous materials with framework structures,which are formed by the selfassembly of organic ligands and metal ions through coordination bonds [7,8].In contrast to MOFs,metal-organic cages (MOCs) are molecular materials with isolated cage-like structures,which are also constructed by metal ions and organic ligands [9,10].However,most of the MOCs have good solvent solubility [11–13],and can be characterized by the methods utilized in traditional solution chemistry and used as molecular materials in solution state for application in separation [14–18],catalysis [19–21],chiral recognition [22,23],fluorescence sensing [24,25],stabilization of active substances [26,27] and drug delivery [28,29].Due to their rich structures with tunable cavities,MOCs can effectively bind PAHs through weak interactions (e.g.,π-πstacking and C–H···πinteractions) in solution [30,31].Although many MOCs can encapsulate the PAHs,the limited examples that can specifically recognize PAHs to achieve selective separation have been reported [17,32,33].Recently,Mukherjeeetal.reported a water-stable [Pd4L2]8+molecular vessel capable of selectively separating phenanthrene from a mixture of anthracene and phenanthrene in water [33].Nitschkeet al.reported the selective encapsulation and separation of coronene from a mixture of PAHsviaphase transfer of a tetrahedral MOC[32].In addition,some MOFs have also been used as materials for the separation of PAHs [34,35].However,to the best of our knowledge,the selective separation of pyrene from PAHs has not yet been achieved by using MOCs or MOFs as separating materials.

    Herein,we report a hexahedral metal-organic cage,formulated as [(ZnII8L6)(OTf)16] (denoted as1,Scheme 1),which is constructed by subcomponent self-assembly of TAPB (1,2,4,5-tetrakis-(4-aminolphenyl)benzene),2-formylpyridine,and Zn(OTf)2.In cage1,the eight ZnIIcenters adopt unusualΛΛ/ΔΔΔΔΔΔorΛΛΛΛΛΛ/ΔΔconfiguration,which leads to low symmetry for a hexahedron [36].Cage1contains an electron-rich hydrophobic inner cavity with a volume of 520 ?A3,which can act as a potential host for PAHs.We selected seven PAHs (anthracene,phenanthrene,pyrene,triphenylene,chrysene,perylene,and coronene) to study their host-guest chemistry due to the suitable free molecular volumes (ranging of 262–392 ?A3).Interestingly,MOC1can bind anthracene,phenanthrene,and pyrene to form 1:1 host-guest complexes,respectively,while triphenylene,chrysene,perylene,and coronene cannot be encapsulated by1due to their big molecular volumes.Moreover,MOC1shows the best affinity to pyrene.The binding constantKais about 1.110×103(mol/L)?1,which is more than an order of magnitude larger than for anthracene and phenanthrene (111 (mol/L)?1,277 (mol/L)?1,respectively).X-ray structure of the host-guest complex pyrene?1display that the pyrene is located in the cavity and stabilized by multi C–H···πinteractions.Further studies showed that MOC1could selectively encapsulate pyrene from a mixture of seven PAHs.The pyrene with 96.1% purity can be obtained by a separation cycle.For the first time,the selective separation of pyrene from the PAHs mixture is achieved by the design of MOC with a suitable cavity.

    Scheme 1. Schematic diagram of self-assembly of MOC 1.

    TAPB was synthesized by following a reported procedure (see experimental section in Supporting information for details) [37].The reaction of TAPB,2-formylpyridine,and Zn(OTf)2in a 6:24:8 molar ratio in CH3CN solution at 70 °C for 8 h afforded MOC1(Scheme 1).MOC1was characterized by nuclear magnetic resonance (NMR),electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS),thermal gravimetric analyzer (TGA),N2adsorption,powder X-ray diffraction (PXRD),and single-crystal X-ray diffraction (SCXRD).

    The1H NMR spectrum of MOC1in CD3CN displayed three distinct ligand environments,reflecting the presence of three signals on the imine (H1) and phenyl (H2,H3,H4,Fig.1a).There exist three sets of signals in the NMR spectrum of1,which may be due to the configurational difference of the eight ZnIIvertices leading to a low symmetric structure.The1H–1H correlation spectroscopy(COSY) data also supported this result (Fig.S3 in Supporting information).Two-dimensional (2D)1H–1H diffusion-ordered spectroscopy (DOSY) studies showed that the1H signals of MOC1in CD3CN mainly belonged to a single species with a logDof about?9.38 (Fig.1a).The hydrodynamic radius was calculated to be~14.9 ?Aviathe Stokes-Einstein equation [38].

    Fig.1. (a) Partial 1H NMR and DOSY spectra of MOC 1 in CD3CN.(b) Mass spectrum of MOC 1 in CH3CN.Insets show the calculated (blue) and experimental (red)isotopic patterns of the +7 peak at m/z=951.1409 corresponding to the species of[1–9OTf]7+.

    Mass spectrometry is a powerful method to study the structure of supramolecular cages [39].The composition of MOC1was precisely determined by ESI-TOF-MS in CH3CN.The most prominent peak atm/z=951.1409 was corresponding to the[1–9OTf]7+(calcd.951.1399) species.Other signs atm/z=813.6223,1134.4832,1391.1659,and 1776.1921 correspond to [1–8OTf]8+(calcd.813.6219),[1–10OTf]6+(calcd.1134.4825),[1–11OTf]5+(calcd.1391.1667),and [1–12OTf]4+(calcd.1776.1924),respectively(Fig.1b).The experimental isotopic patterns of these peaks closely match their theoretical patterns (Fig.1b and Fig.S4 in Supporting information),which confirms the ZnII8L6composition of MOC1.The MS results also manifest that MOC1is stable in the CH3CN solution.

    Thermogravimetric analysis (TGA) showed that MOC1was stable to about 350°C (Fig.S5 in Supporting information).Unfortunately,crystals of MOC1were not stable in air,and they changed to amorphous after exposure to air due to lost the guest solvent molecules,which was confirmed by PXRD of MOC1(Fig.S6 in Supporting information).Such a phenomenon is normal for MOCs.N2adsorption experiment was also carried out.The result showed that MOC1was not a good porous solid material (Fig.S7 in Supporting information).

    Yellow block crystals of MOC1suitable for single crystal X-ray diffraction (SCXRD) analysis were obtained by diffusing ethyl acetate vapor into its CH3CN solution.SCXRD revealed that1crystallizes in the space groupP21/n,featuring an 8-nuclear hexahedral cage structure (Fig.2a).Six ligands as faces bind eight ZnIIions to form the hexahedral cage.Interestingly,the ZnIIcenters adoptΛΛΔΔΔΔΔΔorΛΛΛΛΛΛΔΔconfigurations (Figs.2c and d),and both two enantiomers co-existed in the crystal structure to produce the racemate1(Fig.2a).Notably,MOC1can be reduced to an irregular hexahedral ball-stick structure by treating the ZnIIcenters as nodes (Fig.2b).The twoΛΛorΔΔZnIIcenters were located on the body diagonal of the hexahedron,which probably lead to the form of a hexahedral cage with a symmetry ofD3.The low symmetry of1was consistent with the result of its1H NMR in CD3CN [40].Although a lot of hexahedral MOCs have been reported [41–43],to the best of our knowledge,such vertex configurations are observed for the first time.The metalto-metal distances of ZnIIcenters forming adjacent vertices range from 10.332to 13.601,further suggesting the low symmetry in1.The maximum dimension is 28.543(H···H distance),which is in good agreement with the results of DOSY.MOC1has an electron-rich hydrophobic cavity with a volume of 520estimated by VOIDOO [44],which is probably an ideal host for encapsulation and separation of PAHs.

    Fig.2. X-ray Crystal structure of MOC 1: (a) Hexahedral cage structure,(b) topology structure,and coordination in (c) Λ and (d)Δ absolute configurations for octahedral zinc centers.The ZnII centers with Δ and Λ configurations were colored orange-yellow and cyan,respectively.gray,C;blue,N.The anions and hydrogen atoms were omitted for clarity.

    As shown in Fig.3,seven PAHs were chosen to study the hostguest chemistry with MOC1.Before the experimental study,we calculated their molecular volume by using Materials Studio 2018.The free volumes of PAHs were generated by using the accessible Connolly surface calculation.As shown in Fig.3,the molecular volumes of these PAHs range from 262to 392and are smaller than the volume of1(520).Interestingly,the molecular volume of pyrene is 287,and its packing coefficient (ratio of guest volume to host volume) in the cavity of1will be 55.2%.According to Rebek’s rule [30,45,46],the best binding will be reached for pyrene.In addition,the two-dimensional sizes of these seven PAH molecules were also calculated (Table S2 in Supporting information).The range of the minimum size of each molecule was 7.388–11.901which is smaller than the maximum cavity size of the cage (Zn-Zn distances,13.601),suggesting that1can probably trap these PAHs.

    Fig.3. PAH molecules and their volumes.Materials Studio 2018 was used for the calculation.The Connolly radius vdW,scale factor,and grid interval were set as 1.0 ?A,1.26 and 0.7 ?A,respectively.

    Based on the above theoretical calculation results,the experiments of host-guest chemistry of MOC1and PAHs (Fig.3) were carried out.In a typical experiment,the MOC1was dissolved in CD3CN or CD3NO2(0.6 mL,0.002 mmol),and excess PAHs were added,respectively.The solution was equilibrated at 60°C for 3 h,and the reactants were characterized by1H NMR.

    As shown in Fig.4,the1H NMR peaks of1showed significant downfield or upfield shifting in comparison to the free1were observed for the imine (H1,|Δδ|=0.05–0.10 ppm) and phenyl protons (H2|Δδ|=0.16 ppm,H3|Δδ|=0.07–0.09 ppm,H4|Δδ|=0.16–0.51 ppm) after encapsulation of pyrene.In addition,two peaks(Ha,Hb) of the bound pyrene were observed in the spectrum of pyrene?1(Fig.4a,Figs.S8 and S9 in Supporting information).The unidentified signal of Hc was probably overlapped with the signals of the MOC1.The1H–1H COSY spectrum showed a strong correlation between Haand Hb,suggesting that Haand Hbbelong to the encapsulation of pyrene.The obvious upfield shift of Ha,Hbin comparison to the signs of free pyrene (about 1.0 ppm),suggests that host1exhibits a slow-exchange binding process on the proton NMR timescale.The host-guest stoichiometry was found to be 1:1 by integration of the peaks of1H NMR of pyrene?1,suggesting that one cage molecule can host a pyrene molecule.This result is consistent with the packing coefficient (55.2%).

    Fig.4. (a) Aromatic region of the 1H NMR spectra of free 1 (bottom),and pyrene?1 formed by adding 5 equiv.of pyrene to 1 (top).(b) Mass spectrometry of pyrene?1.(c) Binding isotherm corresponding to the ITC titration of 1 with pyrene([1]=1.0 mmol/L,and [pyrene]=20.0 mmol/L,CH3CN/CH3OH (v/v=1:1) at 30°C).

    ESI-TOF-MS was further employed to confirm the formation of pyrene?1.As shown in Fig.4b and Fig.S10 (Supporting information),the peaks withm/zvalues of 980.1313,1168.3345,1431.7878 and 1827.0033 correspond to [pyrene?1–9OTf]7+(calcd.980.1421),[pyrene?1–10OTf]6+(calcd.1168.3278),[pyrene?1–11OTf]5+(calcd.1431.7202),and [pyrene?1–12OTf]4+(calcd.1826.9314),respectively.This result further manifests that MOC1successfully encapsulated the pyrene as the guest with a 1:1 stoichiometric ratio.

    We also tested other six PAHs.Similar to pyrene,both anthracene and phenanthrene can also be encapsulated by MOC1successfully,respectively,which were documented by1H NMR and ESI-TOF-MS studies (Figs.S11-S14 in Supporting information).Due to the poor solubility of these PAHs in CD3CN,the encapsulating reactions with MOC1were carried out in CD3NO2.As shown in Figs.S15-S18 (Supporting information),the1H NMR peaks of1were not shifted after adding the triphenylene,chrysene,perylene,and coronene into its CD3NO2solution,respectively.As a comparison,we tested the encapsulating experiment of pyrene in CD3NO2.The results showed that pyrene was successfully encapsulated by1(Fig.S19 in Supporting information).These results indicate that the triphenylene,chrysene,perylene,and coronene cannot be bound by MOC1,which is probably due to their relatively bigger molecular volumes (Fig.3).

    According to the reported procedure [32],the binding constants of pyrene,anthracene,and phenanthrene to MOC1were determined by1H NMR integration at 298 K.The binding constantsKafor anthracene,phenanthrene,and pyrene were estimated to be approximately 111 (mol/L)?1,277 (mol/L)?1and 1184 (mol/L)?1,respectively.Furthermore,isothermal titration calorimetry (ITC) was employed to measure the binding constants,which was often used to study the host-guest chemistry of coordination cages [47,48].As shown in Fig.4c,upon the addition of pyrene (20.0 mmol/L) to a CH3CN/CH3OH (v/v=1:1) solution of1(1.0 mmol/L) yielded association constants of 1110±107 (mol/L)?1,the titration fit curve showed the molar ratio of 1:1 for the host-guest complex.The results of ITC were in good agreement with the results obtained by1H NMR and mass spectrometry.TheΔHandΔSvalues were?797.7 cal/mol and 11.3 cal mol?1K?1,respectively,indicating that the complexation reaction was driven by enthalpy.The titration results showed no obvious heat change was observed by adding anthracene and phenanthrene into the CH3CN/CH3OH solution of1under the same conditions (Fig.S20 in Supporting information),respectively.These results indicated that the binding between anthracene (or phenanthrene) and MOC1was very weak,which is consistent with their small binding constants obtained by1H NMR.

    To understand the mechanism of the encapsulation,we attempt to obtain the crystal structure of pyrene?1.Excess of pyrene was added to the CH3CN solution of MOC1and slowly diffused with ethyl acetate vapor,the crystals of pyrene?1suitable for X-ray diffraction analysis were obtained after about 1 week.As shown in Fig.5a,the crystal structure clearly shows that one pyrene molecules locate in the cavity of1.The shortest distance between the pyrene and1was about 2.8 ?A (C···H distance),which indicates that there exist C–H···πinteractions in them.After the encapsulation of pyrene,the metal-metal distances of the adjacent vertex ZnIIcenter range from 10.336 ?A to 13.666 ?A,which were very close to that of guest free1,indicating that its cavity volume did not change after encapsulation of pyrene.Interestingly,after encapsulation of pyrene,MOC1can further bind ethyl acetate molecules(Fig.S21 in Supporting information).In addition,the independent gradient model of this structural model based on Hirshfeld partitioning (IGMH) [49] analysis showed that the pyrene molecule was surrounded by green isosurfaces (Fig.5b),and the calculated binding energy was ?34.68 kcal/mol.These results indicate that there exist weak interactions between pyrene and the cavity of1,which probably stabilize the host-guest complex of pyrene?1.

    Fig.5. (a) Crystal structure of pyrene?1 (C–H···π interactions were highlighted with a dashed red line).(b) Independent gradient model for the Hirshfeld partition(IGMH) analysis between pyrene and the wall of the cavity in 1.The color scale showed a range of interaction strengths: prominent attraction (blue),weak interaction (green),and prominent repulsion (red).The anions and ethyl acetate were omitted for clarity.Color labels: Zn,cyan or yellow;C,gray;N,blue;H,light gray.Pyrene was shown as a space-filling mode with yellow color.

    The above experimental results suggest that MOC1has a stronger capacity in binding pyrene than other PAHs,which may be used as a material for the selective separation of pyrene from the mixture of PAHs.A mixture of PAHs (pyrene,3 equiv.,and other PAHs,1 equiv.,based on1) was added to a CH3CN solution of1(20 mL,0.001 mol/L,Figs.6a and b).After equilibration at 60 °C for 3 h,the free PAHs were removed by the filter after adding ether,in which the free PAHs were dissolved in the ether and pyrene?1was precipitated.The powder of pyrene?1was obtained by filter (Figs.6c and d).1H NMR demonstrated the pyrene was mainly selected by1to form pyrene?1,and no1H NMR signal of other PAH molecules was detected (Fig.S22b in Supporting information).These experimental results indicated that1selectively captured the pyrene from the mixture of PAHs.The trapped pyrene can be released by solid-liquid extraction by using ethyl acetate as the solution to obtain the empty1(Fig.6e and Fig.S22c in Supporting information).The successfully recovered pyrene from the mixture was also proved by the1H NMR spectrum,which showed that the recovered sample contain pyrene with high purity (>98%,Fig.S23 in Supporting information).The high purity of recovered pyrene was further confirmed by high performance liquid chromatography (HPLC),and a purity of 96.1% was determined (Fig.S24 in Supporting information).The separation experiment was performed when pyrene was present in an equal amount in the mixture of PAHs.The results showed that MOC1was able to separate pyrene with>90.9% purity (Fig.S25 in Supporting information).In addition,ethyl acetate as a guest molecule bound to the cage does not affect the separation performance.Similar results can be obtained when other poor solvents (ether,toluene,etc.) were used for separation experiments.Moreover,the recovered1can be further used to separate the pyrene from the mixture.Cage1was stable after repeating the separation three times (Fig.S22d in Supporting information),suggesting that1was a robust material for the selective separation of pyrene from the PAHs mixture.

    Fig.6. Selective separation and extraction of pyrene from PAHs mixtures: (a) 1 was dissolved in CH3CN and (b) selectively encapsulated pyrene to form pyrene?1.(c)Pyrene?1 was precipitated,and the free PAHs were dissolved in a mixed solvent of ether and CH3CN.(d) The powder of pyrene?1 was obtained by filter.(e) The bound pyrene was released by solid-liquid extraction with ethyl acetate to obtain empty 1 and pure pyrene.

    In summary,we have designed and synthesized a low symmetric hexahedral metal-organic cage with a cavity volume of 520by subcomponent self-assembly.In MOC1,zinc centers displayΛΛ/ΔΔΔΔΔΔandΛΛΛΛΛΛ/ΔΔconfigurations in its crystal structure,which is discovered in hexahedral MOCs for the first time.The molecular volume of pyrene matches well with the cavity volume of cage1(55.2% packing coefficient).Cage1has a high affinity to pyrene and can selectively separate pyrene from a mixture of PAHs with high purity.X-ray structure of pyrene?1showed there exist multi CH···πinteractions between them,which stabilize the host-guest complex.Moreover,cage1is robust and recyclable,providing an advanced material for the selective separation of pyrene from the PAHs mixture.This study provides a new strategy for designing materials based on metal-organic cages for the separation of PAHs,which will probably pave the way for developing new technologies in separation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.22171106,21731002,21975104,21871172 and 22201101),the Guangdong Major Project of Basic and Applied Research (No.2019B030302009),Guangdong Natural Science Foundation (No.2022A1515011937),the Guangzhou Science and Technology Program (No.202002030411),the Fundamental Research Funds for the Central Universities (No.21622103),the China Postdoctoral Science Foundation (No.2022M711327),and Jinan University.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108326.

    亚洲欧美日韩东京热| 欧美av亚洲av综合av国产av| 香蕉丝袜av| 亚洲成人久久爱视频| 亚洲精品国产一区二区精华液| 国产成人精品久久二区二区免费| 神马国产精品三级电影在线观看 | 国产69精品久久久久777片 | 久久久久亚洲av毛片大全| 国产精品免费一区二区三区在线| 成年人黄色毛片网站| 国产激情久久老熟女| 超碰成人久久| 久久精品人妻少妇| or卡值多少钱| 欧美日韩一级在线毛片| 精品高清国产在线一区| 午夜免费成人在线视频| 欧美日韩亚洲综合一区二区三区_| 亚洲人成电影免费在线| 91老司机精品| 午夜福利高清视频| 淫秽高清视频在线观看| 国产69精品久久久久777片 | 搡老岳熟女国产| 国产精品av久久久久免费| 亚洲人与动物交配视频| 女人爽到高潮嗷嗷叫在线视频| 天天躁夜夜躁狠狠躁躁| 久久中文字幕人妻熟女| 精品久久蜜臀av无| 午夜激情av网站| 五月伊人婷婷丁香| 亚洲国产欧美一区二区综合| 日韩欧美国产在线观看| 免费在线观看影片大全网站| 欧美性猛交黑人性爽| 麻豆成人午夜福利视频| 成人精品一区二区免费| 2021天堂中文幕一二区在线观| 老汉色av国产亚洲站长工具| 久久久国产成人免费| 高潮久久久久久久久久久不卡| 全区人妻精品视频| 国产午夜精品久久久久久| 99在线视频只有这里精品首页| 亚洲av成人精品一区久久| 日韩中文字幕欧美一区二区| 在线免费观看的www视频| 欧美成人一区二区免费高清观看 | 国产精品1区2区在线观看.| 国产一区二区在线观看日韩 | 在线观看一区二区三区| 欧美成人一区二区免费高清观看 | 日本免费一区二区三区高清不卡| 久久天躁狠狠躁夜夜2o2o| 欧美色欧美亚洲另类二区| 日韩欧美在线乱码| 神马国产精品三级电影在线观看 | 免费无遮挡裸体视频| 村上凉子中文字幕在线| 亚洲av美国av| 亚洲国产精品成人综合色| 最近视频中文字幕2019在线8| 人妻夜夜爽99麻豆av| 精品人妻1区二区| 丰满的人妻完整版| 国产精品日韩av在线免费观看| 亚洲国产欧美一区二区综合| 国产成人aa在线观看| 成人三级做爰电影| 免费观看精品视频网站| www日本在线高清视频| 久久婷婷成人综合色麻豆| 99re在线观看精品视频| 国产av不卡久久| 99国产精品一区二区蜜桃av| 可以在线观看的亚洲视频| 欧美极品一区二区三区四区| 男男h啪啪无遮挡| 亚洲欧美精品综合一区二区三区| av天堂在线播放| av国产免费在线观看| 黄色女人牲交| 久久香蕉国产精品| 中亚洲国语对白在线视频| 精品一区二区三区四区五区乱码| 精品欧美一区二区三区在线| 天堂av国产一区二区熟女人妻 | 两个人的视频大全免费| 婷婷精品国产亚洲av在线| 国产91精品成人一区二区三区| 黄色视频不卡| 国产成人精品无人区| av福利片在线| 成人三级做爰电影| 真人做人爱边吃奶动态| 亚洲色图av天堂| 日韩免费av在线播放| 久久精品国产亚洲av香蕉五月| 叶爱在线成人免费视频播放| 日韩有码中文字幕| 免费观看精品视频网站| 黑人巨大精品欧美一区二区mp4| 黄片小视频在线播放| 亚洲国产精品成人综合色| 99久久国产精品久久久| 可以免费在线观看a视频的电影网站| √禁漫天堂资源中文www| 淫妇啪啪啪对白视频| 久久久久免费精品人妻一区二区| 变态另类成人亚洲欧美熟女| 欧美+亚洲+日韩+国产| 日韩成人在线观看一区二区三区| 国产蜜桃级精品一区二区三区| 90打野战视频偷拍视频| 99riav亚洲国产免费| 99热6这里只有精品| 怎么达到女性高潮| 少妇熟女aⅴ在线视频| 国产精品综合久久久久久久免费| 国产不卡一卡二| 九色成人免费人妻av| 99在线人妻在线中文字幕| 90打野战视频偷拍视频| 99国产综合亚洲精品| 久久久久久久精品吃奶| 国内精品久久久久精免费| 999久久久国产精品视频| 叶爱在线成人免费视频播放| 精品第一国产精品| 久久性视频一级片| 黄色毛片三级朝国网站| 亚洲片人在线观看| 在线观看日韩欧美| 在线十欧美十亚洲十日本专区| 久久亚洲精品不卡| 亚洲人成电影免费在线| 亚洲av五月六月丁香网| 女生性感内裤真人,穿戴方法视频| 亚洲欧美激情综合另类| 激情在线观看视频在线高清| 久久久久久久久久黄片| 中文字幕精品亚洲无线码一区| 亚洲专区字幕在线| 天堂动漫精品| 91麻豆av在线| 成人av一区二区三区在线看| 国产成人精品无人区| 国产v大片淫在线免费观看| 国产亚洲精品av在线| 国产精品亚洲一级av第二区| 国产亚洲精品第一综合不卡| 变态另类丝袜制服| 给我免费播放毛片高清在线观看| 成人亚洲精品av一区二区| 99精品在免费线老司机午夜| 亚洲最大成人中文| 亚洲成人久久性| 免费av毛片视频| 国产黄色小视频在线观看| 欧美日韩一级在线毛片| 九色国产91popny在线| 色老头精品视频在线观看| 午夜视频精品福利| 欧美午夜高清在线| 亚洲五月天丁香| 国产精品亚洲av一区麻豆| 窝窝影院91人妻| 一边摸一边做爽爽视频免费| 国产免费av片在线观看野外av| 免费看美女性在线毛片视频| 久久久久精品国产欧美久久久| 成人av一区二区三区在线看| 夜夜爽天天搞| 美女午夜性视频免费| 1024视频免费在线观看| 亚洲国产日韩欧美精品在线观看 | 麻豆久久精品国产亚洲av| 99国产综合亚洲精品| 日本三级黄在线观看| 免费在线观看影片大全网站| 欧美黑人巨大hd| 亚洲精品av麻豆狂野| 日本五十路高清| 一个人观看的视频www高清免费观看 | 国产av又大| 国产伦一二天堂av在线观看| 亚洲av成人av| 久久精品国产99精品国产亚洲性色| 日本成人三级电影网站| 久久人妻福利社区极品人妻图片| 国产aⅴ精品一区二区三区波| 久久精品人妻少妇| 日本 欧美在线| av在线播放免费不卡| 在线观看美女被高潮喷水网站 | 亚洲国产精品sss在线观看| 这个男人来自地球电影免费观看| 又黄又粗又硬又大视频| 亚洲国产欧美人成| √禁漫天堂资源中文www| 大型黄色视频在线免费观看| 俺也久久电影网| 国产亚洲精品综合一区在线观看 | 亚洲成a人片在线一区二区| 黄色成人免费大全| 日本免费a在线| 91老司机精品| 国产免费av片在线观看野外av| 三级毛片av免费| 婷婷精品国产亚洲av| 国产一区二区激情短视频| 老司机福利观看| 一进一出抽搐gif免费好疼| 日本a在线网址| 精品一区二区三区av网在线观看| 久久精品国产亚洲av香蕉五月| 国产成人一区二区三区免费视频网站| 亚洲国产高清在线一区二区三| 欧美性猛交╳xxx乱大交人| 悠悠久久av| 亚洲一码二码三码区别大吗| 亚洲国产日韩欧美精品在线观看 | 男女下面进入的视频免费午夜| av福利片在线| 欧美精品亚洲一区二区| 午夜亚洲福利在线播放| 真人做人爱边吃奶动态| 国产高清激情床上av| 女警被强在线播放| 999精品在线视频| 岛国在线免费视频观看| 在线观看舔阴道视频| 丰满人妻一区二区三区视频av | 欧美日韩乱码在线| 波多野结衣巨乳人妻| 国产免费av片在线观看野外av| 国内精品久久久久久久电影| 午夜视频精品福利| 毛片女人毛片| 白带黄色成豆腐渣| 午夜亚洲福利在线播放| 国产亚洲精品综合一区在线观看 | 中文资源天堂在线| 亚洲精品国产精品久久久不卡| www.精华液| 国产精品久久久久久亚洲av鲁大| 最近在线观看免费完整版| 精品福利观看| 一夜夜www| 可以在线观看毛片的网站| 国产精品av视频在线免费观看| 在线看三级毛片| 亚洲精品在线美女| 一边摸一边抽搐一进一小说| 欧美不卡视频在线免费观看 | 亚洲一区中文字幕在线| 午夜亚洲福利在线播放| 韩国av一区二区三区四区| 深夜精品福利| 成人18禁高潮啪啪吃奶动态图| 搡老岳熟女国产| bbb黄色大片| 在线观看免费视频日本深夜| 最近最新中文字幕大全免费视频| 国产午夜精品论理片| 国产欧美日韩精品亚洲av| 99热这里只有精品一区 | 久久99热这里只有精品18| x7x7x7水蜜桃| 国产精品综合久久久久久久免费| 亚洲色图 男人天堂 中文字幕| 日韩精品中文字幕看吧| 国产黄色小视频在线观看| 看片在线看免费视频| 黄片小视频在线播放| 成人亚洲精品av一区二区| 日本五十路高清| 麻豆成人午夜福利视频| 亚洲精品中文字幕在线视频| 久久性视频一级片| 日韩中文字幕欧美一区二区| 久久久久国内视频| 麻豆成人av在线观看| 91av网站免费观看| 日韩欧美在线乱码| 露出奶头的视频| 亚洲天堂国产精品一区在线| 欧美三级亚洲精品| 国产成年人精品一区二区| 国产高清有码在线观看视频 | 99久久99久久久精品蜜桃| 久久久久亚洲av毛片大全| 91av网站免费观看| 美女扒开内裤让男人捅视频| 国产精品亚洲一级av第二区| 五月玫瑰六月丁香| 日韩有码中文字幕| 一本综合久久免费| 久久精品夜夜夜夜夜久久蜜豆 | 天堂av国产一区二区熟女人妻 | 亚洲国产精品成人综合色| 国产在线精品亚洲第一网站| 日韩精品青青久久久久久| 亚洲黑人精品在线| 欧美最黄视频在线播放免费| 国产成人系列免费观看| 在线观看免费日韩欧美大片| 国产伦一二天堂av在线观看| 国产私拍福利视频在线观看| 国产久久久一区二区三区| 久久久国产欧美日韩av| 国产精品亚洲av一区麻豆| 久久欧美精品欧美久久欧美| 非洲黑人性xxxx精品又粗又长| 黄色 视频免费看| 久久精品夜夜夜夜夜久久蜜豆 | 18禁观看日本| 成人av在线播放网站| 亚洲 欧美 日韩 在线 免费| 在线观看午夜福利视频| 精品少妇一区二区三区视频日本电影| 亚洲精品久久国产高清桃花| 黑人巨大精品欧美一区二区mp4| 色播亚洲综合网| 少妇熟女aⅴ在线视频| 国内毛片毛片毛片毛片毛片| 又黄又粗又硬又大视频| 18禁美女被吸乳视频| 韩国av一区二区三区四区| 久久久久久大精品| netflix在线观看网站| 国产精品日韩av在线免费观看| 高潮久久久久久久久久久不卡| 久久中文看片网| 日本在线视频免费播放| 色噜噜av男人的天堂激情| 欧美3d第一页| 成人三级黄色视频| 色av中文字幕| 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 国产又色又爽无遮挡免费看| 成人亚洲精品av一区二区| 在线视频色国产色| 99热6这里只有精品| 999久久久国产精品视频| 99精品久久久久人妻精品| 日本黄大片高清| 久久久久九九精品影院| 动漫黄色视频在线观看| 国产熟女午夜一区二区三区| 国产爱豆传媒在线观看 | 18禁黄网站禁片免费观看直播| 最新在线观看一区二区三区| 国产成人系列免费观看| 人妻久久中文字幕网| 五月伊人婷婷丁香| 国产成人啪精品午夜网站| 午夜a级毛片| 国产97色在线日韩免费| av国产免费在线观看| 欧美一级毛片孕妇| 国产高清激情床上av| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| 日本一本二区三区精品| 波多野结衣高清作品| 人妻丰满熟妇av一区二区三区| 日本精品一区二区三区蜜桃| 成人一区二区视频在线观看| 视频区欧美日本亚洲| 免费一级毛片在线播放高清视频| 淫秽高清视频在线观看| 久久精品亚洲精品国产色婷小说| а√天堂www在线а√下载| 国产免费男女视频| 最近最新中文字幕大全免费视频| 午夜激情av网站| 亚洲国产欧美一区二区综合| 国产精品久久久久久久电影 | 一个人观看的视频www高清免费观看 | 亚洲国产欧美网| 淫秽高清视频在线观看| 一本大道久久a久久精品| 国产伦人伦偷精品视频| 午夜激情av网站| 色精品久久人妻99蜜桃| 亚洲精品在线美女| 国产精品美女特级片免费视频播放器 | 国产av在哪里看| 97超级碰碰碰精品色视频在线观看| 国产男靠女视频免费网站| 国产亚洲欧美98| 午夜免费成人在线视频| 精品午夜福利视频在线观看一区| 国产蜜桃级精品一区二区三区| 午夜久久久久精精品| 免费电影在线观看免费观看| 成人一区二区视频在线观看| 听说在线观看完整版免费高清| 成人永久免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 非洲黑人性xxxx精品又粗又长| 99国产极品粉嫩在线观看| 日本撒尿小便嘘嘘汇集6| 日韩成人在线观看一区二区三区| www.精华液| 午夜免费观看网址| 精品国内亚洲2022精品成人| 欧美一区二区国产精品久久精品 | 亚洲精品美女久久av网站| 国产99久久九九免费精品| 久久久国产精品麻豆| 好看av亚洲va欧美ⅴa在| 亚洲av第一区精品v没综合| 婷婷亚洲欧美| www.www免费av| 亚洲一区二区三区色噜噜| 亚洲成人久久爱视频| 亚洲真实伦在线观看| 久久草成人影院| 久久精品夜夜夜夜夜久久蜜豆 | 午夜福利欧美成人| 91大片在线观看| 变态另类丝袜制服| 一本综合久久免费| 日本 欧美在线| 欧美三级亚洲精品| 99热6这里只有精品| 少妇人妻一区二区三区视频| 久久99热这里只有精品18| 天堂影院成人在线观看| 哪里可以看免费的av片| 亚洲av成人一区二区三| 岛国在线免费视频观看| 日韩中文字幕欧美一区二区| 国产麻豆成人av免费视频| 欧美日本亚洲视频在线播放| 亚洲国产中文字幕在线视频| 男女床上黄色一级片免费看| 国产亚洲精品综合一区在线观看 | 久久久久久免费高清国产稀缺| 别揉我奶头~嗯~啊~动态视频| 成人国产一区最新在线观看| 精品久久蜜臀av无| 国产91精品成人一区二区三区| 欧美最黄视频在线播放免费| 国内毛片毛片毛片毛片毛片| av福利片在线观看| 在线观看日韩欧美| 在线视频色国产色| 亚洲欧洲精品一区二区精品久久久| 五月玫瑰六月丁香| 国产熟女xx| av视频在线观看入口| 熟女电影av网| 非洲黑人性xxxx精品又粗又长| 搡老岳熟女国产| 亚洲欧洲精品一区二区精品久久久| 亚洲熟妇中文字幕五十中出| 精品高清国产在线一区| videosex国产| 日韩大尺度精品在线看网址| 国产91精品成人一区二区三区| 色综合欧美亚洲国产小说| 男女午夜视频在线观看| 久99久视频精品免费| 精品国产亚洲在线| 18美女黄网站色大片免费观看| 手机成人av网站| 日本免费a在线| 女人爽到高潮嗷嗷叫在线视频| videosex国产| 99精品在免费线老司机午夜| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 男女做爰动态图高潮gif福利片| 人妻久久中文字幕网| 亚洲成人中文字幕在线播放| 成人国语在线视频| 人人妻人人澡欧美一区二区| 美女 人体艺术 gogo| 国产高清视频在线播放一区| 久久久国产成人免费| 久久精品91蜜桃| 日韩高清综合在线| 欧美精品亚洲一区二区| 午夜精品久久久久久毛片777| 亚洲成人精品中文字幕电影| 国内久久婷婷六月综合欲色啪| 九色成人免费人妻av| 国产免费男女视频| 在线观看免费日韩欧美大片| 人人妻人人澡欧美一区二区| 级片在线观看| 一个人免费在线观看的高清视频| 国产精品99久久99久久久不卡| 久久香蕉激情| 美女午夜性视频免费| 精品一区二区三区av网在线观看| 精品国产乱码久久久久久男人| 女同久久另类99精品国产91| 黄色片一级片一级黄色片| 一a级毛片在线观看| 人妻久久中文字幕网| 国产免费av片在线观看野外av| 丁香六月欧美| 亚洲精品中文字幕一二三四区| 曰老女人黄片| 久久午夜亚洲精品久久| 亚洲美女黄片视频| 亚洲天堂国产精品一区在线| 超碰成人久久| 99riav亚洲国产免费| 国产精品久久久久久亚洲av鲁大| 法律面前人人平等表现在哪些方面| 长腿黑丝高跟| 香蕉久久夜色| 久久精品成人免费网站| 午夜福利高清视频| 欧美极品一区二区三区四区| 国产av不卡久久| 亚洲最大成人中文| 精品欧美国产一区二区三| 欧美日本亚洲视频在线播放| 中文在线观看免费www的网站 | 成人国产综合亚洲| 欧美人与性动交α欧美精品济南到| 欧美av亚洲av综合av国产av| 日本一本二区三区精品| 精品国产乱码久久久久久男人| 日韩中文字幕欧美一区二区| 两人在一起打扑克的视频| 他把我摸到了高潮在线观看| 亚洲av片天天在线观看| 久久精品91无色码中文字幕| 男人舔奶头视频| 亚洲第一电影网av| 久久精品综合一区二区三区| 国语自产精品视频在线第100页| 久99久视频精品免费| 国内揄拍国产精品人妻在线| 免费一级毛片在线播放高清视频| 男女视频在线观看网站免费 | 欧美另类亚洲清纯唯美| 长腿黑丝高跟| 国产精品国产高清国产av| 国产精品98久久久久久宅男小说| 一级作爱视频免费观看| 搡老岳熟女国产| 中文字幕久久专区| 欧美zozozo另类| 午夜福利高清视频| 日本在线视频免费播放| 亚洲人成77777在线视频| 国产视频一区二区在线看| 国产亚洲欧美98| 国产成年人精品一区二区| 日本熟妇午夜| 真人一进一出gif抽搐免费| 99re在线观看精品视频| 久久 成人 亚洲| 亚洲国产欧美一区二区综合| 国产精品影院久久| 精品久久久久久久久久久久久| 亚洲av电影在线进入| 欧美成人午夜精品| 亚洲成a人片在线一区二区| 岛国视频午夜一区免费看| 在线十欧美十亚洲十日本专区| 在线观看日韩欧美| 久久精品国产亚洲av香蕉五月| 久久精品国产综合久久久| 99riav亚洲国产免费| 在线视频色国产色| 啦啦啦韩国在线观看视频| 欧美黑人巨大hd| 亚洲真实伦在线观看| 精品一区二区三区av网在线观看| 两个人视频免费观看高清| 999久久久国产精品视频| 黄色丝袜av网址大全| 香蕉丝袜av| 我的老师免费观看完整版| √禁漫天堂资源中文www| 听说在线观看完整版免费高清| 精品国产超薄肉色丝袜足j| 成人三级做爰电影| 90打野战视频偷拍视频| 日韩中文字幕欧美一区二区| 久久久久国产一级毛片高清牌| 亚洲中文av在线| 欧美成人午夜精品| 99久久综合精品五月天人人| 琪琪午夜伦伦电影理论片6080| 三级男女做爰猛烈吃奶摸视频| 国产区一区二久久| 久久精品影院6| 亚洲专区国产一区二区| 国产69精品久久久久777片 | 日韩有码中文字幕| 久久天堂一区二区三区四区| 日韩国内少妇激情av| 99久久国产精品久久久| 精品乱码久久久久久99久播| 天天一区二区日本电影三级| 久99久视频精品免费| 国产私拍福利视频在线观看| 757午夜福利合集在线观看| 非洲黑人性xxxx精品又粗又长| 深夜精品福利| 国产精品99久久99久久久不卡| 欧美丝袜亚洲另类 |