• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boosting the proton conduction in a magnetic dysprosium-organic framework by introducing conjugate NH4+-NH3 pairs

    2023-02-18 01:55:44YiPingQuQianZouSongSongBaoLiMinZheng
    Chinese Chemical Letters 2023年12期

    Yi-Ping Qu ,Qian Zou ,Song-Song Bao,Li-Min Zheng

    State Key Laboratory of Coordination Chemistry,School of Chemistry and Chemical Engineering,Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210023,China

    Keywords:Metal-organic framework Proton conduction Ammonia adsorption Metal phosphonate Single molecule magnet

    ABSTRACT Metal-organic frameworks (MOFs) with inherent porosity and suspended acidic groups are promising proton conducting materials in water or aqua-ammonia media.Herein we report a new lanthanide phosphonate,namely,Dy2(amp2H2)2(mal)(H2O)2·5H2O (MDAF-6).It possesses a 3D open-framework structure,and shows a high NH3 adsorption capacity of 142.4 cm3/g at P/P0=0.98 at 298 K due to acid-base interaction.Interestingly,the proton conductivity of MDAF-6-NH3 is enhanced by five orders of magnitude compared to MDAF-6 after 8.5 h exposure in saturated NH3-H2O vapor,indicating the importance of coexistent conjugate acid-base pairs of H3O+-H2O and NH4+-NH3 in promoting proton conduction.Magnetic studies of MDAF-6 revealed slow magnetization relaxation under zero dc field,characteristic of singlemolecule magnet behavior.This work provides not only a new multifunctional MOF material,but also a new strategy to improve proton conduction in aqua-ammonia medium.

    Metal-organic frameworks (MOFs) with intrinsic porosity and tailorable surface chemistry are an emerging class of protonconducting materials for clean-energy related applications [1,2].In order to improve proton conductivity of the material,the proton carrier concentration and mobility must be increased.To this end,great efforts have been made in developing water-mediated proton conducting MOFs because water can offer conjugated acid-base pair of H3O+-H2O and contributes to the construction of efficient proton-conducting pathway [3–7].While the concentration of proton carriers can be increased by introducing acidic groups in the framework and/or acidic counterions and guests [8–12].Besides water,NH3is also considered as a promising medium for proton conduction because of its similarity to water [13].Recent reports have shown that exposing the material in NH3-H2O vapor can significantly increase the proton conductivity by 1–2 orders of magnitude [14–19].However,it is unclear whether the coexistence of conjugate NH4+-NH3and H3O+-H2O pairs can further enhance the proton conductivity.To answer this question,MOFs with good ability to adsorb ammonia and possessing structural stability in basic media are highly desired.

    Metal phosphonates are known to exhibit high thermal and chemical stability because each phosphonate group can afford three oxygen atoms to bind metal ions [20].The water stability of trivalent and tetravalent metal phosphonates is higher compared to monovalent and divalent metal compounds [21].By selecting suitable metal ions and phosphonate ligands,porous metal phosphonates containing P-OH acidic groups can be designed and synthesized for ammonia adsorption and proton conduction [22–26].Herein,we report a mixed-ligand dysprosium framework Dy2(amp2H2)2(mal)(H2O)2·5H2O (MDAF-6),where amp2H4is a pre-photodimerized 9-anthrylmethylphosphonic acid and malH2is malonic acid.The amp2H4was chosen because it contains a large and flexible dianthracene group,which facilitates the formation of a 3D framework structure [27–29].DyIIIion was chosen because its trivalent state can improve the framework stability and its unique magnetic properties lead to multifunctional materials[30–36].Indeed,MDAF-6shows a 3D open framework structure in which the uncoordinated P-OH group dangles over the channel surface.It exhibits excellent NH3adsorption capacity due to the acid-base reaction between NH3and P-OH groups.The resulted material,MDAF-6-NH3,shows five orders of magnitude enhancement in proton conductivity compared toMDAF-6in saturated NH3-H2O vapor,indicating the importance of the coexistence of NH4+-NH3and H3O+-H2O conjugate acid-base pairs for proton conduction (Scheme 1).The magnetic properties ofMDAF-6were also studied.

    Scheme 1. The framework of MDAF-6 containing P-OH for NH3 and H2O adsorption.

    CompoundMDAF-6was obtained as pale-yellow rhombus crystals after solvothermal reaction of DyCl3·6H2O,amp2H4and malonic acid in CH3OH/H2O at 90°C for 48 h,and was characterized by PXRD,TG and IR measurements (Figs.S1–S3 in Supporting information).Single crystal structural analysis revealed that it crystallizes in the orthorhombic system,polar space groupPmn21(No.31) (Table S1 in Supporting information).The asymmetric unit contains two kinds of Dy atoms (each with half occupancy),one amp2H22?ligand,half an occupied malonate,one coordinated and 2.5 lattice water molecules (Fig.S4 in Supporting information).The lattice water molecules were treated with PLATON/SQUEEZE program because of heavy disorder,and the number was determined by elemental and thermal analyses (Fig.S2 in Supporting information).Both Dy atoms reside on the mirror plane,and each is seven-coordinated by four O atoms from four amp2H22?ligands(O1,O1A,O5B and O5C for Dy1;O2,O2A,O4D and O4E for Dy2),two O atoms from the chelated malonate anion (O7 and O9 for Dy1;O7 and O8 for Dy2),and one from water molecule (O1W for Dy1;O2W for Dy2) (Fig.1a).The Dy-O bond lengths and ODy-O angles are 2.218(9)–2.465(16) ?A and 69.2(2)°–156.4(4)° for Dy1,and 2.232(9)–2.749(9) ?A and 50.5(3)°–167.0(4)° for Dy2 (Table S2 in Supporting information).The {DyO7} core has a distorted capped trigonal prism geometry (CShM=0.755 for Dy1 and 1.434 for Dy2,Table S3 in Supporting information) [37].The adjacent Dy1 and Dy2 atoms are connected alternatively by triple bridges of two O-P-O and oneμ-O and double bridges of O-P-O units (Dy1…Dy2 distance: 4.558,5.389 ?A),forming an infinite polar chain running along theb-axis,where the disordered malonate ligands locate on the same side (Fig.1b).Each amp2H22?serves as a tetradentate ligand binding to four Dy atoms,whereas each mal2?also acts as a tetradentate ligand chelating and bridging the Dy1 and Dy2 atoms (Fig.S5 in Supporting information).The neighboring chains are cross-linked by the amp2H22?ligands forming a 3D framework structure (Fig.1c).A 1D channel is generated along theb-axis with the window dimension ofca.7.0×6.2 ?A2(van der Waals radii not accounted).It is noted that one of the two protonated phosphonate oxygen atom (O6) forms intrachain H-bond with the malonate oxygen atom O8,while the other (O3) points towards the channel center,and should form H-bond with lattice water molecule.Thus,the channel wall is hydrophobic on the dianthracene side,but hydrophilic on the chain side with pendent P-OH,malonate oxygen atom,and coordination water molecules.

    Fig.1. (a) Building unit of MDAF-6.Part of the disordered malonate and the organic group of amp2H22?ligand are omitted for clarity.(b) The infinite chain in MDAF-6 running along the b-axis.(c) The open framework structure of MDAF-6 viewed along the b-axis.All H atoms except for those attached to phosphonate oxygen atoms are omitted for clarity.(d) The adsorption (filled) and desorption (open) isotherms for solvent-free MDAF-6: N2 (77 K),CO2 (298 K),NH3 (298 K) and water vapor (298 K).

    To examine the stability ofMDAF-6,the crystalline sample was immersed in water with different pH (1–14) for 24 h at room temperature.The PXRD measurements confirmed the stability of the material at pH 2–12 (Fig.S6 in Supporting information).Thermal analysis revealed thatMDAF-6lost seven water molecules below 170°C (obs.7.2%,calcd.7.7%).The weight loss above 170°C is due to the decomposition of organic components and the collapse of the framework structure (Fig.S2).

    We next investigated the adsorption/desorption performance ofMDAF-6,activated under vacuum at 100°C for 4 h (weight loss: obs.7.8%,calcd.7.7%),toward N2,CO2,NH3and H2O gasses(Fig.1d).The N2adsorption/desorption isotherm at 77 K is a Type II isotherm with a small loading of 4.1 cm3/g atP/P0=0.98,indicating a very weak interaction between nitrogen and pore walls.The adsorption was increased for CO2at 298 K with a maximum uptake of 23.6 cm3/g (1.6 mol/mol) atP/P0=0.98.A quick and dramatically enhanced adsorption was found for NH3with uptakes of 92.0 cm3/g (6.1 mol/mol) atP/P0=0.04 and 142.4 cm3/g (9.4 mol/mol,6.35 mmol/g) atP/P0=0.98 at 298 K,attributed to the favourable acid-base interaction between P-OH and NH3.The capacity is higher than MIL-53 (4.40 mmol/g) but lower than NH2?MIL-53 and MIL-100 (8.00 mmol/g) [38].After desorption,there remained 75.0 cm3/g (4.9 mol/mol) of ammonia atP/P0=0.001,which is higher than the expected value of 4.0 mol?1when all four P–OH groups per molecular formula interacted with NH3to form non-volatile PO32?-NH4+pairs.This result suggests that NH3may also occupy the vacancy left by the Dy atom after removing the coordination water.The formation of PO32?-NH4+pair breaks the intrachain H-bond between P-OH and malonate oxygen and weakens the O(P)-H bond,and thus should increase the proton concentration for conduction in the framework channel.The sample after adsorption/desorption of NH3at 298 K is named asMDAF-6-NH3.Interestingly,the re-activated sample,after heatingMDAF-6-NH3at 150°C under vacuum for 10 min (weight loss: obs.5.8%,calcd.5.6%),showed similar capacity of NH3adsorption atP/P0=1.0 (Fig.S7 in Supporting information).

    The water adsorption isotherm of the fully dehydrated sample ofMDAF-6showed a quick uptake of water vapor,and the value reached 118.7 cm3/g (7.8 mol/mol) atP/P0=0.08 and 226 cm3/g(15 mol/mol) atP/P0=0.99 at 298 K (Fig.S8 in Supporting information).When desorbed,there were still about 100.3 cm3/g(7 mol/mol) H2O in the structure atP/P0=0.03,in agreement with the presence of two coordinated and five lattice water molecules.We also measured the water adsorption capacity ofMDAF-6-NH3at 298 K and observed an uptake of 78.4 cm3/g (5.3 mol/mol)atP/P0=0.96,which is much lower than that forMDAF-6(14.5 mol/mol).This is reasonable because the channel space inMDAF-6-NH3is partially filled with the loaded NH3molecules.In addition,the hysteresis of water adsorption/desorption isotherm is more significant forMDAF-6-NH3than forMDAF-6,indicating a strong interaction between water and NH4+/NH3.Notably,the water adsorption capacity ofMDAF-6andMDAF-6-NH3drops significantly upon slight increase of temperature.At 308 K,the capacities became 179.8 cm3/g (11.8 mol/mol) forMDAF-6atP/P0=0.98 and 67.1 cm3/g (4.4 mol/mol) forMDAF-6-NH3atP/P0=1.00,respectively (Fig.S9 in Supporting information).

    The proton conductivity (σ) ofMDAF-6andMDAF-6-NH3was evaluated by impedance spectroscopy measurements using a pellet sample placed in a temperature and humidity-controlled chamber for 12 h.ForMDAF-6,the conductivity at 298 K was 1.8×10?12S/cm at 40% RH and increased to 1.5×10?9S/cm at 95% RH (Fig.2a and Fig.S10 in Supporting information).The values are very low compared to other proton conductive metal phosphonates with protonated phosphonate groups [22].From the structure ofMDAF-6,we can see that hydrophobic dianthracene moieties are present in the channel which is unfavorable for the formation of continuous hydrogen bond network.Besides,half of the protonated P-OH groups participate in strong intrachain hydrogen bonds,which may‘freeze’the protons,prevent them from migration,and thus affect their conduction.The adsorption of ammonia lifted the freeze of protons due to the acid-base interaction between P-OH and NH3to form NH4+inMDAF-6-NH3.Proton conductivity measurements at 298 K revealed a remarkably improved conductivity of 1.0×10?10S/cm at 40% RH and 6.8×10?6S/cm at 95% RH (Fig.2a and Fig.S11 in Supporting information).The latter is three orders of magnitude higher than that forMDAF-6.This value is comparable to some metal-triphosphonates [22,39],but lower than a few 3D metaltetraphosphonates (ca.10?2–10?4S/cm) [26,40,41].Obviously,the NH4+ions formedin-situpromote the water-mediated proton conduction.

    Fig.2. (a) Proton conductivities of MDAF-6 and MDAF-6-NH3 from 40% to 95% RH at 298 K (pink for increasing RH and blue for decreasing RH).(b) Arrhenius plot of the temperature dependence at 95% RH for MDAF-6 (green) and MDAF-6-NH3(black).(c) Proton conductivities of MDAF-6-NH3 in ammonia vapor, MDAF-6 in water vapor and MDAF-6 in ammonia vapor.(d) Nyquist plots of MDAF-6-NH3 in ammonia vapor for 6–8.5 h.

    The temperature-dependent proton conductivities ofMDAF-6andMDAF-6-NH3were measured at 95% RH.The proton conductivities were almost unchanged for both compounds when the temperature went up to 35°C and further reduced above 35°C(Fig.S12 in Supporting information),in consistence with the partial release of water molecules at this temperature.Based on the data in the temperature decreasing process,the activation energies (Ea)were estimated to be 0.35 eV forMDAF-6and 0.61 eV forMDAF-6-NH3(Fig.2b).The largerEa(>0.6 eV) suggests that NH4+may migrate directly as a proton attached to a vehicle inMDAF-6-NH3.

    The above results showed that the water-mediated proton productivity ofMDAF-6was significantly enhanced after the incorporation of NH4+.In this case,there exist two acid-base pairs,e.g.,H3O+-H2O and NH4+-H2O,which participate in the proton conduction pathway.We postulate that the presence of conjugate acid-base pair of NH4+-NH3would facilitate the proton mobility.

    To confirm this,we first evaluated the proton conductivity ofMDAF-6-NH3under a dry NH3gas atmosphere at 100 kPa.The sample pellet was dried at 100°C under vacuum for activation using a hot stage with electrical probes and then filled with dry NH3gas after cooling to room temperature.After being exposed to NH3gas for about 7 h,the gas adsorption of the sample pellet reached equilibrium and exhibited a conductivity of 3.4×10?9S/cm at 304 K (Fig.S13 in Supporting information).This value is higher than that obtained at 298 K and 40% RH (1.0×10?10S/cm),but much lower than that obtained at 298 K and 95% RH.The result indicates that the filling of NH3gas is not sufficient to form a continuous hydrogen bond network for efficient proton conduction.We then exposed the same pellet ofMDAF-6-NH3to saturated NH3-H2O vapor.Interestingly,the proton conductivity drastically increased along with prolonged time and reached a maximum value ofca.4.2×10?4S/cm after 8.5 h (Figs.2c and d,Fig.S14 in Supporting information).Controlled experiments were carried out under the same conditions forMDAF-6in water or NH3-H2O vapor.As shown in Fig.2c,the proton conductivity ofMDAF-6wasca.10?9S/cm after exposure to water or NH3-H2O vapor for 8.5 h,which is 5 orders of magnitude lower than that forMDAF-6-NH3.The conductivity ofMDAF-6reached the equilibrium value of 2.1×10?8S/cm after 32 h exposure to water vapor,and 6.9×10?5S/cm after 172 h exposure to NH3-H2O vapor (Fig.S15 in Supporting information).Notably,the framework structure ofMDAF-6remained the same after thermal treatment,the NH3gas adsorption/desorption process,and exposure to saturated NH3-H2O vapor(Fig.S16 in Supporting information).

    To understand the mechanism of enhanced proton conductivity ofMDAF-6-NH3in NH3-H2O vapor,we measured the solidstate IR and1H MAS NMR spectra of the samples.Fig.S3 shows the IR spectra ofMDAF-6andMDAF-6-NH3.Compared toMDAF-6(3619,3522 and 3441 cm?1),the O-H stretching vibrations ofMDAF-6-NH3are red-shifted to 3603,3499 and 3418 cm?1,indicating the weakening of the O-H stretching vibration.In addition,there appears a new broad peak at 3196 cm?1,attributed to the NH stretching vibration.The P-O stretching vibrations are very different for the two samples with additional strong peaks appearing at 1042 and 1001 cm?1forMDAF-6-NH3.These results corroborate with the fact that the P-OH acidic group reacted with NH3base forming PO32?-NH4+pair inMDAF-6-NH3.

    After exposure to NH3-H2O vapor for 8.5 h,bothMDAF-6andMDAF-6-NH3show broad bands at 3680–3280 cm?1,ascribed to the presence of extensive hydrogen bonding networks (Fig.S17 in Supporting information).Compared toMDAF-6,MDAF-6-NH3shows an enhanced stretching vibration atca.3435 cm?1and additional bands at 3207,1402 and 1207 cm?1.The latter three peaks are attributed to the N-H vibrations of NH4+and NH3[42,43].The broad N-H stretching peak at 3207 cm?1may be related to the formation of hydrogen bonds between NH3and NH4+[44].The observation of these N-H vibrations forMDAF-6-NH3but not forMDAF-6indicates thatMDAF-6-NH3adsorbs NH3-H2O vapor quickly and reaches equilibrium within 8.5 h.By contrast,MDAF-6adsorbs NH3-H2O vapor slowly and needs much longer time(ca.172 h) to reach equilibrium.This fact gives us an opportunity to distinguish the role of the NH4+-NH3conjugate pair in proton conduction.ForMDAF-6exposed to NH3-H2O or pure water vapor,there was negligible or no NH4+-NH3conjugate pair generated within 8.5 h,and their conductivities were extremely low (ca.10?9S/cm2).Therefore,the significantly enhanced proton conductivity ofMDAF-6-NH3in saturated NH3-H2O vapor (ca.10?4S/cm2) has to contribute to the coexistence of the NH4+-NH3and H3O+-H2O conjugate pairs.

    We also measured the solid-state1H MAS NMR spectra of the above three samples.As shown in Fig.S18 (Supporting information),a resonance signal appears at 4.2 ppm forMDAF-6exposed to H2O and NH3-H2O vapor for 8.5 h,corresponding to physisorbed water moving freely in the pore system of the material [45].ForMDAF-6-NH3exposed to NH3-H2O vapor for 8.5 h,the signal is slightly shifted to 5 ppm,which could be related to the presence of NH4+(NH3) and H2O interactions.

    Based on the above results,we propose the mechanism of proton conduction ofMDAF-6-NH3in NH3-H2O vapor as below: (1)The formation of PO32?-NH4+pair breaks the intrachain H-bond between P-OH and malonate oxygen and weakens the O(P)-H interaction,thus increasing the proton concentration for conduction;(2) The NH4+ion forms H-bonds with neutral NH3and transfers proton with low energy barrier [44];(3) Saturated NH3-H2O atmosphere provides a continuous network of H-bonds for efficient proton conduction (Scheme 2).

    Scheme 2. Proposed proton transfer pathways of MDAF-6-NH3 in (a) water,(b) NH3 and (c) NH3-H2O atmosphere.

    In order to explore the possibility of usingMDAF-6as a magnetic proton conductor [46,47],we also investigated its magnetic properties.As shown in Fig.S19 (Supporting information),theχMTvalue ofMDAF-6(28.17 cm3K/mol per Dy2) at room temperature agrees well with the spin-only value of 28.34 cm3K/mol for two isolated DyIIIions (6H15/2,S=5/2,L=5,gJ=4/3).TheχMTdecreases progressively upon cooling,attributed to the thermal depopulation of DyIIIStark sublevels and possible weak antiferromagnetic interactions.Field-dependent magnetization measured from 2 K to 10 K showed unsaturation up to 70 kOe (Fig.S19,inset),suggesting the presence of magnetic anisotropy and/or lower lying excited states.The alternating current (ac) susceptibility data ofMDAF-6revealed a frequency dependence of the out-of-phase (χ’’)signals under zero or 1 kOe dc field (Fig.S20 in Supporting information),characteristic of single-molecule magnet (SMM) behavior.But no maximum was observed,thus excluding the possibility to derive the energy barrier of the material.

    In summary,we report a new porous dysprosium phosphonate framework Dy2(amp2H2)2(mal)(H2O)2·5H2O (MDAF-6) which shows a high adsorption capacity toward NH3due to the presence of P-OH acidic groups.Impressively,we observed a dramatic enhancement of proton conductivity after exposingMDAF-6-NH3in saturated NH3-H2O vapor,demonstrating the importance of coexistent conjugate acid-base pairs of H3O+-H2O and NH4+-NH3in promoting proton conduction.In addition,MDAF-6shows SMM behavior at low temperature.This work not only provides a new example of proton conductive magnetic materials,but also a new approach to boost the proton conduction of MOFs by introducing conjugated acid-base pairs of H3O+-H2O and NH4+-NH3in NH3-H2O media.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by grant from the National Natural Science Foundation of China (No.21731003).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108320.

    18禁裸乳无遮挡动漫免费视频| 三上悠亚av全集在线观看| 国产福利在线免费观看视频| 久久久国产欧美日韩av| 国产成人欧美| 国产精品久久久久久精品古装| 美女国产高潮福利片在线看| 国产精品一区二区在线不卡| 亚洲成国产人片在线观看| 日本av免费视频播放| 亚洲黑人精品在线| 黄频高清免费视频| 黑丝袜美女国产一区| 性高湖久久久久久久久免费观看| 欧美av亚洲av综合av国产av| 十八禁高潮呻吟视频| 亚洲国产精品一区三区| 制服诱惑二区| 午夜福利免费观看在线| 亚洲精品美女久久av网站| 美女午夜性视频免费| av在线老鸭窝| 国产免费av片在线观看野外av| 每晚都被弄得嗷嗷叫到高潮| 动漫黄色视频在线观看| 日韩一区二区三区影片| 久久ye,这里只有精品| 亚洲精品日韩在线中文字幕| 亚洲第一青青草原| 亚洲精品久久成人aⅴ小说| 悠悠久久av| 妹子高潮喷水视频| 女人高潮潮喷娇喘18禁视频| 国产精品香港三级国产av潘金莲| 国产不卡av网站在线观看| 亚洲国产日韩一区二区| 在线看a的网站| 欧美亚洲 丝袜 人妻 在线| 人人妻人人澡人人看| 亚洲一卡2卡3卡4卡5卡精品中文| videosex国产| 成年动漫av网址| h视频一区二区三区| 老熟女久久久| av电影中文网址| 国产亚洲午夜精品一区二区久久| 最新在线观看一区二区三区| 高清av免费在线| 国产男人的电影天堂91| 欧美中文综合在线视频| 高潮久久久久久久久久久不卡| 欧美久久黑人一区二区| 久9热在线精品视频| 美女脱内裤让男人舔精品视频| 亚洲第一青青草原| 91麻豆精品激情在线观看国产 | 我的亚洲天堂| 国产黄频视频在线观看| 狠狠狠狠99中文字幕| 午夜福利在线免费观看网站| 国产免费现黄频在线看| 国产色视频综合| 男女国产视频网站| 看免费av毛片| 91精品伊人久久大香线蕉| 成人国语在线视频| 中国美女看黄片| 国产精品自产拍在线观看55亚洲 | 久久性视频一级片| 欧美日韩一级在线毛片| 国产男人的电影天堂91| 淫妇啪啪啪对白视频 | 国产成人a∨麻豆精品| 欧美日韩福利视频一区二区| 日本a在线网址| 男女边摸边吃奶| 99精品久久久久人妻精品| e午夜精品久久久久久久| 色视频在线一区二区三区| 欧美久久黑人一区二区| 真人做人爱边吃奶动态| 久久精品国产综合久久久| 国产成+人综合+亚洲专区| 午夜免费鲁丝| √禁漫天堂资源中文www| e午夜精品久久久久久久| 亚洲精品国产一区二区精华液| 国产亚洲欧美精品永久| 成人三级做爰电影| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产综合久久久| 老汉色∧v一级毛片| 免费少妇av软件| 91麻豆精品激情在线观看国产 | 久久九九热精品免费| 可以免费在线观看a视频的电影网站| 亚洲色图综合在线观看| 97人妻天天添夜夜摸| 老熟女久久久| 精品乱码久久久久久99久播| 狠狠婷婷综合久久久久久88av| 欧美日韩福利视频一区二区| 午夜成年电影在线免费观看| 高潮久久久久久久久久久不卡| 免费在线观看日本一区| 99九九在线精品视频| 男人爽女人下面视频在线观看| 侵犯人妻中文字幕一二三四区| 丰满少妇做爰视频| 色播在线永久视频| 少妇猛男粗大的猛烈进出视频| 欧美乱码精品一区二区三区| 丝袜美足系列| 免费在线观看视频国产中文字幕亚洲 | 欧美亚洲日本最大视频资源| 日韩电影二区| 亚洲精品成人av观看孕妇| 老熟妇仑乱视频hdxx| 精品视频人人做人人爽| 90打野战视频偷拍视频| 亚洲色图 男人天堂 中文字幕| 中文精品一卡2卡3卡4更新| 午夜福利视频精品| 亚洲成人免费电影在线观看| 亚洲国产毛片av蜜桃av| 一个人免费在线观看的高清视频 | 操美女的视频在线观看| 操美女的视频在线观看| 母亲3免费完整高清在线观看| 日韩三级视频一区二区三区| 老汉色av国产亚洲站长工具| 国产一区二区三区在线臀色熟女 | 最新的欧美精品一区二区| 国产色视频综合| 视频区图区小说| 在线观看免费午夜福利视频| 如日韩欧美国产精品一区二区三区| 美女主播在线视频| 18禁裸乳无遮挡动漫免费视频| 男女国产视频网站| 在线观看免费高清a一片| 久久人人爽人人片av| 国产一区有黄有色的免费视频| 久久久久精品人妻al黑| 黄片大片在线免费观看| www.精华液| 不卡av一区二区三区| 99久久人妻综合| 亚洲精品美女久久久久99蜜臀| 电影成人av| 成年女人毛片免费观看观看9 | 久久久国产成人免费| 人妻人人澡人人爽人人| 精品视频人人做人人爽| 亚洲av电影在线进入| 男女之事视频高清在线观看| 国产精品久久久久久人妻精品电影 | 色播在线永久视频| 久久国产精品影院| 亚洲精品国产区一区二| 国产野战对白在线观看| 男女之事视频高清在线观看| 一级毛片女人18水好多| 日韩精品免费视频一区二区三区| 国产极品粉嫩免费观看在线| 777久久人妻少妇嫩草av网站| www.999成人在线观看| 亚洲av男天堂| 亚洲精品成人av观看孕妇| av有码第一页| 国产激情久久老熟女| 美女视频免费永久观看网站| 一级片免费观看大全| 亚洲欧美日韩高清在线视频 | 亚洲性夜色夜夜综合| 超色免费av| 国产激情久久老熟女| 久久国产亚洲av麻豆专区| 啦啦啦在线免费观看视频4| 一级毛片精品| 天天躁日日躁夜夜躁夜夜| 午夜两性在线视频| 女人高潮潮喷娇喘18禁视频| 男女免费视频国产| 首页视频小说图片口味搜索| 久久国产亚洲av麻豆专区| 国产精品熟女久久久久浪| 97人妻天天添夜夜摸| 下体分泌物呈黄色| 婷婷色av中文字幕| 亚洲精品一区蜜桃| 99re6热这里在线精品视频| 黄频高清免费视频| 日韩大片免费观看网站| 亚洲av成人一区二区三| 亚洲av成人不卡在线观看播放网 | 亚洲精品国产一区二区精华液| 一本综合久久免费| 嫩草影视91久久| 成年动漫av网址| 日韩欧美一区视频在线观看| 在线观看免费视频网站a站| 高清视频免费观看一区二区| 黑丝袜美女国产一区| 欧美人与性动交α欧美精品济南到| www.精华液| 老熟妇乱子伦视频在线观看 | 欧美黄色片欧美黄色片| 亚洲av欧美aⅴ国产| 美女扒开内裤让男人捅视频| 成年人午夜在线观看视频| 国产又爽黄色视频| 高清黄色对白视频在线免费看| 91麻豆av在线| 老司机在亚洲福利影院| 日韩电影二区| 纵有疾风起免费观看全集完整版| 后天国语完整版免费观看| 婷婷丁香在线五月| 久久影院123| 看免费av毛片| 色婷婷久久久亚洲欧美| 亚洲成人免费av在线播放| 日本欧美视频一区| 国产男女超爽视频在线观看| 欧美日韩福利视频一区二区| 少妇猛男粗大的猛烈进出视频| 97在线人人人人妻| 国产有黄有色有爽视频| 中文精品一卡2卡3卡4更新| 一边摸一边抽搐一进一出视频| 精品国产一区二区三区四区第35| 亚洲av日韩精品久久久久久密| 国产亚洲精品久久久久5区| 国产男女超爽视频在线观看| 免费女性裸体啪啪无遮挡网站| 欧美成狂野欧美在线观看| 国产人伦9x9x在线观看| 老司机影院成人| 欧美在线黄色| 丝袜美腿诱惑在线| 各种免费的搞黄视频| 国产精品熟女久久久久浪| 国产精品香港三级国产av潘金莲| 欧美精品人与动牲交sv欧美| 亚洲国产中文字幕在线视频| 国产亚洲av片在线观看秒播厂| 一区二区三区精品91| 亚洲va日本ⅴa欧美va伊人久久 | 日本猛色少妇xxxxx猛交久久| 久久久久久免费高清国产稀缺| 99国产精品免费福利视频| a级毛片在线看网站| 久久这里只有精品19| 国产精品一区二区在线不卡| 一边摸一边做爽爽视频免费| 黄片小视频在线播放| 精品国产乱码久久久久久小说| 欧美乱码精品一区二区三区| 亚洲国产看品久久| 欧美日韩中文字幕国产精品一区二区三区 | 老汉色av国产亚洲站长工具| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品999| av又黄又爽大尺度在线免费看| 亚洲精品国产av蜜桃| 欧美激情高清一区二区三区| 成年女人毛片免费观看观看9 | 亚洲国产精品成人久久小说| 国产精品影院久久| 国产欧美日韩精品亚洲av| 两性夫妻黄色片| 老司机午夜福利在线观看视频 | 亚洲欧洲精品一区二区精品久久久| 下体分泌物呈黄色| 日韩精品免费视频一区二区三区| 黑丝袜美女国产一区| 亚洲美女黄色视频免费看| 国产片内射在线| 国产老妇伦熟女老妇高清| 韩国精品一区二区三区| 午夜福利在线免费观看网站| 久久久久精品国产欧美久久久 | 一区二区三区精品91| 精品少妇久久久久久888优播| 三上悠亚av全集在线观看| 久久天堂一区二区三区四区| 国产精品一区二区在线观看99| 欧美亚洲 丝袜 人妻 在线| 欧美黄色淫秽网站| 亚洲专区字幕在线| 国产高清视频在线播放一区 | 国产1区2区3区精品| 亚洲国产精品999| 国产激情久久老熟女| 国产亚洲av片在线观看秒播厂| 精品熟女少妇八av免费久了| 999精品在线视频| 亚洲性夜色夜夜综合| 色综合欧美亚洲国产小说| 老司机深夜福利视频在线观看 | 国产精品.久久久| 丝袜人妻中文字幕| 欧美精品av麻豆av| 婷婷成人精品国产| 老汉色av国产亚洲站长工具| 亚洲国产av影院在线观看| 我要看黄色一级片免费的| 久久久欧美国产精品| 久久精品亚洲av国产电影网| 99国产精品99久久久久| 国产真人三级小视频在线观看| 亚洲av国产av综合av卡| 啦啦啦中文免费视频观看日本| 女人高潮潮喷娇喘18禁视频| 欧美成狂野欧美在线观看| 免费在线观看视频国产中文字幕亚洲 | 欧美在线一区亚洲| 亚洲欧洲精品一区二区精品久久久| 老司机靠b影院| 欧美激情高清一区二区三区| 国产高清国产精品国产三级| 亚洲专区中文字幕在线| 国产成人精品无人区| 黄色怎么调成土黄色| 国产日韩欧美亚洲二区| 亚洲一区二区三区欧美精品| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品免费大片| 日韩精品免费视频一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产在线观看jvid| 狂野欧美激情性xxxx| 丁香六月天网| 久久久久久亚洲精品国产蜜桃av| videos熟女内射| 日本wwww免费看| 国产高清视频在线播放一区 | 国产亚洲av片在线观看秒播厂| 国产成人一区二区三区免费视频网站| 9热在线视频观看99| 黄色视频不卡| 黑人猛操日本美女一级片| 欧美97在线视频| 中文字幕色久视频| 精品一区二区三卡| 国产亚洲午夜精品一区二区久久| 考比视频在线观看| 久久影院123| kizo精华| 青春草亚洲视频在线观看| 他把我摸到了高潮在线观看 | 91九色精品人成在线观看| 精品亚洲成国产av| 中文欧美无线码| 亚洲欧美清纯卡通| 日本a在线网址| 亚洲自偷自拍图片 自拍| 久久人妻福利社区极品人妻图片| 超碰成人久久| 叶爱在线成人免费视频播放| 国产精品久久久久成人av| 国产av精品麻豆| 咕卡用的链子| 91av网站免费观看| 欧美精品啪啪一区二区三区 | 一级毛片精品| 欧美日韩中文字幕国产精品一区二区三区 | 美女扒开内裤让男人捅视频| 80岁老熟妇乱子伦牲交| 久久国产精品人妻蜜桃| 亚洲精品一二三| 国产片内射在线| 国产不卡av网站在线观看| 国产人伦9x9x在线观看| 日本精品一区二区三区蜜桃| 中文字幕av电影在线播放| 美女高潮到喷水免费观看| 免费一级毛片在线播放高清视频 | 女警被强在线播放| 女人高潮潮喷娇喘18禁视频| 可以免费在线观看a视频的电影网站| 欧美av亚洲av综合av国产av| 日本猛色少妇xxxxx猛交久久| 午夜免费观看性视频| 男女高潮啪啪啪动态图| 一本一本久久a久久精品综合妖精| 9色porny在线观看| 日本黄色日本黄色录像| 亚洲av片天天在线观看| 成年美女黄网站色视频大全免费| 国产精品熟女久久久久浪| 国产福利在线免费观看视频| 久久久久国产精品人妻一区二区| 久久九九热精品免费| 丝袜在线中文字幕| 亚洲国产av新网站| 免费少妇av软件| 国产男女内射视频| 欧美激情 高清一区二区三区| 人人澡人人妻人| 一二三四社区在线视频社区8| 人人妻人人添人人爽欧美一区卜| 国产欧美亚洲国产| 亚洲欧美一区二区三区久久| 51午夜福利影视在线观看| 五月天丁香电影| 久久久久久久久久久久大奶| 在线观看www视频免费| 久9热在线精品视频| 亚洲精品国产av蜜桃| 亚洲国产av影院在线观看| 91成人精品电影| 18禁裸乳无遮挡动漫免费视频| 免费少妇av软件| 多毛熟女@视频| 国产91精品成人一区二区三区 | 999精品在线视频| 日韩有码中文字幕| 十八禁高潮呻吟视频| 爱豆传媒免费全集在线观看| 久久精品aⅴ一区二区三区四区| 欧美另类亚洲清纯唯美| 黄片小视频在线播放| 久久99热这里只频精品6学生| 成年人免费黄色播放视频| 99久久综合免费| 少妇裸体淫交视频免费看高清 | 人人妻人人澡人人爽人人夜夜| 一区二区三区乱码不卡18| 久久人妻熟女aⅴ| 黄色视频在线播放观看不卡| 成年人黄色毛片网站| 亚洲专区中文字幕在线| 中文字幕色久视频| 热99久久久久精品小说推荐| 日日夜夜操网爽| 亚洲性夜色夜夜综合| 在线十欧美十亚洲十日本专区| 男女下面插进去视频免费观看| 国产精品 欧美亚洲| 美女中出高潮动态图| 国产高清国产精品国产三级| 国产欧美亚洲国产| 一本大道久久a久久精品| 久久久久久久久久久久大奶| 婷婷成人精品国产| 99久久精品国产亚洲精品| 欧美97在线视频| 亚洲欧洲精品一区二区精品久久久| 亚洲男人天堂网一区| 国产99久久九九免费精品| 久久国产精品大桥未久av| 欧美国产精品va在线观看不卡| 男女边摸边吃奶| 老汉色∧v一级毛片| 国产一区二区在线观看av| 无遮挡黄片免费观看| 欧美国产精品一级二级三级| 亚洲精品美女久久av网站| 丰满少妇做爰视频| 久久免费观看电影| 久久久久久久久久久久大奶| 另类精品久久| 夜夜夜夜夜久久久久| 精品一品国产午夜福利视频| 高潮久久久久久久久久久不卡| 国产精品一区二区在线观看99| 色婷婷久久久亚洲欧美| 国产色视频综合| 日韩欧美国产一区二区入口| 亚洲精品国产一区二区精华液| 久久av网站| 99久久综合免费| 国产成人精品无人区| 性色av一级| 亚洲国产av影院在线观看| 久久狼人影院| 淫妇啪啪啪对白视频 | 色视频在线一区二区三区| 国产一区二区三区在线臀色熟女 | 亚洲熟女精品中文字幕| 午夜福利视频在线观看免费| 国产高清国产精品国产三级| 人人妻人人澡人人爽人人夜夜| 亚洲一区中文字幕在线| 后天国语完整版免费观看| 男女午夜视频在线观看| 国产成人啪精品午夜网站| 精品少妇黑人巨大在线播放| 亚洲专区字幕在线| 一区二区三区精品91| 99久久人妻综合| 欧美中文综合在线视频| www.av在线官网国产| av不卡在线播放| 嫁个100分男人电影在线观看| 嫩草影视91久久| 高清av免费在线| 十八禁网站免费在线| av电影中文网址| 这个男人来自地球电影免费观看| 黑人巨大精品欧美一区二区蜜桃| www.精华液| 在线天堂中文资源库| 99国产精品一区二区三区| 在线观看免费日韩欧美大片| 十八禁高潮呻吟视频| 久久久精品94久久精品| 美女高潮到喷水免费观看| 国产老妇伦熟女老妇高清| 欧美成狂野欧美在线观看| 涩涩av久久男人的天堂| 91大片在线观看| 日韩视频一区二区在线观看| 侵犯人妻中文字幕一二三四区| 一进一出抽搐动态| 欧美黑人精品巨大| 少妇猛男粗大的猛烈进出视频| 99国产精品一区二区蜜桃av | 少妇 在线观看| 国产成人av教育| 国产主播在线观看一区二区| 啦啦啦在线免费观看视频4| 高清黄色对白视频在线免费看| 999久久久精品免费观看国产| 欧美黄色淫秽网站| 美女高潮喷水抽搐中文字幕| 中文字幕精品免费在线观看视频| 一区二区三区精品91| 涩涩av久久男人的天堂| 丰满迷人的少妇在线观看| 俄罗斯特黄特色一大片| 天堂俺去俺来也www色官网| e午夜精品久久久久久久| 国产91精品成人一区二区三区 | 91成人精品电影| 久久热在线av| 国产伦人伦偷精品视频| 老汉色∧v一级毛片| 亚洲国产欧美在线一区| 十八禁网站网址无遮挡| 久久久久网色| 热99re8久久精品国产| 国产av一区二区精品久久| 丝袜美足系列| 最新的欧美精品一区二区| 新久久久久国产一级毛片| 久久国产精品人妻蜜桃| 黄频高清免费视频| 悠悠久久av| 亚洲avbb在线观看| 99re6热这里在线精品视频| 热99国产精品久久久久久7| 欧美人与性动交α欧美精品济南到| 亚洲精品国产av蜜桃| e午夜精品久久久久久久| 日韩精品免费视频一区二区三区| 国产1区2区3区精品| 最近最新免费中文字幕在线| 99国产极品粉嫩在线观看| 中国国产av一级| 国产亚洲精品久久久久5区| 美女视频免费永久观看网站| 亚洲精品国产一区二区精华液| 女人久久www免费人成看片| 久热爱精品视频在线9| 极品人妻少妇av视频| 亚洲,欧美精品.| 国产成+人综合+亚洲专区| 欧美日韩视频精品一区| 国产精品香港三级国产av潘金莲| 99国产精品99久久久久| 最新的欧美精品一区二区| 久久久国产欧美日韩av| 一级毛片女人18水好多| 伊人亚洲综合成人网| 成人国产一区最新在线观看| 制服人妻中文乱码| 亚洲精品中文字幕一二三四区 | 女人久久www免费人成看片| 一级黄色大片毛片| 一本色道久久久久久精品综合| 深夜精品福利| 亚洲午夜精品一区,二区,三区| 热99re8久久精品国产| 久久亚洲国产成人精品v| 欧美性长视频在线观看| 日本一区二区免费在线视频| 蜜桃在线观看..| 老司机深夜福利视频在线观看 | 女人高潮潮喷娇喘18禁视频| 成人三级做爰电影| www.999成人在线观看| 老司机深夜福利视频在线观看 | 精品国产一区二区三区四区第35| 少妇猛男粗大的猛烈进出视频| 99国产综合亚洲精品| 曰老女人黄片| 欧美成狂野欧美在线观看| 伊人久久大香线蕉亚洲五| 欧美一级毛片孕妇| 亚洲,欧美精品.| 国产有黄有色有爽视频| 免费日韩欧美在线观看| av超薄肉色丝袜交足视频| 性色av一级| 日本撒尿小便嘘嘘汇集6| 日韩 欧美 亚洲 中文字幕| 欧美大码av| 久久久水蜜桃国产精品网| 丝袜美足系列| 男女免费视频国产| 精品少妇一区二区三区视频日本电影| 日本一区二区免费在线视频|