• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Precisely manipulation of core composition of core-shell-type cobalt polyoxoniobates and proton conduction study

    2023-02-18 01:55:44ZhengWeiGuoYiChenZheHongChenXinXiongLiShouTianZheng
    Chinese Chemical Letters 2023年12期

    Zheng-Wei Guo,Yi Chen,Zhe-Hong Chen,Xin-Xiong Li ,Shou-Tian Zheng

    State Key Laboratory of Photocatalysis on Energy and Environment,School of Chemistry,Fuzhou University,Fuzhou 350108,China

    Keywords:Polyoxoniobate Core-shell Nanocluster Atomic-level modulation Proton conduction

    ABSTRACT The development of core-shell nanoclusters with controllable composition is of utmost importance as the material properties depend on their constituent elements.However,precisely tuning their compositions at the atomic scale is not easily achieved because of the difficulty of using limited macroscopic synthetic methods for atomic-level modulation.In this work,we report an interesting example of precisely regulating the core composition of an inorganic core-shell-type cobalt polyoxoniobate [Co26Nb36O140]32?by controlling reaction conditions,in which the inner Co-core composition could be tune while retaining the outer Nb-shell composition of resulting product,leading to a series of isostructural species with a general formula of {Co26-nNb36+nO140} (n=0–2).These rare species not only can display good powder and single-crystal proton conductivities,but also might provide helpful and atomic-level insights into the syntheses,structures and composition modifications of inorganic amorphous core-shell heterometal oxide nanoparticles.

    Core-shell nanostructures have attracted significant interest due to their charming configurations and intercomponent synergistic effects that might enhance their expected functions or launch exotic properties [1–21].These have rendered the core-shell nanostructures one of prime targets in the development of advanced composite materials.Of them,intensive synthetic efforts have been invested into the development of inorganic core-shell metal nanoparticles during the past decade [1–13].Precise construction of core-shell species with well-defined molecular structures and compositions is of significance to atomic-level understanding and regulation of their properties.However,although some effective approaches have been explored to precisely control the size,shape,thickness and composition of core-shell metal nanoparticles,it is still an enormous challenge to achieve their atomic-level bonding geometry and structural characterization.

    Crystalline inorganic core-shell metal oxide nanoclusters with atomically and geometrically precise structural information are of great interest not only due to their fascinating structural features with unusual physical and chemical properties [22–29],but also important roles as the molecular models for the structures and physicochemical properties of inorganic core-shell metal oxide nanoparticles.Particularly,precisely tuning material compositions at the atomic scale remains an attractive target and scientifically interesting not only for developing novel composite materials with controllable composition but also providing atomic-level insights into the structures and physicochemical properties of amorphous core-shell heterometal nanoparticles.

    Nevertheless,the targeted growth of inorganic core-shell heterometal oxide nanoclusters with atomic precision is still beyond our capacity owing to the difficulty of atomic-level design of both core and shell and the complexity of self-assembly reactions.And thus,the development of such species is still being sought,lagged far behind that of inorganic core-shell metal nanoparticles.At present,known such nanoclusters are limited and some representative examples are Cu20@W48[24],V6@W48[25],M16@W48(M=Fe [26],Al or Ga [27]),Bi6@U24and Pb8@U24[28].

    Recently,we reported the synthesis of an allinorganic core-shell-type cobalt polyoxoniobate (PONb)Na8K14H10[Co26@Nb36]·nH2O (1,Co26@Nb36=[Co26Nb36O140]32?),in which a large 36-nuclearity PONb shell {Nb36O124} (Nb36) encloses a 26-nuclearity mixed-valence cobalt oxide core {Co26O32}(Co26) (Fig.1) [30].Interestingly,the core composition of Co26@Nb36is sensitive to the reaction conditions,allowing to precisely tune its inner Co-core content without affecting its outer Nb-shell composition and structure,resulting in a series of isostructures {Co26-nNb36+nO140} (n=0–2).Proton conduction experiments reveal that these materials have good proton conducting properties.

    Fig.1. The polyhedral representation of 1.CoO6 octahedra or CoO4 tetrahedra:green;NbO6: red.

    Solid1crystallized in a highly symmetric cubic space groupFm-3m.The 36-nuclearity Nb36shell structure can be described as a nanosizedTd-symmetry tetrahedral nanocage comprising four{Nb3O13} triangles positioned at its four vertices and four {Nb6O24}hexagonal rings laid flat on its four faces (Fig.2a),which are interlinked with each otherviacorner-sharing.The 26-nuclearity Co26core,also withTd-symmetry,contains a tetrahedral {CoIII16O20}core and ten CoIIO4tetrahedra.The {CoIII16O20} core can be seen as consisting of five CoIII4O4cubanes,wherein the innermost CoIII4O4cubane joins four tetrahedrally arranged CoIII4O4cubanes by sharing four CoIIIatoms (Fig.2b).Further,the ten CoIIO4tetrahedra occupy the six edge positions (in blue) and the four face-centered positions (in yellow) of the tetrahedral {CoIII16O20} coreviacornersharing with CoIIIO6octahedra,giving the overall mixed-valence Co26cluster.

    Fig.2. (a) Polyhedral representation of the sphere-like Nb36 nanocage and its two kinds of building units of {Nb3O13} triangle and {Nb6O24} hexagonal ring.(b) An illustration of the structure of the 26-nuclearity Co26 core.NbO6: red or purple;CoO6 octahedra: green;CoO4 tetrahedra: yellow or blue.

    Interestingly,the core composition of 1 is markedly affected by the reactants,allowing us to precisely manipulate its Cocore composition with atomic-level precision while keeping the same Nb-shell composition and topology.To begin with,we found that the starting phosphates of Na3PO4and KH2PO4in the reaction of1play a key role in determining the resulting core-shell nanocluster with an ordered or disordered core structure though they do not present in the products.Specifically,the reaction of1without the addition of phosphates yields an isomorph Na10K15H5[NbCo25@Nb36]·nH2O (2)(NbCo25@Nb36=[Co25Nb37O140]30?).As shown in Fig.3,the difference between Co26@Nb36and NbCo25@Nb36lies in that the four equivalent Co3+sites (related by aS4axis) of the innermost CoIII4O4cubane in the former are found to be occupied either by Nb5+or Co3+ions in the latter.The disordered site is refined freely to give a Co/Nb occupancy factor of 0.758/0.242,followed by fixing it to 0.75/0.25,and thus the core composition of Co25Nb@Nb36is NbCo25O32.

    Fig.3. A comparison of core compositions of Co26,NbCo25 and Nb2Co24 in 1, 2 and 3,respectively.Ordered CoO6 octahedra or CoO4 tetrahedra: green;Disordered MO6 octahedra: rose.

    The observed Nb/Co disorder in Co25Nb@Nb36reveals that Nb and Co ions compete to form the innermost cubane unit in the solution,and the addition of Na3PO4and KH2PO4favors the formation of ordered Co26@Nb36.Attempts to obtain analogs of Co26@Nb36proved fruitless by the replacment of the phosphates with nitrate,carbonate,sulfate,acetate or silicate.Considering that core-shell structures are usually grown from inside out,the distinct innermost cubanes of Co4O4and NbCo3O4indicate that the starting phosphates Na3PO4and KH2PO4should have a unique influence on the initial nucleation of the core-shell nanocluster.Unfortunately,the detailed role of the phosphates still remains unclear.Potentially,they can affect the competitive relationship between Nb5+and Co3+ions for the initial nucleation of core-shell nanoclustersviahydrogen bond interactions or affect the pH value of the reaction solution and thus the reaction and crystallization processes.

    Given that Nb and Co ions can compete to form the innermost metal cubane,we set out to explore the molecular growth of the core-shell Co-Nb clusters by adjusting the starting Co/Nb ratio to see if it can affect the core composition of resulting cluster.We studied the Co/Nb ratio influence over the range from 1:9 to 1:1,with the amount of K7HNb6O19·13H2O fixed at 0.33 mmol.When the Co/Nb ratios are in the range of 1:9~1:5 (noted that the Co/Nb ratio in the reaction of2is about 1:8),the obtained core-shell nanoclusters are all the same as NbCo25@Nb36found in2,as confirmed by single-crystal X-ray diffraction analyses of four single crystals from the four same reactions as2but with different initial Co/Nb ratios of 1:9,1:7,1:6 and 1:5,respectively.Increasing the Co/Nb ratio to 1:4 results in the formation of a new isostructural compound Na10K15H3[Nb2Co24@Nb36]·nH2O (3)(Nb2Co24@Nb36=[Co24Nb38O140]28?),in which all trivalent Co3+sites,that is,all Co sites of the whole tetrahedral {CoIII16O20}core in Co26@Nb36,are found as disordered Co/Nb sites in Nb2Co24@Nb36(Fig.3).The asymmetric unit of the {M16O20} (M stands for disordered Co/Nb sites) core in Nb2Co24@Nb36contains two crystallographic independent M sites of M1 and M2,which are refined freely to give Co/Nb occupancy factors of 0.789/0.211 and 0.892/0.108,respectively,followed by fixing them to 0.8/0.2 and 0.9/0.1.Since the {M16O20} consists of four M1 and twelve M2,its composition exactly is {Nb2Co14}.Similar to the bivalent Co2+sites in Co26@Nb36and NbCo25@Nb36,all Co2+sites in Nb2Co24@Nb36are found to be full occupancy.And thus,the overall core composition is Nb2Co24.We further increased the Co/Nb ratios from 1:3 to 1:1 with attempt to get new isostructres and to check if these tetrahedrally coordinated Co2+sites can be disordered as Co/Nb sites,however,no isostructural species but amorphous phases were obtained.

    The distinct inner core compositions make NbCo25@Nb36and Nb2Co24@Nb36nanoclusters have different cluster charges of ?30 and ?28,respectively.Considering that the only difference in the syntheses of them is the starting amount of CoCl2,we attribute the formation of the distinct isostructures NbCo25@Nb36and Nb2Co24@Nb36to the role of the Co2+ions on the mediation of solution pHviahydrolysis.It is known that,in basic solution,a higher solution pH will stabilize a higher-charge polyoxoanion.With different starting Co/Nb ratios from 1:9 to 1:5,the pH values after reactions are about 12.5±0.1 (Table S1 in Supporting information),suggesting the Co/Nb ratios in the range from 1:9 to 1:5 have little effect on the pH values of reactions.Accordingly,all these reactions yield the same nanocluster of NbCo25@Nb36with a net charge of ?30.While,when the Co/Nb ratio increases to 1:4,the pH value after reaction decreases to 11.9,suggesting that this ratio has an obvious effect on the pH value of reaction.Accordingly,the reaction gives Nb2Co24@Nb36with a lower net charge(?28) compared to NbCo25@Nb36.We can therefore speculate that the hydrolysis of different Co2+concentrations lead to reaction solutions with different pH values,which makein-situgenerating intermediates adjust their inner core compositions to form isostructural clusters with different negative charges that could be adapted to different pH values of reaction solutions.

    The above results reveal that the atomic-level modulation of core-shell Co26@Nb36cluster with order/disorder core structure and programmable core composition can be achieved by controlling the starting reagents.The obtainment of the series of coreshell Co-Nb bimetallic clusters constitutes a family with a general formula of {Co26-nNb36+nO140} (n=0–2 in this work).These nanoclusters might provide atomic-level insights into the influence of the starting chemicals on the structures and compositions of amorphous bimetallic core-shell nanoparticles.Additionally,the observed disordered core structure evolution from {Co4O4}to {NbCo3O4},and to {Nb2Co14O20} provides a case to reveal an inside-out molecular growth of core-shell bimetal nanoclusters at atomic level.

    The metal contents of2–3were determined by ICP analyses,which are in good agreement with the calculated values based on single-crystal X-ray diffraction analyses (Table S2 in Supporting information).Further,XPS were performed to confirm their ratios in2–3(Fig.S1 in supporting information).Curve-fitting of the highresolution Co 2p spectra reveals that the Co3+/Co2+ratios in2–3are 1.48 and 1.38,respectively,perfectly matching their corresponding Co3+/Co2+ratios of 1.50 and 1.40 identified by the BVS calculations [31].

    High chemical stabilities,the presence of counter cations (H+,Na+,and K+) and oxo-rich surface point to the possible utility of1as proton conducting material.The conductivity of1was investigated by ac impedance measurements using a two-electrode configuration between 107and 1 Hz.The humidity-dependent conductivity was first measured at room temperature (RT) (25°C).As dipicted in Fig.4a,the conductivity is 2.68×10?4S/cm at 55% relative humidity (RH),and it incerases to 1.74×10?3S/cm when RH maintianed at 98%.Next,the temperature-dependent proton conductivity was measured over the temperature range of 25–85°C under 98% RH.The result reveal that the conductivity of1reaches 2.64×10?2S/cm at 85°C (Fig.4b),which is among the highest conductivity reported for POMs (Table S3 in Supporting information).According to the Arrhenius equationσT=σ0exp(-Ea/kBT),the activation energy,determined by linear regression analysis,is estimated to 0.304 eV (Fig.4c),indicating that conduction is mainly carried out by the “Grotthus” mechanism (Ea<0.4).We attribute the excellent proton conductivity to the presence of rich proton carriers within the structure of1,including water molecules and terminal oxygen atoms,which help to form hydrogen-bonded proton “hopping” networks [32–35].Additionally,the PXRD patterns showed that the sample remain consistent before and after conduction tests,revealing the integrity of sample1(Fig.4d).

    Fig.4. (a) Nyquist plot for 1 under different relative humidity.(b) Nyquist plot for 1 under different temperatures with 98% RH.(c) Plot of ln(σ T) vs. 1000/T for 1.(d)PXRD patterns of 1 before and after tests.

    Although extensive research efforts have been devoted to studying the proton-conducting performances of POMs [36–40],most of them are based on compacted crystalline powder samples.The research on the conductivities of single-crystal POMs remains largely unexplored.Given that1–3contain different amounts of cations and might exhibit distinct conductivities,the single crystal proton conductivities of1–3were further investigated by ac impedance measurements using single crystals over the temperature range of 35–75°C under 98% RH.Ag wires were carefully attached to a cubic crystal (0.20 mm×0.20 mm×0.20 mm) by using conductive silver paste along opposite faces.The temperature-dependent conductivity measurements reveal that the singel crystal conductivity of1at 35°C is 2.2×10?6S/cm,which is comparable to those of some reported single-crystal POMs [39,40].As the temperature increases,the conductivity increases gradually and reaches a maximum of 1.08×10?5S/cm at 75°C (Fig.5a).The conductivities of2and3at 35°C,75°C with 98% RH are 1.54×10?6S/cm,6.84×10?6S/cm and 1.92×10?6S/cm,5.89×10?6S/cm,respectively (Figs.5b and c).The results show that the conductivities of1–3are almost at the same level.Nevertheless,crystal1with the most cations shows relatively high conductivity compared to crystals2and3.According to the Arrhenius equationσT=σ0exp(-Ea/kBT),the activation energy of single crystals1–3,determined by linear regression analysis,are 0.354,0.346 and 0.260 eV,respectively,indicating that their conduction processes are mainly dominated by the“Grotthus” mechanism (Fig.5d).

    Fig.5. (a–c) Nyquist plots for single crystals of 1–3 under different temperatures with 98% RH,respectively (inset: proton conduction device).(d) Plots of ln(σ T) vs.1000/T for single crystals 1–3.

    In summary,we demonstrate that the inner core structure (in order/disorder) and composition (with different Co/Nb distributions) of a unique all-inorganic core-shell-type Co-Nb heteropolyoxoniobate Co26@Nb36can be precisely modulated by simple control of initial reaction reagents,leading to a family of isostructural core-shell nanoclusters {Co26-nNb36+nO140} (n=0–2) with precise atoms and structures.Further,their proton conductivities have been examined to showcase them as promising candidates for proton-conducting materials.These bimetallic core-shell structures with tunable core structures allow studies in rich host-guest chemistry to be envisaged.Furthermore,we anticipate that other novel transition metal clusters can be captured,resulting in new discoveries in metal oxo cluster chemistry.Finally,this series of rare all-inorganic and atomically precise Co-Nb core-shell nanoclusters might provide a foundation to understand and investigate the chemical processes of Co-Nb-based non-molecular counterparts including inorganic core-shell nanoparticles and bulk materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos.21971039 and 22171045) and the Key Program of Natural Science Foundation of Fujian Province (No.2021J02007).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.109124.

    ponron亚洲| 久久草成人影院| 久久午夜综合久久蜜桃| 一级作爱视频免费观看| 在线观看免费午夜福利视频| 搡老妇女老女人老熟妇| 90打野战视频偷拍视频| 一二三四社区在线视频社区8| 美女黄网站色视频| 亚洲熟妇熟女久久| av有码第一页| а√天堂www在线а√下载| 日韩av在线大香蕉| 欧美成人一区二区免费高清观看 | 女人爽到高潮嗷嗷叫在线视频| 搡老熟女国产l中国老女人| 中文字幕最新亚洲高清| 中文字幕高清在线视频| 白带黄色成豆腐渣| 国产高清视频在线播放一区| 国产在线观看jvid| 久久99热这里只有精品18| 亚洲精品色激情综合| 2021天堂中文幕一二区在线观| 久久久久亚洲av毛片大全| 不卡av一区二区三区| 中文字幕熟女人妻在线| 天堂av国产一区二区熟女人妻 | 欧美一级a爱片免费观看看 | 亚洲精品粉嫩美女一区| 91成年电影在线观看| 国产伦人伦偷精品视频| av超薄肉色丝袜交足视频| 国模一区二区三区四区视频 | 热99re8久久精品国产| 欧美日韩一级在线毛片| 老司机午夜福利在线观看视频| x7x7x7水蜜桃| 老司机午夜福利在线观看视频| 久久热在线av| 国产aⅴ精品一区二区三区波| 精品久久久久久久人妻蜜臀av| 日韩欧美在线乱码| 亚洲欧美日韩无卡精品| 国产精品久久久久久人妻精品电影| 精品久久蜜臀av无| 一二三四在线观看免费中文在| 日本 av在线| 国产精品久久久久久人妻精品电影| 午夜福利成人在线免费观看| 亚洲成人免费电影在线观看| 久久久水蜜桃国产精品网| 欧美成狂野欧美在线观看| 50天的宝宝边吃奶边哭怎么回事| 午夜两性在线视频| 麻豆国产97在线/欧美 | 麻豆久久精品国产亚洲av| 1024香蕉在线观看| 99精品久久久久人妻精品| 欧美久久黑人一区二区| 天天躁夜夜躁狠狠躁躁| 国产伦人伦偷精品视频| 伦理电影免费视频| 午夜视频精品福利| 欧美日韩亚洲综合一区二区三区_| 久久久久性生活片| 亚洲专区字幕在线| 国产一区二区在线观看日韩 | 国产精品久久久久久精品电影| 母亲3免费完整高清在线观看| 国产精品 欧美亚洲| 国产精品1区2区在线观看.| 久久这里只有精品中国| a在线观看视频网站| 天堂影院成人在线观看| 日韩免费av在线播放| 变态另类丝袜制服| 国产97色在线日韩免费| 又黄又爽又免费观看的视频| 亚洲av美国av| 国内精品久久久久久久电影| 国产熟女xx| 天天躁夜夜躁狠狠躁躁| 日韩精品青青久久久久久| 国产人伦9x9x在线观看| 国产精品综合久久久久久久免费| 18禁观看日本| 色在线成人网| 日韩成人在线观看一区二区三区| 国产精品免费一区二区三区在线| 亚洲成人国产一区在线观看| 久久久精品欧美日韩精品| 午夜福利在线观看吧| 97超级碰碰碰精品色视频在线观看| 国产激情久久老熟女| 久久伊人香网站| 国产成人精品久久二区二区免费| 小说图片视频综合网站| 村上凉子中文字幕在线| 国产蜜桃级精品一区二区三区| 香蕉av资源在线| 欧美日韩中文字幕国产精品一区二区三区| 99国产精品一区二区蜜桃av| 无人区码免费观看不卡| 高潮久久久久久久久久久不卡| 动漫黄色视频在线观看| 亚洲精品久久成人aⅴ小说| 久久久久久久久久黄片| av片东京热男人的天堂| 国产精品99久久99久久久不卡| 一进一出好大好爽视频| 日韩有码中文字幕| 不卡av一区二区三区| 国产av一区二区精品久久| www.www免费av| 免费在线观看日本一区| 日韩成人在线观看一区二区三区| 免费看十八禁软件| 黄色a级毛片大全视频| 日本免费一区二区三区高清不卡| 九九热线精品视视频播放| 欧美中文日本在线观看视频| 国产乱人伦免费视频| 国产私拍福利视频在线观看| 午夜老司机福利片| 国产精品99久久99久久久不卡| 欧美黄色片欧美黄色片| 免费在线观看成人毛片| 亚洲欧美精品综合一区二区三区| 亚洲18禁久久av| 三级毛片av免费| 久久精品亚洲精品国产色婷小说| 婷婷六月久久综合丁香| 99在线视频只有这里精品首页| 中文字幕av在线有码专区| 人人妻人人澡欧美一区二区| 日韩大码丰满熟妇| 99久久99久久久精品蜜桃| 美女免费视频网站| 1024手机看黄色片| 757午夜福利合集在线观看| 少妇被粗大的猛进出69影院| 亚洲人与动物交配视频| 777久久人妻少妇嫩草av网站| 久久中文看片网| 99精品久久久久人妻精品| 91九色精品人成在线观看| 一a级毛片在线观看| 日本在线视频免费播放| 麻豆久久精品国产亚洲av| 黄色视频,在线免费观看| 精品日产1卡2卡| 亚洲国产高清在线一区二区三| 亚洲精品国产精品久久久不卡| 成年免费大片在线观看| 在线a可以看的网站| 亚洲av成人av| 欧美成人免费av一区二区三区| 黑人巨大精品欧美一区二区mp4| 久久精品影院6| 女人被狂操c到高潮| 久热爱精品视频在线9| 哪里可以看免费的av片| 又爽又黄无遮挡网站| 在线观看66精品国产| 国产精品九九99| 久久草成人影院| 亚洲 欧美 日韩 在线 免费| 亚洲七黄色美女视频| 中文在线观看免费www的网站 | 亚洲欧美日韩高清专用| 亚洲自偷自拍图片 自拍| 1024香蕉在线观看| 成年女人毛片免费观看观看9| 中文亚洲av片在线观看爽| 19禁男女啪啪无遮挡网站| 一进一出抽搐动态| 欧美日韩国产亚洲二区| 国产精品,欧美在线| 一进一出抽搐动态| 亚洲成人免费电影在线观看| 国产高清有码在线观看视频 | 一区福利在线观看| 国内精品久久久久久久电影| 成人特级黄色片久久久久久久| or卡值多少钱| 午夜精品一区二区三区免费看| 亚洲精品一区av在线观看| 夜夜爽天天搞| 窝窝影院91人妻| 2021天堂中文幕一二区在线观| 亚洲精品久久国产高清桃花| 国产亚洲精品一区二区www| 丰满的人妻完整版| 久久久久国产一级毛片高清牌| 精品国产亚洲在线| 一夜夜www| 欧美久久黑人一区二区| 国内揄拍国产精品人妻在线| 桃色一区二区三区在线观看| 老熟妇仑乱视频hdxx| 国产高清有码在线观看视频 | avwww免费| 成人av在线播放网站| 成人高潮视频无遮挡免费网站| 丰满人妻一区二区三区视频av | 男女之事视频高清在线观看| 亚洲人成网站高清观看| avwww免费| 可以在线观看的亚洲视频| 欧美不卡视频在线免费观看 | 久久精品亚洲精品国产色婷小说| 国产精品九九99| 欧洲精品卡2卡3卡4卡5卡区| 久久人人精品亚洲av| 日韩大码丰满熟妇| 手机成人av网站| 久久香蕉国产精品| 观看免费一级毛片| 国产真人三级小视频在线观看| 一本一本综合久久| 久久国产精品影院| 成人午夜高清在线视频| 亚洲中文日韩欧美视频| 久久精品影院6| 国产激情久久老熟女| 伊人久久大香线蕉亚洲五| 久久天躁狠狠躁夜夜2o2o| 亚洲av片天天在线观看| 免费高清视频大片| 国产av一区在线观看免费| 亚洲精品一区av在线观看| 国产精华一区二区三区| 白带黄色成豆腐渣| 搡老妇女老女人老熟妇| 精品高清国产在线一区| 久久久水蜜桃国产精品网| 蜜桃久久精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 成年人黄色毛片网站| 日本熟妇午夜| 最近视频中文字幕2019在线8| 九色国产91popny在线| 97人妻精品一区二区三区麻豆| 毛片女人毛片| 国产亚洲av高清不卡| 俄罗斯特黄特色一大片| 波多野结衣巨乳人妻| 国产精品久久久久久精品电影| 国产亚洲欧美98| 黄色 视频免费看| a级毛片在线看网站| 中文资源天堂在线| 日韩三级视频一区二区三区| 国产aⅴ精品一区二区三区波| 亚洲国产精品999在线| 久久久国产成人免费| 变态另类成人亚洲欧美熟女| 大型av网站在线播放| 亚洲中文日韩欧美视频| 国产一区二区在线av高清观看| 伦理电影免费视频| 久久这里只有精品中国| 成熟少妇高潮喷水视频| 欧美又色又爽又黄视频| 亚洲成人久久爱视频| 国产精品亚洲一级av第二区| 亚洲av熟女| 亚洲国产欧美网| 五月玫瑰六月丁香| 观看免费一级毛片| 国产91精品成人一区二区三区| 首页视频小说图片口味搜索| 99国产极品粉嫩在线观看| 91国产中文字幕| 国产精品国产高清国产av| 国产一区二区三区在线臀色熟女| 99国产精品99久久久久| 亚洲熟妇熟女久久| 黄色a级毛片大全视频| 久久精品国产亚洲av香蕉五月| 国产视频内射| 午夜免费成人在线视频| 三级毛片av免费| 国产99白浆流出| 中亚洲国语对白在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕人妻丝袜一区二区| 欧美久久黑人一区二区| 免费在线观看完整版高清| 日韩欧美在线二视频| 免费看a级黄色片| 在线观看免费午夜福利视频| 12—13女人毛片做爰片一| 免费看十八禁软件| 小说图片视频综合网站| 免费看十八禁软件| 小说图片视频综合网站| 这个男人来自地球电影免费观看| 一级黄色大片毛片| 一级片免费观看大全| 久久精品亚洲精品国产色婷小说| 久久久久久久午夜电影| 精品久久久久久久人妻蜜臀av| 国产高清视频在线观看网站| 日本三级黄在线观看| 日本五十路高清| 亚洲欧美日韩高清专用| 两个人的视频大全免费| 99在线视频只有这里精品首页| 一边摸一边做爽爽视频免费| 99riav亚洲国产免费| 欧美日韩精品网址| 人成视频在线观看免费观看| 亚洲最大成人中文| 国产高清有码在线观看视频 | av有码第一页| 99国产精品99久久久久| videosex国产| 成人一区二区视频在线观看| 美女高潮喷水抽搐中文字幕| 久久久久久久久免费视频了| 亚洲成人国产一区在线观看| xxx96com| 亚洲av成人av| 日日爽夜夜爽网站| 亚洲精品国产精品久久久不卡| 午夜精品一区二区三区免费看| 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| 免费在线观看完整版高清| 伦理电影免费视频| 久久中文看片网| 精品久久久久久久久久久久久| 免费看a级黄色片| 美女 人体艺术 gogo| 日本免费一区二区三区高清不卡| 女警被强在线播放| 男人舔奶头视频| 一级作爱视频免费观看| 午夜福利高清视频| 中文字幕精品亚洲无线码一区| 少妇粗大呻吟视频| 狂野欧美白嫩少妇大欣赏| 一进一出抽搐gif免费好疼| 青草久久国产| 身体一侧抽搐| 精品熟女少妇八av免费久了| 亚洲全国av大片| 久99久视频精品免费| 国产高清视频在线播放一区| 无人区码免费观看不卡| 人人妻人人澡欧美一区二区| 女人被狂操c到高潮| 亚洲乱码一区二区免费版| 非洲黑人性xxxx精品又粗又长| 一进一出抽搐gif免费好疼| 欧美色视频一区免费| 久久国产精品影院| 在线观看午夜福利视频| 一边摸一边做爽爽视频免费| 欧美乱妇无乱码| 亚洲 欧美 日韩 在线 免费| 久9热在线精品视频| 人妻夜夜爽99麻豆av| 久久久国产成人免费| 99久久久亚洲精品蜜臀av| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久九九精品二区国产 | 国产在线观看jvid| 亚洲精品国产一区二区精华液| 中文字幕人成人乱码亚洲影| 亚洲欧美精品综合久久99| 丁香欧美五月| 久久伊人香网站| 丰满的人妻完整版| 久久久精品大字幕| 久久久久久国产a免费观看| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| 好看av亚洲va欧美ⅴa在| 91av网站免费观看| 手机成人av网站| 一级片免费观看大全| 亚洲欧美精品综合一区二区三区| 男插女下体视频免费在线播放| 亚洲精品在线美女| 国产成人aa在线观看| 久久精品人妻少妇| 亚洲免费av在线视频| 亚洲国产精品sss在线观看| 特大巨黑吊av在线直播| 久久精品人妻少妇| 高清毛片免费观看视频网站| 成年版毛片免费区| 麻豆国产97在线/欧美 | 日本成人三级电影网站| 亚洲人成77777在线视频| 亚洲国产精品久久男人天堂| 男女午夜视频在线观看| 国产精华一区二区三区| 无限看片的www在线观看| 九九热线精品视视频播放| 久久久精品大字幕| 国产高清激情床上av| 亚洲成a人片在线一区二区| 妹子高潮喷水视频| 人成视频在线观看免费观看| 91九色精品人成在线观看| 国产一区二区激情短视频| 午夜久久久久精精品| 男人舔女人下体高潮全视频| 美女 人体艺术 gogo| 亚洲成人久久性| 麻豆av在线久日| 亚洲欧美日韩东京热| 亚洲av电影在线进入| 国产在线精品亚洲第一网站| av在线播放免费不卡| 久久香蕉激情| 又紧又爽又黄一区二区| 国产黄色小视频在线观看| 麻豆一二三区av精品| 日韩欧美三级三区| 级片在线观看| 一区福利在线观看| 高清在线国产一区| 国产精品一区二区三区四区久久| 久久午夜综合久久蜜桃| 国产三级黄色录像| 国产伦一二天堂av在线观看| 舔av片在线| 最新美女视频免费是黄的| 色在线成人网| av超薄肉色丝袜交足视频| 在线播放国产精品三级| 亚洲精品一区av在线观看| 国产欧美日韩一区二区精品| 国产精品一区二区精品视频观看| 免费在线观看完整版高清| 亚洲五月天丁香| 一级毛片女人18水好多| 亚洲av美国av| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| 亚洲国产中文字幕在线视频| 国产一区在线观看成人免费| 亚洲成a人片在线一区二区| 午夜福利在线在线| 特大巨黑吊av在线直播| 国产私拍福利视频在线观看| 99国产精品99久久久久| 日日干狠狠操夜夜爽| 一级黄色大片毛片| 国产精品美女特级片免费视频播放器 | 亚洲精品在线观看二区| 蜜桃久久精品国产亚洲av| 免费在线观看完整版高清| 国产1区2区3区精品| 久久久水蜜桃国产精品网| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久精品吃奶| 不卡一级毛片| 亚洲一区高清亚洲精品| 国产欧美日韩一区二区三| 一级毛片女人18水好多| 制服丝袜大香蕉在线| 变态另类成人亚洲欧美熟女| 国产成人aa在线观看| 丁香欧美五月| 久久午夜综合久久蜜桃| 黑人操中国人逼视频| 狠狠狠狠99中文字幕| 亚洲成人免费电影在线观看| 精品一区二区三区四区五区乱码| 国内揄拍国产精品人妻在线| 脱女人内裤的视频| 亚洲av第一区精品v没综合| av福利片在线观看| 女警被强在线播放| 亚洲真实伦在线观看| 欧美另类亚洲清纯唯美| АⅤ资源中文在线天堂| 国产成+人综合+亚洲专区| 母亲3免费完整高清在线观看| 不卡一级毛片| 欧美中文日本在线观看视频| 黄片小视频在线播放| 日韩欧美在线乱码| 久久天躁狠狠躁夜夜2o2o| ponron亚洲| 99久久综合精品五月天人人| 欧美黄色片欧美黄色片| 欧美日韩国产亚洲二区| 俺也久久电影网| www.自偷自拍.com| 美女扒开内裤让男人捅视频| 床上黄色一级片| 两性午夜刺激爽爽歪歪视频在线观看 | 91九色精品人成在线观看| 老鸭窝网址在线观看| 国产高清视频在线播放一区| 女警被强在线播放| 最好的美女福利视频网| 成人国语在线视频| 美女午夜性视频免费| 熟女少妇亚洲综合色aaa.| 亚洲全国av大片| 国产97色在线日韩免费| 97人妻精品一区二区三区麻豆| 久久久久国产一级毛片高清牌| 一级a爱片免费观看的视频| 午夜福利成人在线免费观看| www日本黄色视频网| 老司机福利观看| 亚洲精品久久成人aⅴ小说| 亚洲av熟女| 香蕉久久夜色| 亚洲aⅴ乱码一区二区在线播放 | 黄色成人免费大全| 亚洲成人中文字幕在线播放| 99热6这里只有精品| 国产精品久久久av美女十八| 亚洲国产中文字幕在线视频| 岛国视频午夜一区免费看| 免费一级毛片在线播放高清视频| 哪里可以看免费的av片| 免费一级毛片在线播放高清视频| 色综合站精品国产| 国产亚洲精品综合一区在线观看 | 无限看片的www在线观看| 亚洲欧美一区二区三区黑人| 欧美性长视频在线观看| 亚洲黑人精品在线| 国产精品亚洲一级av第二区| 欧美乱妇无乱码| 国产精品综合久久久久久久免费| 热99re8久久精品国产| 国产三级在线视频| 久久久久国产一级毛片高清牌| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 国产成年人精品一区二区| 一级毛片精品| 99国产综合亚洲精品| 欧美 亚洲 国产 日韩一| 色播亚洲综合网| 三级男女做爰猛烈吃奶摸视频| 亚洲五月婷婷丁香| 一进一出抽搐gif免费好疼| 亚洲人成伊人成综合网2020| 国产野战对白在线观看| 午夜福利成人在线免费观看| 国产蜜桃级精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 久久精品aⅴ一区二区三区四区| 91大片在线观看| 国产一区二区在线av高清观看| 久久久久免费精品人妻一区二区| 99久久无色码亚洲精品果冻| 夜夜看夜夜爽夜夜摸| 成人手机av| 老司机靠b影院| 久久久久久亚洲精品国产蜜桃av| 久久精品国产亚洲av香蕉五月| 亚洲男人的天堂狠狠| 久久天堂一区二区三区四区| 亚洲欧美日韩高清在线视频| 露出奶头的视频| 亚洲午夜精品一区,二区,三区| 高清毛片免费观看视频网站| 亚洲中文字幕日韩| 国产成人av教育| 中文字幕人成人乱码亚洲影| 久久久久精品国产欧美久久久| 一二三四社区在线视频社区8| 国产成人精品久久二区二区免费| а√天堂www在线а√下载| 变态另类成人亚洲欧美熟女| 香蕉国产在线看| 大型黄色视频在线免费观看| 又爽又黄无遮挡网站| 国产免费av片在线观看野外av| 九色国产91popny在线| 久久久久久久午夜电影| 熟妇人妻久久中文字幕3abv| 色精品久久人妻99蜜桃| 黄色 视频免费看| 国产69精品久久久久777片 | 亚洲成人国产一区在线观看| 亚洲精品av麻豆狂野| 免费观看人在逋| 在线a可以看的网站| 亚洲人成电影免费在线| av天堂在线播放| 黄色丝袜av网址大全| 色综合站精品国产| 亚洲色图av天堂| 一级作爱视频免费观看| 一级a爱片免费观看的视频| 最新美女视频免费是黄的| 免费电影在线观看免费观看| 色综合婷婷激情| 亚洲国产欧美一区二区综合| 精品一区二区三区视频在线观看免费| 国内精品久久久久久久电影| 男女做爰动态图高潮gif福利片| 可以在线观看毛片的网站| 成人午夜高清在线视频| 老汉色∧v一级毛片| 性欧美人与动物交配| 国产蜜桃级精品一区二区三区| 黄色a级毛片大全视频| 国产精品av久久久久免费| 欧美激情久久久久久爽电影|