• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Silicon quantum dots-based fluorescent sensor for the detection of cobalt with high sensitivity and selectivity

    2023-02-18 01:55:38EtihjMohmmedSullmKhlidMohmmedAdmJunjunLiuHongliChenJinxiXio
    Chinese Chemical Letters 2023年12期

    Etihj Mohmmed Sullm ,Khlid Mohmmed Adm ,Junjun Liu ,Hongli Chen,? ,Jinxi Xio,?

    a State Key Laboratory of Applied Organic Chemistry,College of Chemistry and Chemical Engineering,Lanzhou University,Lanzhou 730000,China

    b Department of Chemistry,Faculty of Education,University of Kordofan,El Obeid 51111,Sudan

    Keywords:Silicon quantum dots Fluorescence Poly(vinylpyrrolidine) Test paper Cobalt detection

    ABSTRACT Fluorescent silicon quantum dots (Si QDs) were hydrothermally synthesized from a mixture of 3(2-aminoethylamino) propyl (dimethoxymethylsilane) (AEAPDMMS) and poly(vinylpyrrolidine) (PVP).The resulting Si QDs exhibited good water solubility and high stability.Under the optimized conditions,the probe revealed an excellent linear fluorescence quenching effect on Co2+ ranging from 1 μmol/L to 120 μmol/L with a limit of detection of 0.37 μmol/L (based on 3 s/k).The quenching mechanism was studied,showing that static quenching (SQE) causes the main effect.Furthermore,the test paper based on Si QDs was prepared,which is cost-effective,high sensitivity,good selectivity,easy to use and show excellent anti-interference capability.This method was applied to analyze the content of Co2+ in environmental water samples with satisfying results.

    Heavy metals found in groundwater are difficult to decompose and thus accumulate in living organisms,causing a threat to the environment and human health [1,2].Cobalt (Co2+) is a physiologically essential mineral,albeit required in very low amounts,which plays an important role in DNA biosynthesis as an essential component of vitamin B12 [3,4].In particular,cobalt deficiency inhibits erythropoiesis and myelin synthesis and causes anemia and dementia [5–9].However,excessive cobalt intake can cause asthma,convulsions,bone defects,stomach disorders,vasodilatation,carcinogenesis,paralysis,and heart disease [1,5,10,11].The World Health Organization (WHO) recommends the maximum limit of cobalt in drinking water is 1.7 μmol/L [12].Therefore,it is necessary to design and develop an analytical technique characterized by simplicity and selectivity to detect Co2+to preserve human health and the environment’s safety [1,13].To date,the existing methods for determining Co2+,such as liquid chromatography,electrochemical,and atomic absorption spectrometry,have been reported [2,14-16].Unfortunately,the relatively complex procedures,costly tests,and tedious sample processing limit these analytical methods.Therefore,it is critical to establish a rapid and facile approach to detect Co2+under low concentrations.

    Recently,various fluorescent nanomaterials have been utilized as nanoprobes for Co2+detection with high selectivity and sensitivity.For instance,MTPT-capped CdS QDs was developed for Co2+fluorescence analysis [17].Some single element-based dots,including carbon [18],phosphorus [19],and sulfur QDs [1] were also used for Co2+detection.Moreover,functionalized carbon dots [20],nitrogen and sulfur co-doped graphene quantum dots [21],and carbon dots prepared using flax straw as carbon source [6] were developed to sense Co2+.However,these fluorometric chemosensors had some inherent issues,such as the weak water solubility,potential toxicity and low sensitivity,may hinder their actual applications.Therefore,searching for more effective materials for fluorometric detection of Co2+with high sensitivity,superior selectivity,outstanding visual ability and excellent portability is important and urgent.

    Interestingly,among various detection methods,fluorescent silicon (Si) QDs sensing to detect Co2+exhibits some advantages over other technologies,such as simplicity,high sensitivity,short response time,low instrumentation cost and nontoxic.Further,it can provide and facilitate the naked-eye detection in an uncomplicated manner.Additionally,the sensitivity and selectivity are dependent on the affinity between the active groups on the surface of the Si QDs and the target metal ion [22–24].Moreover,Si QDs smaller than 10 nm are promising fluorescent nanomaterials with environmental friendliness,high photostability,and remarkable biocompatibility,which have received extensive attentions in multiplex sensing,drug delivery,disease diagnosis,bioimaging and other fields [25–28].Extensive industry knowledge and investment in silicon-based technologies make it an ideal replacement for other quantum dot materials [29,30].

    In this work,Si QDs have been synthesized by a one-step hydrothermal method using polyvinylpyrrolidone (PVP) and 3(2-aminoethylamino) propyl (dimethoxymethylsilane) (AEAPDMMS)as the reductant and silicon source,respectively.Under excited at 370 nm,the synthesized Si QDs exhibited a bright blue fluorescence.The fabrication of the fluorescent sensing platform was characterized by good thermal and optical stability and water solubility based on the prepared Si QDs.It is found that the FL intensity of Si QDs was rapidly and selectively quenched with Co2+addition (Scheme 1).The proposed fluorescent method was successfully applied for detecting Co2+in water samples with satisfactory results.Further,a visual method has been developed by the test paper based on Si QDs,which is fast,economical,and showing excellent anti-interference capability.

    Scheme 1. Schematic representation of hydrothermal preparation of novel fluorescent silicon quantum dots for Co2+ detection.

    As illustrated in Scheme 1,AEAPDMMS was chosen as Si source and PVP as reducing reagent in this work.By using a one-step hydrothermal method,Si QDs were obtainedviamixing AEAPDMMS and PVP and stirring in an oil bath.In this process,AEAPDMMS to PVP ratio,reaction temperature and time are the important parameters on the fluorescence (FL) intensity.As shown in Figs.S1A and B (Supporting information),the FL intensity was highest as reaction in a row for 2 h at 100°C.Furthermore,the amount of PVP was optimized with the volume of AEAPDMMS fixed at 1.0 mL.As presented in Fig.S1C (Supporting information),the FL intensity increased with increasing the amount of PVP up to 1 g and then decreased slightly.Therefore,the optimal parameters are as follows: reaction time of 2 h,reaction temperature of 100°C and AEAPDMMS/PVP ratio of 1.0 mL/1.0 g.

    The morphology of the as-synthesized Si QDs was shown in TEM image (Fig.S2A in Supporting information),which appeared spherical with good mono-dispersibility ranging from 2.5 nm to 7.3 nm,while the medial diameter was around 4.1 nm (Fig.S2B in Supporting information).Fig.S3 (Supporting information) presented the FT-IR spectrum of Si QDs.The peaks at 1020 and 934 cm?1were assigned to Si?C and Si?O stretching vibrations,respectively [31].The signal at 742 cm?1was pertained to the wagging vibration of secondary amine N–H [27,32,33].The unsaturated bending vibration and stretching vibration absorption peaks at 2950 and 1465 cm?1belonged to the C–H bond [33,34].The FT-IR spectrum of Si QDs clarified broad N–H and O–H stretching peaks at 3445 cm?1[35,36],indicating that the surface of Si QDs is mostly plated with amino and hydroxyl groups,which means Si QDs have excellent water solubility.Furthermore,the other peaks can be attributed to the stretching vibration of the C=O bond at 1677 cm?1[31] and the C–N bond at 1289 cm?1[37].

    XPS spectra illustrated the chemical bonding and surface constitutes of the Si QDs (Fig.1).The five significant peaks at 102.98,152.87,284.05,399.80 and 531.20 eV are assigned to Si 2p,Si 2s,C 1s,N 1s and O 1s,respectively (Fig.1A) [33].Furthermore,four peaks are observed at 284.35 eV,284.94 eV,285.77 eV,and 287.56 eV in the C 1s spectrum (Fig.1B),indicating the presence of C–Si,C–C/C=C,C–N and C=O bonds on the surface of Si QDs[36].Meanwhile,the O 1s spectrum (Fig.1C) shows three peaks at 530.82 eV,531.48 eV,and 532.13 eV,which can be assigned to Si–O and C–OH/C–O–C groups,respectively [32,38,39].The peaks at 399.05 eV,399.50 eV and 400.00 eV in the high-resolution N 1s spectrum (Fig.1D) indicate that nitrogen exists mainly in the form of N?Si,C–N–C and Si–N–O groups [40].High-resolution Si 2p XPS spectrum of the Si QDs (Fig.1E) show three peaks centered at 101.24 eV,101.75 eV,and 102.30 eV,which could be belonged to the Si?C,Si?N,and Si?O,respectively [34].Besides,the optical properties of the Si QDs were confirmed by UV–vis absorption and fluorescence spectra (Fig.1F).As shown in Fig.1F,the typical absorption bands appeared at about 285 nm and 342 nm corresponding to theπ-π?transition for C=C andn-π?transition for C=O or C–N,respectively [41,42].And the aqueous solution of Si QDs emitted bright blue fluorescence under UV light (365 nm) and colorless under sunlight.From Fig.S4 (Supporting information),370 nm was adopted as the optimum excitation wavelength for the further experiments due to the strongest fluorescent emission at 435 nm.The synthesized Si QDs showed absolute quantum yield 2.36% obtained by Edinburgh FLS920.The above results strongly support that the N–H and O–H functional groups are on the surface of Si QDs,guaranteeing the excellent water solubility and enhancing the application as luminescent sensors in aqueous solution.

    Fig.1. High resolution XPS spectra of Si QDs: (A) Full range,(B) C 1s,(C) O 1s,(D) N 1s and (E) Si 2p,respectively.(F) FL excitation (1) and emission (2) spectra and UV–vis absorption spectrum (3) of Si QDs,the inset photographs are Si QDs solutions under visible light and UV light illumination.

    The stability investigation of Si QDs is significant for its wide application.As shown in Fig.2A,the fluorescence activities were stable with pH ranging from 4 to 10,indicating that the solution acidity did not influence the fluorescence intensity of Si QDs,and the Si QDs sensor could efficiently detect Co2+in a wide pH range.As shown in Fig.2B,it appeared utterly stable after exposing the Si QDs sensor to light illumination for one hour.Moreover,when the temperature increased from 25°C to 85°C,the FL intensity of the Si QDs remained unchanged (Fig.2C).The stability of Si QDs was also assessed in an ionic medium,where the fluorescence intensity of the Si QDs remained the same in the concentrations range of NaCl from 0 to 120 mmol/L (Fig.2D).Therefore,the sensor Si QDs showed high stability,and could be used in different practical applications.

    Fig.2. (A) Influence of pH on the fluorescence spectra of Si QDs in response to Co2+ in aqueous buffered solution.(B) FL intensity of Si QDs as function of time.(C) Normalized FL intensity of Si QDs after incubation at different temperature for 4 min.(D) Normalized FL intensity of the Si QDs in 10 mmol/L PBS (pH 7.4) with different concentrations of NaCl.Error bars stand for the standard deviation of three independent experiment.λex=370 nm,λem=435 nm.

    The response time of the fluorescent sensing was investigated.As shown in Fig.3A,when the Si QDs and Co2+solutions were mixed,the fluorescence quenched very fast and reached a plateau within 30 s,indicating that the probe can detect Co2+quickly.Fig.3B shows the fluorescence spectra of Si QDs in the presence of different concentrations of Co2+in PBS buffer solution (pH 7.4).As illustrated in Fig.3B,the bright blue fluorescence emitted from the Si QDs solution can be effectively quenched with an increasing concentration of Co2+.Further,as seen in Fig.S5 (Supporting information),there is a continuous shift trend in the CIE coordinates from (0.159,0.104) to (0.165,0.128) in the blue gamut with the increase of Co2+concentration,verifying the corresponding fluorescence color changes.Fig.3C shows the quenching efficiency (F/F0)has an excellent linear relationship with Co2+concentration in the range of 1–120 μmol/L (R2=0.996) with a limit of detection (LOD)of 0.37 μmol/L (based on 3 s/k,wheresis the standard deviation of the blank solution andkis the slope of the calibration curve).Although Si QDs show a moderate linear range and sensitivity for Co2+detection compared with some previous Co2+probes (Table S1 in Supporting information),they are easy to fabricate and have advantages in comprehensive ability.

    Fig.3. (A) Time-dependent interaction between Si QDs and Co2+ (190 μmol/L) at room temperature.(B) Fluorescence intensity of Si QDs upon addition of various concentrations of Co2+ (from top to bottom,0,1,5,10,20,40,60,80,100,120,150,170,180 and 190 μmol/L respectively) in 10 mmol/L PBS solution (pH 7.4).(C)Calibration curve for Si QDs with increasing concentration of Co2+ (1–120 μmol/L).(D) F/F0 response of the Si QDs to other kinds of cations (380 μmol/L) in the absence (black bars) or presence (red bars) of 190 μmol/L Co2+.λex=370 nm.Error bars stand for the standard deviation of three independent experiments.

    High selectivity for analytes from potentially competing species is an important feature of probes.To explore the selectivity of Si QDs for Co2+,the effects of cations (Na+,K+,Li+,Ca2+,Mg2+,Mn2+,Ni2+,Zn2+,Hg2+,Cu2+,Fe2+and Al3+),anions (F?,Cl?,Br?,I?,CN?,SCN?,ClO4?,HSO4?,CO32?,and H2PO4?),and some molecules (catechol,glutathione,methionine,glucose,cysteine,hydroquinone,histidine,valine and arginine) were investigated.The emitted fluorescence of Si QDs solution was quenched upon addition of Co2+(190 μmol/L) (Fig.3D,Fig.S6 in Supporting information).However,upon addition of interfering metal ions,theF/F0ratio (FandF0are fluorescence intensities of Si QDs in the presence and absence of the target,respectively) is approximately close to 1,indicating a selective response of Si QDs to Co2+.Moreover,the anti-interference performance of the sensing system was also evaluated,as shown in Fig.3D and Fig.S7 (Supporting information);Si QDs did not show a significant fluorescence response to any interference other than Co2+.These results indicate that the detection system has excellent selectivity and a strong tolerance to Co2+.

    To investigate the fast,convenient and economical detection of Co2+,a facile and visual method was developed by Si QDs-based test paper.Under UV irradiation of 365 nm,the entire test paper showed bright-blue fluorescence (Fig.4A-a).A series of test papers based on Si QDs for different concentrations of Co2+from 0 to 80 μmol/L were displayed in Fig.4A-b.The fluorescence of the Si QDs paper sensor was quenched under the UV lamp and the color changes could be easily distinguished with naked eyes related to those concentrations of Co2+.The selectivity of paper sensor was also tested for the detection of various other ions (i.e.,Al3+,Fe2+,Cu2+,Hg2+,Mn2+,Mg2+,Zn2+,Ca2+,Ni2+,Li+,Na+,K+,F?,Cl?,Br?,I?,CN?,SCN?,ClO4?,HSO4?,CO32?,H2PO4?) under the same conditions (Fig.S8 in Supporting information).As shown in Fig.4Ac,no obvious fluorescence quenching was observed in the presence of other interfering metal ions.Meanwhile,the anti-interference performance of the paper sensor was also evaluated by dipping a mixture consisting of other 12 metal ions and Co2+with different concentrations into the sensing system.A remarkable fluorescence quenching appeared with the increase of Co2+concentration (Fig.4A-d),which was basically consistent with the result in the absence of the interfering ions (Fig.4A-b).

    Fig.4. The Si QDs-based paper sensor for visual detection of Co2+.(A) Photographs of test paper staining with the Si QDs under UV irradiation of 365 nm: (a) only Si QDs;(b) with different concentrations of Co2+ (from 1 to 12 are 0.1,0.5,1,5,10,20,30,40,50,60,70 and 80 μmol/L);(c) with different interfering metal ions(80 μmol/L,from 1 to 12: Na+,K+ Li+,Ca2+,Mg2+,Mn2+,Ni2+,Zn2+,Hg2+,Cu2+,Fe2+ and Al3+);(d) with the mixture of other 12 interfering metal ions (80 μmol/L)and Co2+ with different concentrations (from 1 to 12 are 0.1,0.5,1,5,10,20,30,40,50,60,70 and 80 μmol/L).(B) The 3D models of the images in part A.

    In addition,three-dimensional (3D) models of the corresponding responsive field were used to obtain quantitative fluorescence intensity by ImageJ software (Fig.4B),reflecting the color change of the test paper more intuitively.Moreover,it was seen that each chromaticity was uniform over a whole piece of test paper due to the homogeneous distribution.Significantly,the chromatic density of the test paper gradually increased with the increasing cobalt concentration,and it appeared deepest at 80 μmol/L.The brightblue test paper exhibited a dosage-sensitive color response with a discernable scale as low as 1 μmol/L with the observation of naked eye.

    To evaluate the feasibility and reliability of this proposed method,the probe Si QDs was applied to determine Co2+in Yellow River water and tap water samples.The emission spectrum for Co2+determination was recorded at an excitation wavelength of 370 nm.Standard additional methods were used to verify the accuracy of the method,and the recoveries were determined by adding 10,20 and 30 μmol/L Co2+.As shown in Table 1 and Fig.S9 in Supporting information,the average recoveries of Co2+reached 97.9%–103%.

    Table 1 Detection of Co2+ in environmental water samples.

    Thus,the accuracy and precision of this proposed approach are satisfactory,indicating that the probe can be applied to detect Co2+in environmental water samples.Moreover,the Si QDs-based test paper was applied to the detection of Co2+in river water and tap water samples (Fig.S10 in Supporting information),indicating it is a simple and economical sensing platform for rapid and visual determination of Co2+.

    Fluorescence quenching can be from fluorescence resonance energy transfer (FRET) or inner filter effect (IFE) when there is an overlap between the luminescent substance’s emission or excitation spectra and the quencher’s UV–vis absorption spectrum[43,44].In our work,there is no noticeable overlap between the absorption spectrum of Co2+and the FL excitation/emission spectra of Si QDs (Fig.5A),meaning no FRET or IFE mechanism.Static quenching effect (SQE) or dynamic quenching effect (DQE)is also an important mechanism of FL quenching.Generally,for SQE,a stable compound is formed between the fluorophore and other molecules [12];for DQE,the collision happens between the quencher and the fluorophore during the return of the luminescent substance to the ground state [39].Furthermore,SQE and DQE fit into the Stern-Volmer equation (Eq.1) [45].

    Fig.5. (A) FL excitation spectrum (black) and emission spectrum (red) of Si QDs,and UV–vis absorption spectrum of Co2+ (blue).(B) Stern-Volmer plot of Si QDs solution upon the addition of different concentrations of Co2+ (5,10,15,20 and 25 μmol/L).

    whereKqis the FL quenching rate constant which reflects the effects of inter-diffusion and inter-collision in this system.FandF0refer to the steady-state FL intensities of the fluorophore in the presence and absence of quencher.Ksvis the Stern-Volmer quenching constant.[C] is the concentration of the quencher.τ0refers to the average lifetime of the fluorophore in the absence of quencher.Conforming to Eq.1,Kqvalues were calculated as 3.40×1012,2.99×1012and 2.07×1012L mol?1s?1,with their corresponding temperatures at 298,303 and 308 K (Table S2 in Supporting information).When the plot ofF0/Fversus[C] in a certain concentration range gives an ascending curvature,the quenching could be assigned to a single static or dynamic [12].

    The average FL lifetime of the prepared Si QDs in our work is 5.19 ns (Table S3 in Supporting information).The FL lifetime of Si QDs in the presence of different concentrations of Co2+was studied for an in-depth investigation of which mechanism is responsible for the FL quenching.As observed in Fig.S11 and Table S3 (Supporting information),the FL lifetime of Si QDs did not change in the presence and absence of Co2+.This suggests that the FL of Si QDs was statically quenched by Co2+[46].Moreover,as observed in Fig.5B,the linear relationship between Co2+concentrations (5,10,15,20 and 25 μmol/L) andF0/Fis good.In addition,as shown in Table S2 (Supporting information),theKqandKsv(slope) values decrease with increasing temperature.AllKqvalues were much larger than the maximum dynamicKq(2.0×1010L mol?1s?1).Thus,it is further suspected that the quenching is caused by SQE [39].Not surprisingly,mixing Si QDs and Co2+led to an obvious peak at 350–400 nm appearing in the UV–vis absorption spectra compared to the overlay curve (red dotted curve) in Fig.S12 (Supporting information),illustrating that the affinity and the H-bonding interactions between the active groups on the surface of the Si QDs and Co2+may be responsible for the fluorescence quenching [22].Therefore,the above results confirm that the FL deletions are mainly caused by SQE rather than DQE[12].

    In this work,we have developed a rapid and facile one-pot method to synthesize Si QDs with high stability under a broad range of chemical conditions and described a sensitive and selective Si QDs-based fluorescence method to detect Co2+in an aqueous medium.The detection limit for Co2+was 0.37 μmol/L based on 3σ/slope with a linear range from 1 μmol/L to 120 μmol/L.The static quenching effect is mainly responsible for the fluorescence quenching of the Si QDs by Co2+.Meanwhile,the high selectivity and sensitivity can ensure Si QDs as a realistic nanoprobe for quantifying Co2+in real water samples with good recoveries.Additionally,we have prepared test papers based on Si QDs,which are costeffective,easy-to-use and show excellent anti-interference ability,and can detect Co2+in water samples quickly and efficiently.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

    Acknowledgments

    The authors are grateful for financial support from the National Natural Science Foundation of China (Nos.21874060,22074057 and 21775059).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108476.

    亚洲精品在线观看二区| 国产亚洲欧美在线一区二区| 天堂中文最新版在线下载| 99香蕉大伊视频| 人人澡人人妻人| 搡老熟女国产l中国老女人| 看黄色毛片网站| 久久精品影院6| 女人高潮潮喷娇喘18禁视频| 黄网站色视频无遮挡免费观看| 亚洲中文字幕日韩| 精品电影一区二区在线| 亚洲国产看品久久| 欧美午夜高清在线| 午夜福利一区二区在线看| 精品一品国产午夜福利视频| 啦啦啦免费观看视频1| 久久精品国产亚洲av香蕉五月| 天天影视国产精品| 久久国产乱子伦精品免费另类| 日韩精品免费视频一区二区三区| 亚洲专区中文字幕在线| 99久久人妻综合| 三上悠亚av全集在线观看| 久久人人精品亚洲av| 新久久久久国产一级毛片| 一区二区日韩欧美中文字幕| 欧美av亚洲av综合av国产av| 欧美黑人精品巨大| 亚洲片人在线观看| 中国美女看黄片| 法律面前人人平等表现在哪些方面| 欧美 亚洲 国产 日韩一| 91成人精品电影| 极品教师在线免费播放| 中出人妻视频一区二区| 亚洲色图av天堂| 搡老岳熟女国产| 香蕉丝袜av| 精品国产一区二区久久| 可以在线观看毛片的网站| 久久久久久免费高清国产稀缺| 国产一卡二卡三卡精品| 电影成人av| 自拍欧美九色日韩亚洲蝌蚪91| 欧美乱色亚洲激情| 久久亚洲精品不卡| 亚洲av熟女| 91麻豆av在线| 亚洲五月色婷婷综合| 国产精品久久久人人做人人爽| 久久亚洲真实| 免费久久久久久久精品成人欧美视频| 一二三四在线观看免费中文在| 最好的美女福利视频网| 狠狠狠狠99中文字幕| 亚洲成国产人片在线观看| 久久精品国产综合久久久| 老熟妇仑乱视频hdxx| 美女高潮到喷水免费观看| 在线观看免费午夜福利视频| 女人爽到高潮嗷嗷叫在线视频| 免费看a级黄色片| 亚洲性夜色夜夜综合| av片东京热男人的天堂| 咕卡用的链子| 香蕉久久夜色| 搡老熟女国产l中国老女人| 欧美国产精品va在线观看不卡| 日韩国内少妇激情av| 欧美国产精品va在线观看不卡| 热99国产精品久久久久久7| 亚洲一区中文字幕在线| 一二三四在线观看免费中文在| 亚洲专区中文字幕在线| 精品一区二区三卡| 日韩欧美三级三区| 99精品欧美一区二区三区四区| 亚洲九九香蕉| 久久久久久久精品吃奶| 日韩高清综合在线| 日韩有码中文字幕| 久久伊人香网站| 一区二区三区国产精品乱码| 老熟妇乱子伦视频在线观看| 悠悠久久av| 精品久久久久久,| 精品第一国产精品| 久久久久久人人人人人| 日本免费a在线| 少妇的丰满在线观看| 国产免费男女视频| 免费av毛片视频| 午夜免费激情av| 91大片在线观看| 老汉色∧v一级毛片| 亚洲精品美女久久av网站| 中文字幕人妻熟女乱码| 欧美人与性动交α欧美软件| 一进一出好大好爽视频| 亚洲五月婷婷丁香| 国产精品野战在线观看 | 1024香蕉在线观看| 在线观看免费日韩欧美大片| 中文字幕av电影在线播放| 波多野结衣高清无吗| 国产精品爽爽va在线观看网站 | 99热只有精品国产| 国产成人av教育| 黑人操中国人逼视频| 国产三级在线视频| 国产成人精品无人区| 老司机福利观看| 午夜激情av网站| 在线观看免费视频网站a站| 亚洲一码二码三码区别大吗| 91老司机精品| 日韩欧美国产一区二区入口| 一级片免费观看大全| 国产aⅴ精品一区二区三区波| 热re99久久精品国产66热6| 天堂√8在线中文| 老司机午夜十八禁免费视频| 久热爱精品视频在线9| a级片在线免费高清观看视频| 久久九九热精品免费| 国产在线精品亚洲第一网站| 午夜日韩欧美国产| 亚洲精华国产精华精| 日日干狠狠操夜夜爽| 亚洲五月婷婷丁香| 欧美成人免费av一区二区三区| 在线观看免费高清a一片| 天堂俺去俺来也www色官网| 老熟妇仑乱视频hdxx| 国产精品香港三级国产av潘金莲| 日韩欧美三级三区| 亚洲一区二区三区欧美精品| 国产亚洲欧美精品永久| 亚洲欧美日韩高清在线视频| 黄色a级毛片大全视频| 国产精品99久久99久久久不卡| 精品国产亚洲在线| 美女午夜性视频免费| 天天添夜夜摸| 成人手机av| √禁漫天堂资源中文www| 色婷婷久久久亚洲欧美| 成人三级黄色视频| 一二三四社区在线视频社区8| 久久这里只有精品19| 女性被躁到高潮视频| 免费av毛片视频| 久99久视频精品免费| 亚洲午夜理论影院| 国产91精品成人一区二区三区| 欧美日韩福利视频一区二区| 97人妻天天添夜夜摸| 男女床上黄色一级片免费看| 99久久精品国产亚洲精品| 激情在线观看视频在线高清| 亚洲,欧美精品.| 99热国产这里只有精品6| 香蕉久久夜色| 一二三四社区在线视频社区8| 两人在一起打扑克的视频| 亚洲色图av天堂| 国产一区二区三区综合在线观看| 成人国语在线视频| 99久久久亚洲精品蜜臀av| 99精国产麻豆久久婷婷| 精品一区二区三区av网在线观看| 日本欧美视频一区| 在线观看日韩欧美| 不卡av一区二区三区| 精品国产美女av久久久久小说| 久久香蕉激情| 黄色成人免费大全| 午夜亚洲福利在线播放| 精品第一国产精品| 国产不卡一卡二| 欧美精品一区二区免费开放| 亚洲午夜精品一区,二区,三区| 长腿黑丝高跟| 丰满人妻熟妇乱又伦精品不卡| 日韩免费av在线播放| 日本a在线网址| 91老司机精品| 一区二区日韩欧美中文字幕| 免费不卡黄色视频| 亚洲精品在线美女| 国产成人精品久久二区二区91| 亚洲欧洲精品一区二区精品久久久| ponron亚洲| 久久99一区二区三区| 久久久久久久久免费视频了| 国产真人三级小视频在线观看| 成人黄色视频免费在线看| 亚洲自偷自拍图片 自拍| 亚洲成人国产一区在线观看| 女人被狂操c到高潮| 精品国产亚洲在线| 一级片免费观看大全| 国产成人免费无遮挡视频| 国产精品香港三级国产av潘金莲| 日本撒尿小便嘘嘘汇集6| 国产精品98久久久久久宅男小说| 国产av精品麻豆| svipshipincom国产片| 97碰自拍视频| 香蕉国产在线看| 免费在线观看视频国产中文字幕亚洲| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| 日本五十路高清| 中国美女看黄片| 91在线观看av| 欧美激情极品国产一区二区三区| 级片在线观看| 国产精品香港三级国产av潘金莲| 久久久久久亚洲精品国产蜜桃av| 不卡一级毛片| 99riav亚洲国产免费| 欧美日韩国产mv在线观看视频| 他把我摸到了高潮在线观看| 欧美成人免费av一区二区三区| 久久久久久人人人人人| 男人的好看免费观看在线视频 | 国产91精品成人一区二区三区| 夜夜夜夜夜久久久久| 777久久人妻少妇嫩草av网站| 国产精品二区激情视频| 在线播放国产精品三级| 巨乳人妻的诱惑在线观看| 国产欧美日韩一区二区精品| 久久国产精品影院| 国产亚洲精品久久久久5区| 国产在线精品亚洲第一网站| 国产蜜桃级精品一区二区三区| 日本vs欧美在线观看视频| 日韩中文字幕欧美一区二区| 人成视频在线观看免费观看| 一级毛片高清免费大全| 欧美黄色片欧美黄色片| 国产精品永久免费网站| 亚洲国产看品久久| 精品国产一区二区久久| 久久久久久人人人人人| 久久午夜亚洲精品久久| 亚洲精品一卡2卡三卡4卡5卡| 国产精品自产拍在线观看55亚洲| 久久国产亚洲av麻豆专区| 亚洲精品久久成人aⅴ小说| 无人区码免费观看不卡| 亚洲精品国产区一区二| 又大又爽又粗| 亚洲av五月六月丁香网| 欧美日韩乱码在线| 精品卡一卡二卡四卡免费| 国产一卡二卡三卡精品| 免费久久久久久久精品成人欧美视频| 国产在线观看jvid| 老司机午夜十八禁免费视频| 大型黄色视频在线免费观看| 在线观看日韩欧美| 久久精品91蜜桃| 69av精品久久久久久| 亚洲中文日韩欧美视频| 19禁男女啪啪无遮挡网站| 免费av中文字幕在线| 国产男靠女视频免费网站| 香蕉国产在线看| 欧美精品亚洲一区二区| 狠狠狠狠99中文字幕| 在线国产一区二区在线| 亚洲成av片中文字幕在线观看| av网站在线播放免费| 午夜免费成人在线视频| 很黄的视频免费| 精品国产超薄肉色丝袜足j| 国产精品久久久久久人妻精品电影| 国产亚洲精品综合一区在线观看 | 中文字幕精品免费在线观看视频| 亚洲av电影在线进入| 人人妻人人添人人爽欧美一区卜| 亚洲av美国av| 天堂影院成人在线观看| 婷婷六月久久综合丁香| 免费久久久久久久精品成人欧美视频| 精品一区二区三卡| 亚洲成国产人片在线观看| 好男人电影高清在线观看| 男人的好看免费观看在线视频 | 国产欧美日韩综合在线一区二区| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美一区二区综合| 亚洲色图av天堂| 免费女性裸体啪啪无遮挡网站| 亚洲中文日韩欧美视频| 视频区欧美日本亚洲| 黄色怎么调成土黄色| 免费av毛片视频| 欧美另类亚洲清纯唯美| av在线播放免费不卡| 国产区一区二久久| 村上凉子中文字幕在线| 国产97色在线日韩免费| 亚洲成人免费av在线播放| 国产精品秋霞免费鲁丝片| 国产一区二区三区视频了| 久久精品91无色码中文字幕| 欧美日韩精品网址| 久久久久久久久久久久大奶| 国产精品99久久99久久久不卡| 一夜夜www| 国产1区2区3区精品| 亚洲精品美女久久久久99蜜臀| 亚洲欧洲精品一区二区精品久久久| 新久久久久国产一级毛片| 丝袜人妻中文字幕| 人人妻人人添人人爽欧美一区卜| 丰满人妻熟妇乱又伦精品不卡| 日本黄色视频三级网站网址| 欧美激情极品国产一区二区三区| 日本vs欧美在线观看视频| 精品福利观看| 在线永久观看黄色视频| 99香蕉大伊视频| 亚洲一区二区三区不卡视频| 80岁老熟妇乱子伦牲交| 久久香蕉激情| 99精品在免费线老司机午夜| 国产深夜福利视频在线观看| 精品国产乱码久久久久久男人| 亚洲国产中文字幕在线视频| 精品电影一区二区在线| 久久久久久久精品吃奶| xxx96com| 久久人人97超碰香蕉20202| 午夜福利在线免费观看网站| 成年女人毛片免费观看观看9| 中文字幕精品免费在线观看视频| av中文乱码字幕在线| 天天添夜夜摸| 精品日产1卡2卡| 亚洲精品国产区一区二| 亚洲精品中文字幕一二三四区| 精品久久久久久久久久免费视频 | 丰满的人妻完整版| 男人操女人黄网站| 国产熟女xx| 99热只有精品国产| www国产在线视频色| 国产免费男女视频| 变态另类成人亚洲欧美熟女 | av天堂在线播放| 日本a在线网址| 视频区图区小说| 动漫黄色视频在线观看| 欧美激情高清一区二区三区| 亚洲精品久久午夜乱码| 啦啦啦免费观看视频1| 在线观看午夜福利视频| 免费在线观看视频国产中文字幕亚洲| 日韩欧美三级三区| 精品久久久久久成人av| 神马国产精品三级电影在线观看 | 最近最新中文字幕大全电影3 | 亚洲欧美日韩高清在线视频| 午夜福利一区二区在线看| 久久精品国产99精品国产亚洲性色 | 国产亚洲精品久久久久5区| 男男h啪啪无遮挡| 亚洲男人天堂网一区| 精品无人区乱码1区二区| 欧美亚洲日本最大视频资源| 一个人观看的视频www高清免费观看 | 久久国产精品人妻蜜桃| 在线观看一区二区三区激情| 久99久视频精品免费| 亚洲人成网站在线播放欧美日韩| 黄色视频,在线免费观看| 丰满迷人的少妇在线观看| 国产一区在线观看成人免费| 桃色一区二区三区在线观看| 久久久久久免费高清国产稀缺| 亚洲七黄色美女视频| 亚洲精品av麻豆狂野| 91麻豆精品激情在线观看国产 | 亚洲精品一区av在线观看| 高清毛片免费观看视频网站 | 亚洲美女黄片视频| 国产精品偷伦视频观看了| 欧美乱色亚洲激情| 国产精品二区激情视频| 亚洲国产中文字幕在线视频| 男人舔女人的私密视频| 亚洲aⅴ乱码一区二区在线播放 | 悠悠久久av| 欧美在线一区亚洲| www.精华液| 午夜福利一区二区在线看| √禁漫天堂资源中文www| 国产精品国产av在线观看| 熟女少妇亚洲综合色aaa.| 婷婷精品国产亚洲av在线| 午夜精品久久久久久毛片777| 在线观看www视频免费| 麻豆av在线久日| netflix在线观看网站| 99热只有精品国产| 国产激情久久老熟女| 亚洲精品一区av在线观看| 国产又爽黄色视频| 亚洲视频免费观看视频| 久久久国产成人精品二区 | 久久人妻福利社区极品人妻图片| 久久青草综合色| 他把我摸到了高潮在线观看| 久久草成人影院| 午夜视频精品福利| 国产精华一区二区三区| 亚洲专区国产一区二区| 午夜亚洲福利在线播放| 欧美乱色亚洲激情| 国产一区二区在线av高清观看| 两个人看的免费小视频| 国产精品久久久人人做人人爽| 高清av免费在线| 神马国产精品三级电影在线观看 | 免费观看精品视频网站| 精品一区二区三卡| 成年女人毛片免费观看观看9| 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| 久久精品国产亚洲av高清一级| 丰满迷人的少妇在线观看| 波多野结衣高清无吗| tocl精华| 午夜两性在线视频| 日本免费a在线| 可以在线观看毛片的网站| 天堂动漫精品| xxx96com| 亚洲男人天堂网一区| 在线播放国产精品三级| 精品人妻在线不人妻| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美日韩无卡精品| 国产亚洲欧美98| 久久婷婷成人综合色麻豆| 精品一区二区三区av网在线观看| 久久久国产一区二区| 亚洲全国av大片| 久久精品91无色码中文字幕| 咕卡用的链子| 亚洲精品粉嫩美女一区| 多毛熟女@视频| 午夜影院日韩av| 成人黄色视频免费在线看| 亚洲午夜精品一区,二区,三区| 大陆偷拍与自拍| 91精品国产国语对白视频| 欧美激情 高清一区二区三区| 亚洲avbb在线观看| 国产野战对白在线观看| 无人区码免费观看不卡| 久久婷婷成人综合色麻豆| 日韩大码丰满熟妇| 国产精品1区2区在线观看.| 黄片大片在线免费观看| www.自偷自拍.com| 欧美另类亚洲清纯唯美| 国产欧美日韩精品亚洲av| 91九色精品人成在线观看| 大型av网站在线播放| 亚洲 欧美 日韩 在线 免费| 亚洲欧美激情综合另类| 国产精品久久久人人做人人爽| av国产精品久久久久影院| 欧美激情高清一区二区三区| 欧美成人午夜精品| 视频区图区小说| 日韩 欧美 亚洲 中文字幕| 久久人人爽av亚洲精品天堂| 亚洲人成77777在线视频| 欧美日韩瑟瑟在线播放| 欧美日韩视频精品一区| 久久久国产欧美日韩av| 最近最新中文字幕大全电影3 | av免费在线观看网站| a级毛片在线看网站| 超碰97精品在线观看| 国产亚洲欧美98| 国产免费av片在线观看野外av| xxxhd国产人妻xxx| а√天堂www在线а√下载| 夜夜看夜夜爽夜夜摸 | 亚洲成人久久性| 久久精品国产99精品国产亚洲性色 | 韩国精品一区二区三区| 日韩欧美在线二视频| 深夜精品福利| 老司机深夜福利视频在线观看| 国产精品 国内视频| 国产欧美日韩一区二区三区在线| 老司机福利观看| 亚洲熟妇中文字幕五十中出 | 亚洲五月天丁香| 日本免费一区二区三区高清不卡 | 亚洲精品一卡2卡三卡4卡5卡| 99香蕉大伊视频| 欧美在线黄色| 久久青草综合色| 黑丝袜美女国产一区| 欧美精品啪啪一区二区三区| 欧美色视频一区免费| 久久久国产欧美日韩av| 久久人人爽av亚洲精品天堂| 久久人妻福利社区极品人妻图片| 午夜激情av网站| 99热国产这里只有精品6| 男女下面进入的视频免费午夜 | 超色免费av| 波多野结衣高清无吗| 成人18禁在线播放| 嫩草影院精品99| 一二三四在线观看免费中文在| 99久久国产精品久久久| 在线观看免费视频网站a站| 中文字幕av电影在线播放| cao死你这个sao货| 日本免费一区二区三区高清不卡 | 一级黄色大片毛片| 日本撒尿小便嘘嘘汇集6| 午夜免费观看网址| 91在线观看av| 亚洲五月婷婷丁香| 成人三级黄色视频| 精品国内亚洲2022精品成人| 亚洲一码二码三码区别大吗| 精品电影一区二区在线| 成人18禁在线播放| 大陆偷拍与自拍| 亚洲 欧美 日韩 在线 免费| 中文字幕色久视频| 亚洲熟妇中文字幕五十中出 | 大香蕉久久成人网| 午夜免费成人在线视频| 精品第一国产精品| 51午夜福利影视在线观看| 999久久久精品免费观看国产| 久久久久久亚洲精品国产蜜桃av| 人人妻人人爽人人添夜夜欢视频| 一本大道久久a久久精品| 91国产中文字幕| 色在线成人网| xxxhd国产人妻xxx| 久久99一区二区三区| 精品电影一区二区在线| 国产片内射在线| 丝袜美腿诱惑在线| 999精品在线视频| 久久久久国产一级毛片高清牌| 99热只有精品国产| 美国免费a级毛片| 91国产中文字幕| 亚洲欧美日韩无卡精品| 脱女人内裤的视频| 午夜亚洲福利在线播放| 老汉色∧v一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 国产三级黄色录像| 侵犯人妻中文字幕一二三四区| 国产亚洲欧美98| 国产欧美日韩精品亚洲av| 9热在线视频观看99| 女警被强在线播放| 国产免费av片在线观看野外av| 搡老熟女国产l中国老女人| 欧美成狂野欧美在线观看| 精品国产一区二区三区四区第35| 99国产精品99久久久久| a在线观看视频网站| 搡老岳熟女国产| 在线观看免费高清a一片| 高清毛片免费观看视频网站 | 无人区码免费观看不卡| 欧美激情 高清一区二区三区| 国产精品乱码一区二三区的特点 | 久久精品国产综合久久久| 久久九九热精品免费| 99久久人妻综合| 美女扒开内裤让男人捅视频| 日本精品一区二区三区蜜桃| 成年版毛片免费区| 夜夜夜夜夜久久久久| 国产精品国产av在线观看| 日日爽夜夜爽网站| 一二三四社区在线视频社区8| 精品卡一卡二卡四卡免费| 男女下面插进去视频免费观看| 久99久视频精品免费| 亚洲一区二区三区色噜噜 | 欧美成人免费av一区二区三区| 男女做爰动态图高潮gif福利片 | 婷婷丁香在线五月| 在线免费观看的www视频| 成人精品一区二区免费| 51午夜福利影视在线观看| 亚洲成人免费电影在线观看| 人人妻人人澡人人看| 精品国产一区二区三区四区第35| 中文字幕最新亚洲高清| 欧美日韩中文字幕国产精品一区二区三区 |