• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Activation of peroxymonosulfate by FeVO3-x for the degradation of carbamazepine: Vanadium mediated electron shuttle and oxygen vacancy modulated interface chemistry

    2023-02-18 01:55:36LeiduoLaiHongyuZhouYihenHongMengfanLuoYangShiHengZhangZhaokunXiongGangYaoBoLai
    Chinese Chemical Letters 2023年12期

    Leiduo Lai ,Hongyu Zhou ,Yihen Hong ,Mengfan Luo ,Yang Shi,? ,Heng Zhang ,Zhaokun Xiong,Gang Yao,Bo Lai,?

    a State Key Laboratory of Hydraulics and Mountain River Engineering,College of Architecture and Environment,Sichuan University,Chengdu 610065,China

    b Sino-German Centre for Water and Health Research,Sichuan University,Chengdu 610065,China

    c Chengdu Baixi Environmental Technology Company,Chengdu 610065,China

    d Institute of Environmental Engineering,RWTH Aachen University,Germany

    Keywords:Peroxymonosulfate Fe(III)/Fe(II) cycle Electron shuttles Oxygen vacancy Bimetallic catalysts

    ABSTRACT Fast Fe(III)/Fe(II) circulation in heterogeneous peroxymonosulfate (PMS) activation remains as a bottleneck issue that restricts the development of PMS based advanced oxidation processes.Herein,we proposed a facile ammonia reduction strategy and synthesized a novel FeVO3-x catalysts to activate PMS for the degradation of a typical pharmaceutical,carbamazepine (CBZ).Rapid CBZ removal could be achieved within 10 min,which outperforms most of the other iron or vanadium-based catalysts.Electron paramagnetic resonance analysis and chemical probe experiments revealed SO4??,?OH,O2??and high valent iron (Fe(IV)) were all generated in this system,but SO4??and Fe(IV) primarily contributed to the degradation of CBZ.Besides,X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy indicated that both the generated low-valent V provides and oxygen vacancy acted as superior electron donors and accelerated internal electron transfer via the unsaturated V?O?Fe bond.Finally,the proposed system also exhibited satisfactory performance in practical applications.This work provides a promising platform in heterogeneous PMS activation.

    Iron induced heterogeneous peroxymonosulfate (PMS) activation processes are promising technologies for the degradation of personal care products (PPCPs) in waters due to the strong oxidation capacity of the generated reactive oxygen species (ROS) [1–3].However,the rate-limiting step of Fe(III) conversion to Fe(II) significantly prohibits PMS decomposition and ROS generation,thus inhibiting the degradation of target pollutants [4,5].In order to expedite the Fe(III)/Fe(II) cycle and ROS generation,previous works usually introduced homogeneous reducing agents in PMS activation processes as co-catalysts for fast removal of refractory pollutants [6–9].Unfortunately,the introduction of homogeneous reductants is restricted in the practical applications due to the serious environmental pollution induced by the oxidized by-products in waters [10].Therefore,it is of great interest to develop novel strategies to accelerate the Fe(III)/Fe(II) circulation.

    It was reported that transition metals serving as electron shuttles can also facilitate the Fe(III)/Fe(II) conversion in Fenton-like oxidation,since the polyvalent metals as electron-sacrificers can donate electrons to Fe(III) until they are oxidized to the highest valence [4,11-13].Our previous results suggested that when the MnFe2O4,Fe2Mo3O12and Fe2TiO5served as catalysts,pollutant degradation efficiencies in PMS activation processes are much lower than that of FeVO4[4],indicating V species serving as electron shuttles outperform Mo,Ti,Mn.Therefore,modulating Febased materials with V species provides a great platform to accelerate Fe(III)/Fe(II) circulation without environmental pollution caused by dissolved matters in waters.Nevertheless,in most cases,stable state of V species in materials are quinquevalent (V(V)) due to the electron-deficient of 3d34s2orbits,implying the difficulties of V species as electron donators lie in the strategy for V reduction in the V modulated Fe-based materials.Our previous study suggested that adding reducing agents can facilitate V(V)species reduction in the FeVO4,further triggering the long-lasting Fe(III)/Fe(II) circulation to effectively degrade target pollutants [4].However,reducing agents at inappropriate dosage may impede the pollutant degradation efficiency due to the quenching effect of ROS and the direct consumption of oxidants.Therefore,it is imperative to develop new tactics to reduce V species in the Fe-V bimetallic materials.

    In this work,a low valent Fe-V bimetallic material (FeVO3-x)with enriched oxygen vacancy was prepared by a coprecipitation method and an ammonia reduction method to activate PMS for carbamazepine (CBZ) degradation.Notably,the reduction process would not only lead to the reduction of V,but also induce the generation of abundant electron-rich oxygen vacancy,which was reported to be a robust PMS adsorption site as well as a flexible switcher to regulate the mechanism transformation from radical to high valent iron (Fe(IV)) generation [14–16].Therefore,the FeVO3-xmay exhibit dual functions to activate PMS and generate a myriad of ROS for CBZ degradation: (i) low valent V species as electron donators raise the efficiency of Fe(III)/Fe(II) conversion;(ii) oxygen vacancy facilitates the generation of high valent Fe species.This work provides new insights into the heterogeneous Fe(III) reduction and ROS production by the defect Fe-V bimetallic catalyst.In addition,the CBZ transformation products and their corresponding toxicity were examined to evaluate the practicability of the FeVO3-x/PMS system.

    Details about the chemicals were provided in Text S1 (Supporting information).The FeVO3-xwas synthesized by the combination methods of coprecipitation and ammonia reduction.In a typical procedure,2.8078 g NH4VO3was dissolved in 150 mL deionized water at 80 °C,and then 150 mL of transparent orange solution with 9.696 g Fe(NO3)3·9H2O was slowly added into NH4VO3solution and stirred for 1 h at 80 °C.The solution was further modulated with dilute ammonia to maintain the pH at 8.0,and aged for several hours at room temperature.Then,the precipitates after filtration and washing with ethanol and water were dried at 110 °C and then calcined in the air at 600 °C for 4 h.Finally,the obtained precipitates were further calcined under ammonia atmosphere with nitrogen purging (10%,N2as the carrier gas,the tube furnace is connected with a washing bottle filled with ammonia)at 700 °C for 4 h to constitute a defect low valent Fe-V bimetallic catalyst.

    For pollutant degradation,all bath experiments were conducted with 150 mL target pollutant solution.The reaction was initiated by adding predetermined amounts of catalysts and PMS.The solution temperature was adjusted at 30 ± 1 °C by using water batch.At the predetermined time,certain volume of reaction solution was filteredviaa 0.22 μm PTFE syringe filter discs and mixed with 20 μL Na2S2O3before analysis.Details about the characterization and analytic methods could be seen in Text S2 (Supporting information).

    X-ray diffraction (XRD) spectrum suggests that the distinct diffraction peaks of FeVO3-xare indexed to (104),(311),(110),and(116) planes,and the crystal phases of pristine FeVO3-xparticles are assigned toγ-Fe2O3and V2O3(Fig.1a),indicating low valent V species exist in FeVO3-x.The vibrating sample magnetometer (VSM) results shows the saturation magnetization of FeVO3-xis ~3 emu/g (Fig.1b),which might originate from the ferromagnetism ofγ-Fe2O3.As shown in Fig.1c,the fresh FeVO3-xparticles are micron-sized and exhibit a unique brain-like morphology with wrinkled surface,which would facilitate the adhesion of PMS in the vicinity of FeVO3-x.Accordingly,the mappings of Fe,V,O species (Figs.1d-f) show that only Fe and V species are uniformly distributed on FeVO3-x,indicating enriched oxygen vacancy was created on the surface of FeVO3-x.Moreover,since the photoluminescence (PL) emission peak at 450 nm is correlated with the electron transition from shallow level to the top of the valence band,the existence of oxygen vacancy in the FeVO3-xis also verified by PL spectrum (Fig.S1 in Supporting information) [17].In addition,the N2adsorption-desorption results (Fig.S2 in Supporting information) manifest that the surface area of fresh FeVO3-xis 1.1 m2/g,suggesting the poor pollutant adsorption ability of FeVO3-x.

    Fig.1. (a) XRD spectrum of FeVO3-x.(b) The magnetic hysteresis loop of FeVO3-x.(c) SEM image and (d-f) the corresponding element mappings of FeVO3-x.

    The performance of FeVO3-x/PMS system was compared with several systems,including FeO/PMS,Fe3O4/PMS,Fe2O3/PMS,V2O3/PMS,V2O4/PMS,FeVO3-xalone and PMS alone systems.Results shown in Fig.2a and Fig.S3 (Supporting information) suggest that PMS in the absence of catalyst cannot oxide CBZ,and FeVO3-xhas no adsorption effect on CBZ,indicating CBZ was degraded by the generated ROS in the FeVO3-x/PMS system.In addition,the CBZ degradation efficiency in the FeVO3-x/PMS system within 10 min treatment is much higher (100%) than those in other systems (6%?36%),implying FeVO3-xcan effectively activate PMS to generate substantial ROS for CBZ degradation.

    Fig.2. (a) CBZ degradation in different systems.(b) DMPO-HO and DMPO-SO4 adducts in the FeVO3-x/PMS system.(c) Quenching effects of TBA and EtOH on CBZ degradation.(d) HPLC chromatograms of PMSO and PMSO2 in the FeVO3-x/PMS system.(e) PMSO degradation and PMSO2 generation in the FeVO3-x/PMS system.(f) DMPO-O2 adducts in the FeVO3-x/PMS system.Experiment condition: [FeVO3-x]0=100 mg/L,[PMS]0=0.2 mmol/L,[CBZ]0=2.5 mg/L,pHini=6.3,[PMSO]0=200 μmol/L,[DMPO]0=50 mmol/L.

    Fig.3. XPS spectra of fresh and used FeVO3-x: Fe 2p core level in the (a) fresh and (b) used FeVO3-x,V 2p core level in the (c) fresh and (d) used FeVO3-x,O 1s core level in the (e) fresh and (f) used FeVO3-x.

    The electron paramagnetic resonance (EPR) test using 5,5-dimethyl-1-pyrrolineN-oxide (DMPO) as theinsituradical spin-trapping reagent was conducted to qualitatively analyze the existence of the main ROS in the FeVO3-x/PMS system.In contrast to PMS alone and FeVO3-xalone systems (Fig.2b),two signals appearing in the FeVO3-x/PMS system are assigned to DMPO-HO adduct (four characteristic peaks with height ratio of 1:2:2:1,αN=αH=14.9 G) and DMPO-SO4adduct (αN=13.8 G,αH=10.1 G,αH=1.4 G,andαH=0.8 G) [18–20],implying both hydroxyl radicals (?OH) and sulfate radicals (SO4??) were generated in the FeVO3-x/PMS system.However,since DMPO-SO4adduct is easily converted into DMPO-HO adduct [21],the signal intensity of DMPO-SO4adduct is weak in the FeVO3-x/PMS system.To further disclose the identity of?OH and SO4??in the FeVO3-x/PMS system,tert-butyl alcohol (TBA) was introduced for?OH quenching4.0–9.1 × 105L mol?1s?1,kTBA/?OH: 3.8–7.6 × 108L mol?1s?1) [22–24],and ethanol (EtOH) was introduced for both?OH and SO4??quenching: 1.6 × 107L mol?1s?1,kEtOH/?OH: 1.9 × 109L mol?1s?1) [22].Fig.2c suggests that the quenching effects of EtOH increase as a function of concentration(50-200 mmol/L),while TBA has a feeble quenching effect on CBZ degradation regardless of the concentration (50-200 mmol/L).Besides,the semi-quantitative analysis of?OH in the FeVO3-x/PMS system were conducted with the terephthalic acid (TPA),since 2-hydroxyterephthalic acid (HTPA) as the characteristic product can be produced after the attack of?OH [25].Surprisingly,we found that the degradation trend of CBZ in the FeVO3-x/PMS system was similar to that in the classic co-catalytic Fenton system (hydroxylamine/Fenton,Fig.S4a in Supporting information).The ROS in the hydroxylamine/Fenton system are undoubtedly?OH.Therefore,the contribution of?OH and SO4??formed in the FeVO3-x/PMS system can be better investigated by comparing with the hydroxylamine/Fenton system.Clearly,the generation concentration of HTPA in the FeVO3-x/PMS system was much lower (Fig.S4b in Supporting information) when the degradation trend of CBZ in the FeVO3-x/PMS system was similar to that in the classic co-catalytic Fenton system (hydroxylamine/Fenton).The collective results indicate that though both?OH and SO4??are generated in the FeVO3-x/PMS system,the amounts of SO4??are much more than that of?OH.

    Since some studies pointed out that high-valent iron-oxo species (Fe(IV)) might be produced in the Fe mediated Fentonlike systems and the reaction rate between Fe(IV) and ethanol(kEtOH/Fe(IV): 2.51 × 103L mol?1s?1) is obviously faster than that between Fe(IV) and TBA (kEtOH/Fe(IV): 6 × 101L mol?1s?1)[19,26,27],the existence of Fe(IV) in FeVO3-x/PMS system was further qualitatively analyzed by the chemical probe method.Methyl phenyl sulfoxide (PMSO) was applied as a chemical probe because the reaction between PMSO with Fe(IV) proceeds through an oxygen atom transfer and methyl phenyl sulfone (PMSO2) is quantitatively generated [27].From the HPLC chromatograms,it is obvious that the concentration of PMSO was decreased while PMSO2was accumulated in the FeVO3-x/PMS system (Fig.2d).We further quantified the concentrations of PMSO2and PMSO to confirm the existence of Fe(IV).Results show that conversion efficiency of PMSO to PMSO2is 68.2% (Fig.2e),implying the role of Fe(IV) in the FeVO3-x/PMS system for CBZ degradation cannot be ignored.Moreover,some researchers argued that high-valent iron-oxo species might induce the production of O2??[28,29].Therefore,EPR test was conducted with DMPO in the dimethyl sulfoxide (DMSO)solution to identify the existence of O2??.The EPR spectrum with hyperfine splitting parameters ofαH=14.25 G,αN=12.45 G,and an intensity ratio of 1:1:1:1 is indexed to DMPO-O2adduct (Fig.2f)[30],indicating high-valent iron-oxo species reacting with PMS induces the formation of O2??.Combined with the results of quenching experiment,although O2??is produced in the FeVO3-x/PMS system,O2??has a negligible effect on CBZ degradation.

    To further elucidate the generation of ROS in the FeVO3-x/PMS system,the chemical compositions of FeVO3-xwere scrutinized by XPS analysis.The spectra of Fe 2p core level in the pristine and reacted FeVO3-xshow that the ratio of Fe(III) to Fe(II) is nearly invariable Figs.3a and b),indicating the generated Fe(III) induced by the reaction between PMS and Fe(II) can be quickly reduced during treatment process.In contrast with the chemical state of Fe,pronounced changes occurred in the V species after the final reaction (Figs.3c and d),where a new peak located at 517.20 eV assigned to V(V) [31,32] was found.The oxidation of V species in the FeVO3-x/PMS system follows two pathways: (i) low valent V species (V(III) and V(IV)) react with PMS (HSO5?) to generate V(V) (Eqs.1 and 2);(ii) low valent V species as electron donators transfer electrons to Fe(III) for fast Fe(II) regeneration and finally convert to V(V) (Eqs.3 and 4).The first pathway is confirmed by Fig.2a since 32% and 25% CBZ can be degraded in the V2O3/PMS and V2O4/PMS systems,respectively.The second pathway of low valent V species for Fe(III) reduction is further scrutinized in the following content.In addition,compared with fresh FeVO3-x,the decrease of oxygen vacancy in the used FeVO3-x(Figs.3e and f)also verifies that oxygen vacancy participated in the CBZ degradation.

    To further investigate the role of low valent V species for Fe(III)reduction,the electronic structure and coordination environment of Fe and V species in the FeVO3-x,along with some other Fe and V-based oxides (FeO,Fe3O4,Fe2O3,V2O5,V2O4,and V2O3standards) were evaluated by X-ray absorption spectroscopy (XAS).E0was calculated as the maximum peak energy of the first derivative of the spectrum,which was used to identify the Fe oxidation state of different materials.According to the Fe K-edge X-ray absorption near edge structure (XANES) of FeVO3-xand other Fe-based oxides(Fig.4a),the value (7112.2 eV) ofE0in FeO spectrum is lowest,while in Fe2O3spectrum is highest (7114.1 eV),indicatingE0in Fe K-edge XANES spectrum increases as a function of chemical valence of Fe.Since the value (7112.7 eV) ofE0in the FeVO3-xis between that of FeO and Fe2O3,both Fe(II) and Fe(III) exist in the FeVO3-x.However,only Fe(III) exists in the FeVO3-xprecursor because itsE0is the same as that of Fe2O3.In addition,in contrast with Fe3O4,the pre-edge peak intensity of FeVO3-xis weaker than that of Fe3O4,implying the amount of Fe(II) in the FeVO3-xis more than that of in the Fe3O4,since the 3d orbital of Fe(II) possesses less electron number than that of Fe(III),and the pre-edge peak represents the 1s →3d electron transition [33].

    Fig.4. (a) Fe K-edge XANES analysis,(b) V K-edge XANES analysis,FT curves of (c) Fe K-edge and (d) V K-edge EXAFS k3χ(k) functions obtained from the XANES spectra without fitting.(e,f) The fitting values of V K-edge EXAFS k3χ(k) functions obtained from the XANES spectra,and (g) WT of V-foil,FeVO3-x and FeVO3-x precursor.

    As for the valence of V,the FeVO3-xprecursor,V2O5,V2O4,and V2O3standards have a pre-edge peak with prominent intensity,which drastically increases with V species oxidation states(Fig.4b).However,the pre-edge peak pattern of FeVO3-xis in remarkable contrast to those of other V-based materials.Since the symmetry of the V species in FeVO3-xdiffers from FeVO3-xprecursor,V2O3,V2O4,and V2O5,the oxidation states of V species in the FeVO3-xcannot be defined only by the pre-edge peak intensity.On the other hand,the V K-edge XANES spectrum of FeVO3-xis in line with the literature reports [4,34],indicating the oxidation state of V species in the FeVO3-xis trivalent and tetravalent.

    The Fourier-transformed (FT) extended X-ray absorption fine structures of Fe K-edge (EXAFSk3χ(k)) are shown in Fig.4c.The peak at ~1.5 ?A (without phase correction) can be identified as Fe-O bond.Comparing FeVO3-xprecursorversusFeVO3-x,the peak at ~1.5 ?A shifts to much lower intensity in FeVO3-x(Fig.4c),suggesting the coordination number decreases in FeVO3-x,which further well-documents the existence of oxygen vacancies.Since the FT curves of V K-edge EXAFSk3χ(k) functions (Fig.4d) are more complicated than that of Fe K-edge EXAFSk3χ(k),the fitting curves of FeVO3-xcompared with FeVO3-xprecursor and V foil are shown in Fig.4e,Fig.4f and Table S1 (Supporting information).The well-resolved peaks at ~1.4 ?A and ~3.0 ?A (without phase correction) in FeVO3-xand FeVO3-xprecursor are indexed to V-O bond and V?O?Fe bond,respectively.The coordination numbers of V-O and V?O?Fe shells in the FeVO3-xare 3.0 and 0.6,which is in marked contrast to that of in the FeVO3-xprecursor(5.6 and 3.0,respectively,Table S1),also indicating the existence of existence of oxygen vacancies.Moreover,the wavelet transform plots (Fig.4g) of FeVO3-xand FeVO3-xprecursor also reflect the existence of V-O and V?O?Fe bonds.The existence of V?O?Fe bond facilitates the interpretation of the interelectronic interaction of Fe and V species in FeVO3-x.Specifically,the electron-riched t2gdorbitals of V species donating electrons to the electron-deficient t2gd-orbitals of Fe(III) species through the bridging O2?viaπdonation [4].Moreover,CBZ degradation and Fe(II) generation after external addition of Fe(III) into V2O4/PMS and V2O3/PMS systems (Fig.S5 in Supporting information) also imply low-valent V species as electron-rich promoters mediate electron shuttles to expedite Fe(III) reduction and pollutant degradation.To further confirm the interaction of oxygen vacancy and PMS molecules,we further conductedin-situRaman spectroscopy analysis.TheinsituRaman spectroscopy shows that the peak intensities of FeVO3-xat 146,286,and 703 cm?1increase after adding PMS (Fig.S6 in Supporting information),indicating peroxo species bound to the surface oxygen vacancies might be formed [17].

    Previous studies suggested that co-existing anions in water might react with?OH and SO4??(Eqs.5-12) [35–37].Therefore,the effects of different anions,such as Cl?,H2PO4?,NO3?and HCO3?,on CBZ degradation in the FeVO3-x/PMS system were investigated.From Fig.5a,it is clear that the common anions,such as Cl?,H2PO4?and NO3?in natural water almost show negligible effects on CBZ degradation,which suggests the great matrix resistance of this system.The obvious inhibition of CBZ degradation in the presence of HCO3?might originate from the considerable alkalinity induced by the introduction of HCO3?.However,in actual water samples such as tap water,Jinjiang water and Jiangan water,the degradation performance severely decreased (Fig.5b).This might be ascribed to the pH buffer effects of natural water samples and the presence of natural organic matters,which could severely compete with target contaminants for oxidative ROS.Finally,the system exhibited satisfactory cyclic performance during consecutive runs (Fig.5c).Despite a little decrease of CBZ removal from 100% to 80%,a facile N2or NH3regeneration could effectively restore the reactivity of used FeVO3-xand ensure the long-term stability.

    Fig.5. (a) The effect of Cl?,NO3?,HCO3?,and H2PO4? co-existing ions on CBZ degradation.(b) CBZ degradation in different water samples.(c) CBZ degradation in FeVO3-x/PMS system during 5 consecutive runs and after FeVO3-x regeneration.Experiment condition: [FeVO3-x]0=100 mg/L,[PMS]0=0.2 mmol/L,[CBZ]0=2.5 mg/L,pHini=6.3,[Cl?]=5 mg/L,[NO3?]=5 mg/L,[HCO3?]=20 mg/L,[H2PO4?]=5 mg/L.

    Based on the detected seven intermediates,we proposed the possible degradation pathway of CBZ in the FeVO3-x/PMS system(Fig.6a,Table S2 and Figs.S7-S14 in Supporting information).First,the olefinic unsaturated bond of central heterocyclic ring is readily attacked [4,38],and thusP1(m/z=251.0821) andP2(m/z=269.0922) are formed owing to the attack of SO4??,?OH and Fe(IV).P2is then oxidized toP5(m/z=267.0772)viaintramolecular cyclisation and carboxylation reactions.In addition,the dialdehyde moieties ofP2are unstable,which leads to the rotation of benzene ring ofP2to generateP6(m/z=267.0774).The aldehyde moiety on theP6can be further oxidized by the ROS to form a carboxylic acid product (P7,m/z=283.0723).Subsequently,P7could be oxidized to form P4 (m/z=196.0766)viadeamination,acrylamido abstraction,and decarboxylation reactions.Moreover,P1can also be oxidized to generateP3(m/z=180.0813)viaintramolecular cyclisation,amine/acrylamido cleavage and de-formyl,which further be oxidized to produceP4.Finally,these detected intermediates are mineralized to CO2and H2O.Specifically,the TOC removal drastically increased with treatment time (Fig.S15 in Supporting information): the TOC removal reached 17% after 10 min treatment,while it increased to 55% after 120 min treatment.

    Fig.6. (a) CBZ degradation pathways in the FeVO3-x/PMS system.(b) Acute toxicity,(c) bioaccumulation factor,(d) developmental toxicity,and (e) mutagenicity of CBZ and its intermediates.Experimental conditions for (a): [FeVO3-x]0=100 mg/L,[PMS]0=0.2 mmol/L,[CBZ]0=2.5 mg/L,and initial pHini=6.3.

    Furthermore,we also evaluated the developmental toxicity,acute toxicity,bioaccumulation factor and mutagenicity of original CBZ and its intermediates through the Toxicity Estimation Software Tool.Fig.6b shows the oral rat LD50 ofP1andP5are 213.16 and 287.73 mg/kg,respectively,which are much lower than that of CBZ(1636.63 mg/kg),implying the acute toxicities ofP1andP5are quite more toxic than original CBZ.However,the acute toxicities of most types of intermediates are much lower than CBZ.Since the potential hazards of these intermediates are negative correlation with bioaccumulation factor,and Fig.6c shows the bioaccumulation factors ofP2,P5,P6,P7(9.56,7.41,19.70,and 4.98,respectively) are much lower than that of CBZ (27.38),four intermediates have quite lower risks than CBZ.However,the results of developmental toxicity (Fig.6d) and mutagenicity (Fig.6e) suggest that five developmental toxicants (P1,P2,P5,P6andP7) and five mutagenicity negative intermediates (P1,P3,P4,P5andP7) are generated after treatment process.

    In this work,we synthesized a novel catalysts FeVO3-xviaa facile ammonia reduction method.The high-temperature reduction process endowed the catalysts with abundant low-valent V species and electron-rich oxygen vacancy,which are both conducive to the circulation of Fe(III) to Fe(II).Through quenching experiments and EPR analysis,we found that?OH,SO4??,O2??and Fe(IV) were all generated in this system,but only SO4??and Fe(IV) primarily contributed to the degradation of CBZ.X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy indicated that both the low-valent V provides and oxygen vacancy could accelerate the internal electron transfer to Fe(III)viathe unsaturated V?O?Fe bond.Despite a little decrease of performance after consecutive runs,the activity could be effectively regeneratedviare-calcination treatment.Finally,the degradation product and the corresponding toxicity analysis revealed that this system is basically a toxicity attenuation process,demonstrating its potential in practical application.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The first author is funded by the Shanghai Tongji Gao Tingyao Environmental Science &Technology Development Foundation.Additionally,the authors acknowledge the staff at beamline 1WB at the Beijing Synchronic Radiation Facility (BSRF) for their assistance during the XAS measurements.And the authors would like to acknowledge the financial support from National Natural Science Foundation of China (Nos.52070133,2022NSFSC0972),Sichuan Science and Technology Program: Key Research and Development Program (Nos.2019YFG0314,2017SZ0180 and 2019YFG0324).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108580.

    怎么达到女性高潮| 无遮挡黄片免费观看| 一a级毛片在线观看| 亚洲精品粉嫩美女一区| 久久精品91无色码中文字幕| 欧美中文日本在线观看视频| 色综合婷婷激情| 日本黄色视频三级网站网址| 午夜免费观看网址| 国产黄色免费在线视频| 国内久久婷婷六月综合欲色啪| 国产亚洲精品一区二区www| 成人特级黄色片久久久久久久| 啦啦啦免费观看视频1| 国产精品爽爽va在线观看网站 | 搡老岳熟女国产| videosex国产| 国产精品秋霞免费鲁丝片| 最近最新中文字幕大全电影3 | 多毛熟女@视频| 超碰成人久久| av在线播放免费不卡| 久久中文字幕人妻熟女| 女人被狂操c到高潮| 美女福利国产在线| 国产精品影院久久| 久久香蕉国产精品| 18禁黄网站禁片午夜丰满| 国产成人av激情在线播放| 久热爱精品视频在线9| 天天影视国产精品| 欧美在线一区亚洲| 高清在线国产一区| 又紧又爽又黄一区二区| 在线免费观看的www视频| 国产精品久久久久久人妻精品电影| e午夜精品久久久久久久| 亚洲av成人一区二区三| 丁香欧美五月| 亚洲黑人精品在线| 国产高清videossex| 老司机在亚洲福利影院| 国产91精品成人一区二区三区| 精品免费久久久久久久清纯| 亚洲avbb在线观看| a级毛片黄视频| 波多野结衣av一区二区av| 精品久久久久久久毛片微露脸| 精品熟女少妇八av免费久了| 亚洲av成人一区二区三| 日韩精品青青久久久久久| 久久精品国产清高在天天线| 欧美成狂野欧美在线观看| 最近最新中文字幕大全电影3 | 亚洲情色 制服丝袜| 在线观看免费视频日本深夜| 亚洲成av片中文字幕在线观看| 高清毛片免费观看视频网站 | 免费少妇av软件| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| 精品无人区乱码1区二区| 一级毛片高清免费大全| 欧美日韩精品网址| 女人爽到高潮嗷嗷叫在线视频| 脱女人内裤的视频| 国产成人欧美在线观看| 久久九九热精品免费| 在线观看免费日韩欧美大片| 波多野结衣高清无吗| 两性午夜刺激爽爽歪歪视频在线观看 | 久99久视频精品免费| 久久天躁狠狠躁夜夜2o2o| 亚洲色图 男人天堂 中文字幕| 久久99一区二区三区| 国产亚洲精品久久久久5区| а√天堂www在线а√下载| 女性生殖器流出的白浆| 久久天堂一区二区三区四区| 51午夜福利影视在线观看| 亚洲色图 男人天堂 中文字幕| 国产99久久九九免费精品| 精品福利观看| 国产真人三级小视频在线观看| 亚洲av美国av| 国产av又大| 精品午夜福利视频在线观看一区| av免费在线观看网站| 好男人电影高清在线观看| 色综合站精品国产| 国产成人影院久久av| 最新美女视频免费是黄的| 99精品在免费线老司机午夜| 午夜影院日韩av| 亚洲中文av在线| 在线观看午夜福利视频| av国产精品久久久久影院| 老熟妇乱子伦视频在线观看| 国产91精品成人一区二区三区| 久久中文字幕一级| 国产成人啪精品午夜网站| 色综合婷婷激情| 在线视频色国产色| 国产精品自产拍在线观看55亚洲| 亚洲一区高清亚洲精品| 国产精品永久免费网站| 亚洲精品中文字幕在线视频| 亚洲人成77777在线视频| 国产精品偷伦视频观看了| 国产成人av激情在线播放| 成年版毛片免费区| 国产欧美日韩一区二区三| 国内毛片毛片毛片毛片毛片| 国产亚洲欧美精品永久| 咕卡用的链子| 欧美在线黄色| 亚洲精品中文字幕一二三四区| 国产成人啪精品午夜网站| 一级黄色大片毛片| 日韩欧美一区二区三区在线观看| 中文字幕人妻熟女乱码| 免费av中文字幕在线| 国产亚洲av高清不卡| 久久国产乱子伦精品免费另类| 国产av精品麻豆| 麻豆国产av国片精品| 91老司机精品| 亚洲午夜精品一区,二区,三区| 久久精品国产亚洲av香蕉五月| 美女高潮到喷水免费观看| 日本wwww免费看| 国产激情久久老熟女| 欧美精品亚洲一区二区| 欧美日本亚洲视频在线播放| 成人亚洲精品一区在线观看| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点 | 久久婷婷成人综合色麻豆| 亚洲熟妇熟女久久| 中文欧美无线码| 精品久久久久久久久久免费视频 | 亚洲精品国产精品久久久不卡| 啪啪无遮挡十八禁网站| 9色porny在线观看| 亚洲全国av大片| 99精品欧美一区二区三区四区| 久久久久久久精品吃奶| 视频区图区小说| 日日爽夜夜爽网站| 在线观看免费视频日本深夜| 久久精品国产亚洲av香蕉五月| 欧美日韩视频精品一区| 欧美丝袜亚洲另类 | 18禁裸乳无遮挡免费网站照片 | 黄色成人免费大全| 黄色视频不卡| 国产色视频综合| 国产精品野战在线观看 | 亚洲精品国产精品久久久不卡| 亚洲欧美激情综合另类| 亚洲av片天天在线观看| 一进一出好大好爽视频| 亚洲国产精品一区二区三区在线| 人人澡人人妻人| 亚洲精品一卡2卡三卡4卡5卡| 99在线人妻在线中文字幕| 亚洲国产精品一区二区三区在线| 欧美最黄视频在线播放免费 | 日韩精品中文字幕看吧| 日韩欧美一区视频在线观看| 女警被强在线播放| 热re99久久国产66热| 一级a爱片免费观看的视频| 国产有黄有色有爽视频| 正在播放国产对白刺激| 久久精品91蜜桃| 亚洲精品国产精品久久久不卡| 69精品国产乱码久久久| 曰老女人黄片| 神马国产精品三级电影在线观看 | 亚洲一区二区三区欧美精品| 天堂√8在线中文| 国产亚洲精品第一综合不卡| 国产精品影院久久| 久热这里只有精品99| 精品久久久久久久毛片微露脸| 国产精品av久久久久免费| 美女大奶头视频| 一个人免费在线观看的高清视频| 一个人观看的视频www高清免费观看 | 好看av亚洲va欧美ⅴa在| 亚洲av片天天在线观看| av电影中文网址| 欧美性长视频在线观看| 精品福利观看| 999精品在线视频| 亚洲国产欧美日韩在线播放| 悠悠久久av| 国产99白浆流出| 韩国精品一区二区三区| 久久国产乱子伦精品免费另类| 免费av毛片视频| 亚洲av成人av| 国产伦人伦偷精品视频| 欧美丝袜亚洲另类 | 色综合婷婷激情| 国产野战对白在线观看| 如日韩欧美国产精品一区二区三区| 久久久久久久久中文| 久久国产精品男人的天堂亚洲| 长腿黑丝高跟| 午夜久久久在线观看| 999久久久精品免费观看国产| 免费高清在线观看日韩| 精品久久久久久成人av| 99久久人妻综合| 亚洲中文av在线| 国产欧美日韩一区二区精品| 777久久人妻少妇嫩草av网站| 婷婷六月久久综合丁香| 亚洲成a人片在线一区二区| 亚洲欧美日韩另类电影网站| 天堂中文最新版在线下载| av网站在线播放免费| 真人做人爱边吃奶动态| 村上凉子中文字幕在线| 午夜亚洲福利在线播放| 一级毛片精品| 国产一区在线观看成人免费| 国产黄a三级三级三级人| 自拍欧美九色日韩亚洲蝌蚪91| 欧美性长视频在线观看| 午夜免费观看网址| 亚洲五月婷婷丁香| 亚洲欧美日韩高清在线视频| 午夜免费成人在线视频| 欧美日本中文国产一区发布| 99久久综合精品五月天人人| 日韩中文字幕欧美一区二区| 宅男免费午夜| 久99久视频精品免费| 亚洲av片天天在线观看| 99国产精品免费福利视频| av福利片在线| 日韩国内少妇激情av| 亚洲熟妇熟女久久| 久久精品国产99精品国产亚洲性色 | 国产黄色免费在线视频| 丁香六月欧美| 午夜精品国产一区二区电影| 亚洲av电影在线进入| 亚洲一区高清亚洲精品| av免费在线观看网站| 自线自在国产av| 高清黄色对白视频在线免费看| 日本三级黄在线观看| 又紧又爽又黄一区二区| 国产三级黄色录像| 久久草成人影院| 好看av亚洲va欧美ⅴa在| 女人被躁到高潮嗷嗷叫费观| 在线观看午夜福利视频| 久久国产亚洲av麻豆专区| 最好的美女福利视频网| 亚洲欧美一区二区三区黑人| 久久伊人香网站| 亚洲自拍偷在线| 亚洲av熟女| 国产精品 欧美亚洲| 一边摸一边做爽爽视频免费| 90打野战视频偷拍视频| 人妻久久中文字幕网| 999久久久国产精品视频| 黑丝袜美女国产一区| 国产单亲对白刺激| 亚洲精品成人av观看孕妇| 久久天堂一区二区三区四区| 在线观看午夜福利视频| 水蜜桃什么品种好| 亚洲男人天堂网一区| 99香蕉大伊视频| 99久久99久久久精品蜜桃| 亚洲自拍偷在线| 99热国产这里只有精品6| 亚洲精品国产色婷婷电影| 国产三级在线视频| 久久精品国产亚洲av高清一级| 亚洲中文日韩欧美视频| 亚洲欧美日韩无卡精品| 午夜免费激情av| 国产99久久九九免费精品| 伊人久久大香线蕉亚洲五| 久久九九热精品免费| 怎么达到女性高潮| 国产亚洲av高清不卡| 不卡av一区二区三区| 国产日韩一区二区三区精品不卡| 欧美乱色亚洲激情| 成年版毛片免费区| 国产深夜福利视频在线观看| 国产有黄有色有爽视频| 真人一进一出gif抽搐免费| 亚洲男人的天堂狠狠| 欧美久久黑人一区二区| 亚洲 欧美一区二区三区| 亚洲欧美一区二区三区久久| 亚洲欧美精品综合一区二区三区| 国产精品影院久久| 久久狼人影院| 啦啦啦 在线观看视频| 亚洲精华国产精华精| 精品日产1卡2卡| 成熟少妇高潮喷水视频| 欧美久久黑人一区二区| 国产精品99久久99久久久不卡| 欧美+亚洲+日韩+国产| 他把我摸到了高潮在线观看| 巨乳人妻的诱惑在线观看| 亚洲av日韩精品久久久久久密| av片东京热男人的天堂| 美女福利国产在线| 国产精品免费视频内射| 18禁观看日本| 免费女性裸体啪啪无遮挡网站| 久久久久国产一级毛片高清牌| 亚洲色图av天堂| 91麻豆精品激情在线观看国产 | 水蜜桃什么品种好| 久久精品国产亚洲av高清一级| 欧美一级毛片孕妇| 在线视频色国产色| 久久午夜亚洲精品久久| 欧美乱码精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 亚洲国产中文字幕在线视频| 国产精品综合久久久久久久免费 | 丰满饥渴人妻一区二区三| 亚洲一码二码三码区别大吗| 免费一级毛片在线播放高清视频 | 一个人免费在线观看的高清视频| 中文字幕最新亚洲高清| 亚洲五月色婷婷综合| 精品一品国产午夜福利视频| 69精品国产乱码久久久| 免费在线观看视频国产中文字幕亚洲| 亚洲性夜色夜夜综合| 久久久久精品国产欧美久久久| 身体一侧抽搐| 国产伦人伦偷精品视频| 日日夜夜操网爽| 99精品欧美一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 国产深夜福利视频在线观看| 国产亚洲欧美98| 乱人伦中国视频| 嫁个100分男人电影在线观看| 成人18禁高潮啪啪吃奶动态图| 久久久国产欧美日韩av| 国产成人影院久久av| a级片在线免费高清观看视频| 国产熟女午夜一区二区三区| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av高清一级| 淫妇啪啪啪对白视频| 黑人巨大精品欧美一区二区蜜桃| 精品无人区乱码1区二区| 又黄又爽又免费观看的视频| 亚洲精品粉嫩美女一区| 亚洲av成人一区二区三| 日本精品一区二区三区蜜桃| 成人18禁高潮啪啪吃奶动态图| 国产男靠女视频免费网站| 交换朋友夫妻互换小说| 又黄又爽又免费观看的视频| 午夜福利在线免费观看网站| 在线国产一区二区在线| 人人妻人人爽人人添夜夜欢视频| bbb黄色大片| 一级a爱视频在线免费观看| 搡老岳熟女国产| 欧美成人免费av一区二区三区| 黄网站色视频无遮挡免费观看| 久久香蕉国产精品| 色综合婷婷激情| 1024香蕉在线观看| 日韩有码中文字幕| 又紧又爽又黄一区二区| 亚洲国产中文字幕在线视频| 男人舔女人的私密视频| 麻豆av在线久日| 亚洲专区国产一区二区| 在线天堂中文资源库| 老司机福利观看| 三上悠亚av全集在线观看| 午夜免费激情av| 久久天躁狠狠躁夜夜2o2o| 欧美成人免费av一区二区三区| 伊人久久大香线蕉亚洲五| 国内毛片毛片毛片毛片毛片| 久久精品亚洲熟妇少妇任你| 久久香蕉国产精品| 级片在线观看| 亚洲少妇的诱惑av| 欧美日韩视频精品一区| 成人av一区二区三区在线看| 一个人观看的视频www高清免费观看 | 久久国产精品人妻蜜桃| 新久久久久国产一级毛片| 欧美中文日本在线观看视频| 久久久久久人人人人人| 交换朋友夫妻互换小说| 在线国产一区二区在线| 日本黄色日本黄色录像| 精品高清国产在线一区| 一二三四社区在线视频社区8| 午夜精品久久久久久毛片777| 亚洲色图综合在线观看| 午夜影院日韩av| 大陆偷拍与自拍| 91麻豆av在线| 亚洲成人久久性| 久久久久久久久久久久大奶| 亚洲午夜理论影院| 欧美激情极品国产一区二区三区| 成年女人毛片免费观看观看9| 男女下面进入的视频免费午夜 | 国产亚洲精品综合一区在线观看 | 日韩精品免费视频一区二区三区| 午夜成年电影在线免费观看| www国产在线视频色| 亚洲精品中文字幕在线视频| 亚洲五月天丁香| 国产精品久久久久成人av| 在线看a的网站| 99久久99久久久精品蜜桃| 午夜免费成人在线视频| 欧美日韩亚洲国产一区二区在线观看| 色在线成人网| √禁漫天堂资源中文www| 日韩成人在线观看一区二区三区| 香蕉国产在线看| 在线观看免费视频日本深夜| 日日干狠狠操夜夜爽| 一级黄色大片毛片| 人成视频在线观看免费观看| 久久 成人 亚洲| 成在线人永久免费视频| 亚洲色图综合在线观看| 99国产综合亚洲精品| 欧美中文综合在线视频| 丁香欧美五月| 女人精品久久久久毛片| av视频免费观看在线观看| 婷婷丁香在线五月| 国产91精品成人一区二区三区| 久久久国产一区二区| 少妇被粗大的猛进出69影院| 国产亚洲欧美98| 不卡一级毛片| 国产亚洲欧美98| 悠悠久久av| 精品久久久久久电影网| 午夜视频精品福利| 99久久精品国产亚洲精品| 欧美不卡视频在线免费观看 | 日韩高清综合在线| 999精品在线视频| 18禁裸乳无遮挡免费网站照片 | 欧美一区二区精品小视频在线| 无人区码免费观看不卡| 欧美av亚洲av综合av国产av| 中文字幕另类日韩欧美亚洲嫩草| 国产人伦9x9x在线观看| 精品人妻在线不人妻| 91国产中文字幕| 久久欧美精品欧美久久欧美| 久9热在线精品视频| av国产精品久久久久影院| 91麻豆精品激情在线观看国产 | 伦理电影免费视频| 国产精品二区激情视频| 国产熟女xx| 大型av网站在线播放| 亚洲 欧美 日韩 在线 免费| 欧美激情高清一区二区三区| 国产视频一区二区在线看| 69精品国产乱码久久久| 动漫黄色视频在线观看| 97超级碰碰碰精品色视频在线观看| 伊人久久大香线蕉亚洲五| 欧美精品一区二区免费开放| 亚洲五月色婷婷综合| 女警被强在线播放| 天天躁夜夜躁狠狠躁躁| 精品久久蜜臀av无| 无遮挡黄片免费观看| 天堂影院成人在线观看| 日韩欧美三级三区| 一级毛片高清免费大全| 免费高清视频大片| 天堂影院成人在线观看| 亚洲人成77777在线视频| 成人精品一区二区免费| 一二三四社区在线视频社区8| 日韩免费高清中文字幕av| 91成年电影在线观看| av天堂久久9| 亚洲国产看品久久| 国产区一区二久久| 午夜91福利影院| 女性生殖器流出的白浆| 啦啦啦在线免费观看视频4| 18禁国产床啪视频网站| 麻豆一二三区av精品| 亚洲久久久国产精品| 91大片在线观看| 在线观看一区二区三区| 欧美最黄视频在线播放免费 | 香蕉国产在线看| 午夜两性在线视频| 麻豆av在线久日| 嫩草影视91久久| 99在线视频只有这里精品首页| 天堂俺去俺来也www色官网| 午夜福利在线观看吧| 天堂俺去俺来也www色官网| 90打野战视频偷拍视频| 国产av一区二区精品久久| 久久狼人影院| 国产亚洲欧美在线一区二区| 99久久综合精品五月天人人| 成人特级黄色片久久久久久久| 18禁美女被吸乳视频| 久久久久久久久免费视频了| 国产成人欧美| 天堂动漫精品| 两人在一起打扑克的视频| 欧美精品亚洲一区二区| 亚洲av电影在线进入| www.精华液| 免费在线观看影片大全网站| 中文字幕人妻丝袜制服| 国产aⅴ精品一区二区三区波| 大型黄色视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| 日韩精品免费视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 女人爽到高潮嗷嗷叫在线视频| 欧美激情极品国产一区二区三区| 精品无人区乱码1区二区| 国产乱人伦免费视频| 欧美日本中文国产一区发布| e午夜精品久久久久久久| 一边摸一边做爽爽视频免费| videosex国产| 欧洲精品卡2卡3卡4卡5卡区| 又黄又粗又硬又大视频| 男人舔女人下体高潮全视频| 国产亚洲欧美98| 国产三级在线视频| 十分钟在线观看高清视频www| 91成人精品电影| 麻豆av在线久日| 日韩精品中文字幕看吧| 午夜精品久久久久久毛片777| 亚洲精品在线美女| 别揉我奶头~嗯~啊~动态视频| 日本 av在线| 在线av久久热| 在线观看一区二区三区| 精品日产1卡2卡| www.999成人在线观看| 黄片播放在线免费| 国产精品久久久人人做人人爽| 高清在线国产一区| 国产免费av片在线观看野外av| 亚洲第一欧美日韩一区二区三区| 午夜福利,免费看| 熟女少妇亚洲综合色aaa.| 久久狼人影院| 亚洲人成伊人成综合网2020| 在线观看免费视频网站a站| 国产精品 欧美亚洲| 日韩欧美三级三区| 又黄又爽又免费观看的视频| 免费看十八禁软件| 又紧又爽又黄一区二区| 麻豆av在线久日| 国产99白浆流出| 久久久国产成人免费| 亚洲第一av免费看| 亚洲人成伊人成综合网2020| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆国产av国片精品| 80岁老熟妇乱子伦牲交| 两个人看的免费小视频| 99国产精品免费福利视频| 国产乱人伦免费视频| 黄片大片在线免费观看| 身体一侧抽搐| 成人18禁在线播放| 亚洲视频免费观看视频| 久久久久久久久免费视频了| 精品福利永久在线观看| 天堂俺去俺来也www色官网| 高清黄色对白视频在线免费看| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲欧美98| 两个人免费观看高清视频| www.精华液| 亚洲第一青青草原| 国产成人免费无遮挡视频| 视频区欧美日本亚洲| 夜夜看夜夜爽夜夜摸 |