• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Activation of peroxymonosulfate by FeVO3-x for the degradation of carbamazepine: Vanadium mediated electron shuttle and oxygen vacancy modulated interface chemistry

    2023-02-18 01:55:36LeiduoLaiHongyuZhouYihenHongMengfanLuoYangShiHengZhangZhaokunXiongGangYaoBoLai
    Chinese Chemical Letters 2023年12期

    Leiduo Lai ,Hongyu Zhou ,Yihen Hong ,Mengfan Luo ,Yang Shi,? ,Heng Zhang ,Zhaokun Xiong,Gang Yao,Bo Lai,?

    a State Key Laboratory of Hydraulics and Mountain River Engineering,College of Architecture and Environment,Sichuan University,Chengdu 610065,China

    b Sino-German Centre for Water and Health Research,Sichuan University,Chengdu 610065,China

    c Chengdu Baixi Environmental Technology Company,Chengdu 610065,China

    d Institute of Environmental Engineering,RWTH Aachen University,Germany

    Keywords:Peroxymonosulfate Fe(III)/Fe(II) cycle Electron shuttles Oxygen vacancy Bimetallic catalysts

    ABSTRACT Fast Fe(III)/Fe(II) circulation in heterogeneous peroxymonosulfate (PMS) activation remains as a bottleneck issue that restricts the development of PMS based advanced oxidation processes.Herein,we proposed a facile ammonia reduction strategy and synthesized a novel FeVO3-x catalysts to activate PMS for the degradation of a typical pharmaceutical,carbamazepine (CBZ).Rapid CBZ removal could be achieved within 10 min,which outperforms most of the other iron or vanadium-based catalysts.Electron paramagnetic resonance analysis and chemical probe experiments revealed SO4??,?OH,O2??and high valent iron (Fe(IV)) were all generated in this system,but SO4??and Fe(IV) primarily contributed to the degradation of CBZ.Besides,X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy indicated that both the generated low-valent V provides and oxygen vacancy acted as superior electron donors and accelerated internal electron transfer via the unsaturated V?O?Fe bond.Finally,the proposed system also exhibited satisfactory performance in practical applications.This work provides a promising platform in heterogeneous PMS activation.

    Iron induced heterogeneous peroxymonosulfate (PMS) activation processes are promising technologies for the degradation of personal care products (PPCPs) in waters due to the strong oxidation capacity of the generated reactive oxygen species (ROS) [1–3].However,the rate-limiting step of Fe(III) conversion to Fe(II) significantly prohibits PMS decomposition and ROS generation,thus inhibiting the degradation of target pollutants [4,5].In order to expedite the Fe(III)/Fe(II) cycle and ROS generation,previous works usually introduced homogeneous reducing agents in PMS activation processes as co-catalysts for fast removal of refractory pollutants [6–9].Unfortunately,the introduction of homogeneous reductants is restricted in the practical applications due to the serious environmental pollution induced by the oxidized by-products in waters [10].Therefore,it is of great interest to develop novel strategies to accelerate the Fe(III)/Fe(II) circulation.

    It was reported that transition metals serving as electron shuttles can also facilitate the Fe(III)/Fe(II) conversion in Fenton-like oxidation,since the polyvalent metals as electron-sacrificers can donate electrons to Fe(III) until they are oxidized to the highest valence [4,11-13].Our previous results suggested that when the MnFe2O4,Fe2Mo3O12and Fe2TiO5served as catalysts,pollutant degradation efficiencies in PMS activation processes are much lower than that of FeVO4[4],indicating V species serving as electron shuttles outperform Mo,Ti,Mn.Therefore,modulating Febased materials with V species provides a great platform to accelerate Fe(III)/Fe(II) circulation without environmental pollution caused by dissolved matters in waters.Nevertheless,in most cases,stable state of V species in materials are quinquevalent (V(V)) due to the electron-deficient of 3d34s2orbits,implying the difficulties of V species as electron donators lie in the strategy for V reduction in the V modulated Fe-based materials.Our previous study suggested that adding reducing agents can facilitate V(V)species reduction in the FeVO4,further triggering the long-lasting Fe(III)/Fe(II) circulation to effectively degrade target pollutants [4].However,reducing agents at inappropriate dosage may impede the pollutant degradation efficiency due to the quenching effect of ROS and the direct consumption of oxidants.Therefore,it is imperative to develop new tactics to reduce V species in the Fe-V bimetallic materials.

    In this work,a low valent Fe-V bimetallic material (FeVO3-x)with enriched oxygen vacancy was prepared by a coprecipitation method and an ammonia reduction method to activate PMS for carbamazepine (CBZ) degradation.Notably,the reduction process would not only lead to the reduction of V,but also induce the generation of abundant electron-rich oxygen vacancy,which was reported to be a robust PMS adsorption site as well as a flexible switcher to regulate the mechanism transformation from radical to high valent iron (Fe(IV)) generation [14–16].Therefore,the FeVO3-xmay exhibit dual functions to activate PMS and generate a myriad of ROS for CBZ degradation: (i) low valent V species as electron donators raise the efficiency of Fe(III)/Fe(II) conversion;(ii) oxygen vacancy facilitates the generation of high valent Fe species.This work provides new insights into the heterogeneous Fe(III) reduction and ROS production by the defect Fe-V bimetallic catalyst.In addition,the CBZ transformation products and their corresponding toxicity were examined to evaluate the practicability of the FeVO3-x/PMS system.

    Details about the chemicals were provided in Text S1 (Supporting information).The FeVO3-xwas synthesized by the combination methods of coprecipitation and ammonia reduction.In a typical procedure,2.8078 g NH4VO3was dissolved in 150 mL deionized water at 80 °C,and then 150 mL of transparent orange solution with 9.696 g Fe(NO3)3·9H2O was slowly added into NH4VO3solution and stirred for 1 h at 80 °C.The solution was further modulated with dilute ammonia to maintain the pH at 8.0,and aged for several hours at room temperature.Then,the precipitates after filtration and washing with ethanol and water were dried at 110 °C and then calcined in the air at 600 °C for 4 h.Finally,the obtained precipitates were further calcined under ammonia atmosphere with nitrogen purging (10%,N2as the carrier gas,the tube furnace is connected with a washing bottle filled with ammonia)at 700 °C for 4 h to constitute a defect low valent Fe-V bimetallic catalyst.

    For pollutant degradation,all bath experiments were conducted with 150 mL target pollutant solution.The reaction was initiated by adding predetermined amounts of catalysts and PMS.The solution temperature was adjusted at 30 ± 1 °C by using water batch.At the predetermined time,certain volume of reaction solution was filteredviaa 0.22 μm PTFE syringe filter discs and mixed with 20 μL Na2S2O3before analysis.Details about the characterization and analytic methods could be seen in Text S2 (Supporting information).

    X-ray diffraction (XRD) spectrum suggests that the distinct diffraction peaks of FeVO3-xare indexed to (104),(311),(110),and(116) planes,and the crystal phases of pristine FeVO3-xparticles are assigned toγ-Fe2O3and V2O3(Fig.1a),indicating low valent V species exist in FeVO3-x.The vibrating sample magnetometer (VSM) results shows the saturation magnetization of FeVO3-xis ~3 emu/g (Fig.1b),which might originate from the ferromagnetism ofγ-Fe2O3.As shown in Fig.1c,the fresh FeVO3-xparticles are micron-sized and exhibit a unique brain-like morphology with wrinkled surface,which would facilitate the adhesion of PMS in the vicinity of FeVO3-x.Accordingly,the mappings of Fe,V,O species (Figs.1d-f) show that only Fe and V species are uniformly distributed on FeVO3-x,indicating enriched oxygen vacancy was created on the surface of FeVO3-x.Moreover,since the photoluminescence (PL) emission peak at 450 nm is correlated with the electron transition from shallow level to the top of the valence band,the existence of oxygen vacancy in the FeVO3-xis also verified by PL spectrum (Fig.S1 in Supporting information) [17].In addition,the N2adsorption-desorption results (Fig.S2 in Supporting information) manifest that the surface area of fresh FeVO3-xis 1.1 m2/g,suggesting the poor pollutant adsorption ability of FeVO3-x.

    Fig.1. (a) XRD spectrum of FeVO3-x.(b) The magnetic hysteresis loop of FeVO3-x.(c) SEM image and (d-f) the corresponding element mappings of FeVO3-x.

    The performance of FeVO3-x/PMS system was compared with several systems,including FeO/PMS,Fe3O4/PMS,Fe2O3/PMS,V2O3/PMS,V2O4/PMS,FeVO3-xalone and PMS alone systems.Results shown in Fig.2a and Fig.S3 (Supporting information) suggest that PMS in the absence of catalyst cannot oxide CBZ,and FeVO3-xhas no adsorption effect on CBZ,indicating CBZ was degraded by the generated ROS in the FeVO3-x/PMS system.In addition,the CBZ degradation efficiency in the FeVO3-x/PMS system within 10 min treatment is much higher (100%) than those in other systems (6%?36%),implying FeVO3-xcan effectively activate PMS to generate substantial ROS for CBZ degradation.

    Fig.2. (a) CBZ degradation in different systems.(b) DMPO-HO and DMPO-SO4 adducts in the FeVO3-x/PMS system.(c) Quenching effects of TBA and EtOH on CBZ degradation.(d) HPLC chromatograms of PMSO and PMSO2 in the FeVO3-x/PMS system.(e) PMSO degradation and PMSO2 generation in the FeVO3-x/PMS system.(f) DMPO-O2 adducts in the FeVO3-x/PMS system.Experiment condition: [FeVO3-x]0=100 mg/L,[PMS]0=0.2 mmol/L,[CBZ]0=2.5 mg/L,pHini=6.3,[PMSO]0=200 μmol/L,[DMPO]0=50 mmol/L.

    Fig.3. XPS spectra of fresh and used FeVO3-x: Fe 2p core level in the (a) fresh and (b) used FeVO3-x,V 2p core level in the (c) fresh and (d) used FeVO3-x,O 1s core level in the (e) fresh and (f) used FeVO3-x.

    The electron paramagnetic resonance (EPR) test using 5,5-dimethyl-1-pyrrolineN-oxide (DMPO) as theinsituradical spin-trapping reagent was conducted to qualitatively analyze the existence of the main ROS in the FeVO3-x/PMS system.In contrast to PMS alone and FeVO3-xalone systems (Fig.2b),two signals appearing in the FeVO3-x/PMS system are assigned to DMPO-HO adduct (four characteristic peaks with height ratio of 1:2:2:1,αN=αH=14.9 G) and DMPO-SO4adduct (αN=13.8 G,αH=10.1 G,αH=1.4 G,andαH=0.8 G) [18–20],implying both hydroxyl radicals (?OH) and sulfate radicals (SO4??) were generated in the FeVO3-x/PMS system.However,since DMPO-SO4adduct is easily converted into DMPO-HO adduct [21],the signal intensity of DMPO-SO4adduct is weak in the FeVO3-x/PMS system.To further disclose the identity of?OH and SO4??in the FeVO3-x/PMS system,tert-butyl alcohol (TBA) was introduced for?OH quenching4.0–9.1 × 105L mol?1s?1,kTBA/?OH: 3.8–7.6 × 108L mol?1s?1) [22–24],and ethanol (EtOH) was introduced for both?OH and SO4??quenching: 1.6 × 107L mol?1s?1,kEtOH/?OH: 1.9 × 109L mol?1s?1) [22].Fig.2c suggests that the quenching effects of EtOH increase as a function of concentration(50-200 mmol/L),while TBA has a feeble quenching effect on CBZ degradation regardless of the concentration (50-200 mmol/L).Besides,the semi-quantitative analysis of?OH in the FeVO3-x/PMS system were conducted with the terephthalic acid (TPA),since 2-hydroxyterephthalic acid (HTPA) as the characteristic product can be produced after the attack of?OH [25].Surprisingly,we found that the degradation trend of CBZ in the FeVO3-x/PMS system was similar to that in the classic co-catalytic Fenton system (hydroxylamine/Fenton,Fig.S4a in Supporting information).The ROS in the hydroxylamine/Fenton system are undoubtedly?OH.Therefore,the contribution of?OH and SO4??formed in the FeVO3-x/PMS system can be better investigated by comparing with the hydroxylamine/Fenton system.Clearly,the generation concentration of HTPA in the FeVO3-x/PMS system was much lower (Fig.S4b in Supporting information) when the degradation trend of CBZ in the FeVO3-x/PMS system was similar to that in the classic co-catalytic Fenton system (hydroxylamine/Fenton).The collective results indicate that though both?OH and SO4??are generated in the FeVO3-x/PMS system,the amounts of SO4??are much more than that of?OH.

    Since some studies pointed out that high-valent iron-oxo species (Fe(IV)) might be produced in the Fe mediated Fentonlike systems and the reaction rate between Fe(IV) and ethanol(kEtOH/Fe(IV): 2.51 × 103L mol?1s?1) is obviously faster than that between Fe(IV) and TBA (kEtOH/Fe(IV): 6 × 101L mol?1s?1)[19,26,27],the existence of Fe(IV) in FeVO3-x/PMS system was further qualitatively analyzed by the chemical probe method.Methyl phenyl sulfoxide (PMSO) was applied as a chemical probe because the reaction between PMSO with Fe(IV) proceeds through an oxygen atom transfer and methyl phenyl sulfone (PMSO2) is quantitatively generated [27].From the HPLC chromatograms,it is obvious that the concentration of PMSO was decreased while PMSO2was accumulated in the FeVO3-x/PMS system (Fig.2d).We further quantified the concentrations of PMSO2and PMSO to confirm the existence of Fe(IV).Results show that conversion efficiency of PMSO to PMSO2is 68.2% (Fig.2e),implying the role of Fe(IV) in the FeVO3-x/PMS system for CBZ degradation cannot be ignored.Moreover,some researchers argued that high-valent iron-oxo species might induce the production of O2??[28,29].Therefore,EPR test was conducted with DMPO in the dimethyl sulfoxide (DMSO)solution to identify the existence of O2??.The EPR spectrum with hyperfine splitting parameters ofαH=14.25 G,αN=12.45 G,and an intensity ratio of 1:1:1:1 is indexed to DMPO-O2adduct (Fig.2f)[30],indicating high-valent iron-oxo species reacting with PMS induces the formation of O2??.Combined with the results of quenching experiment,although O2??is produced in the FeVO3-x/PMS system,O2??has a negligible effect on CBZ degradation.

    To further elucidate the generation of ROS in the FeVO3-x/PMS system,the chemical compositions of FeVO3-xwere scrutinized by XPS analysis.The spectra of Fe 2p core level in the pristine and reacted FeVO3-xshow that the ratio of Fe(III) to Fe(II) is nearly invariable Figs.3a and b),indicating the generated Fe(III) induced by the reaction between PMS and Fe(II) can be quickly reduced during treatment process.In contrast with the chemical state of Fe,pronounced changes occurred in the V species after the final reaction (Figs.3c and d),where a new peak located at 517.20 eV assigned to V(V) [31,32] was found.The oxidation of V species in the FeVO3-x/PMS system follows two pathways: (i) low valent V species (V(III) and V(IV)) react with PMS (HSO5?) to generate V(V) (Eqs.1 and 2);(ii) low valent V species as electron donators transfer electrons to Fe(III) for fast Fe(II) regeneration and finally convert to V(V) (Eqs.3 and 4).The first pathway is confirmed by Fig.2a since 32% and 25% CBZ can be degraded in the V2O3/PMS and V2O4/PMS systems,respectively.The second pathway of low valent V species for Fe(III) reduction is further scrutinized in the following content.In addition,compared with fresh FeVO3-x,the decrease of oxygen vacancy in the used FeVO3-x(Figs.3e and f)also verifies that oxygen vacancy participated in the CBZ degradation.

    To further investigate the role of low valent V species for Fe(III)reduction,the electronic structure and coordination environment of Fe and V species in the FeVO3-x,along with some other Fe and V-based oxides (FeO,Fe3O4,Fe2O3,V2O5,V2O4,and V2O3standards) were evaluated by X-ray absorption spectroscopy (XAS).E0was calculated as the maximum peak energy of the first derivative of the spectrum,which was used to identify the Fe oxidation state of different materials.According to the Fe K-edge X-ray absorption near edge structure (XANES) of FeVO3-xand other Fe-based oxides(Fig.4a),the value (7112.2 eV) ofE0in FeO spectrum is lowest,while in Fe2O3spectrum is highest (7114.1 eV),indicatingE0in Fe K-edge XANES spectrum increases as a function of chemical valence of Fe.Since the value (7112.7 eV) ofE0in the FeVO3-xis between that of FeO and Fe2O3,both Fe(II) and Fe(III) exist in the FeVO3-x.However,only Fe(III) exists in the FeVO3-xprecursor because itsE0is the same as that of Fe2O3.In addition,in contrast with Fe3O4,the pre-edge peak intensity of FeVO3-xis weaker than that of Fe3O4,implying the amount of Fe(II) in the FeVO3-xis more than that of in the Fe3O4,since the 3d orbital of Fe(II) possesses less electron number than that of Fe(III),and the pre-edge peak represents the 1s →3d electron transition [33].

    Fig.4. (a) Fe K-edge XANES analysis,(b) V K-edge XANES analysis,FT curves of (c) Fe K-edge and (d) V K-edge EXAFS k3χ(k) functions obtained from the XANES spectra without fitting.(e,f) The fitting values of V K-edge EXAFS k3χ(k) functions obtained from the XANES spectra,and (g) WT of V-foil,FeVO3-x and FeVO3-x precursor.

    As for the valence of V,the FeVO3-xprecursor,V2O5,V2O4,and V2O3standards have a pre-edge peak with prominent intensity,which drastically increases with V species oxidation states(Fig.4b).However,the pre-edge peak pattern of FeVO3-xis in remarkable contrast to those of other V-based materials.Since the symmetry of the V species in FeVO3-xdiffers from FeVO3-xprecursor,V2O3,V2O4,and V2O5,the oxidation states of V species in the FeVO3-xcannot be defined only by the pre-edge peak intensity.On the other hand,the V K-edge XANES spectrum of FeVO3-xis in line with the literature reports [4,34],indicating the oxidation state of V species in the FeVO3-xis trivalent and tetravalent.

    The Fourier-transformed (FT) extended X-ray absorption fine structures of Fe K-edge (EXAFSk3χ(k)) are shown in Fig.4c.The peak at ~1.5 ?A (without phase correction) can be identified as Fe-O bond.Comparing FeVO3-xprecursorversusFeVO3-x,the peak at ~1.5 ?A shifts to much lower intensity in FeVO3-x(Fig.4c),suggesting the coordination number decreases in FeVO3-x,which further well-documents the existence of oxygen vacancies.Since the FT curves of V K-edge EXAFSk3χ(k) functions (Fig.4d) are more complicated than that of Fe K-edge EXAFSk3χ(k),the fitting curves of FeVO3-xcompared with FeVO3-xprecursor and V foil are shown in Fig.4e,Fig.4f and Table S1 (Supporting information).The well-resolved peaks at ~1.4 ?A and ~3.0 ?A (without phase correction) in FeVO3-xand FeVO3-xprecursor are indexed to V-O bond and V?O?Fe bond,respectively.The coordination numbers of V-O and V?O?Fe shells in the FeVO3-xare 3.0 and 0.6,which is in marked contrast to that of in the FeVO3-xprecursor(5.6 and 3.0,respectively,Table S1),also indicating the existence of existence of oxygen vacancies.Moreover,the wavelet transform plots (Fig.4g) of FeVO3-xand FeVO3-xprecursor also reflect the existence of V-O and V?O?Fe bonds.The existence of V?O?Fe bond facilitates the interpretation of the interelectronic interaction of Fe and V species in FeVO3-x.Specifically,the electron-riched t2gdorbitals of V species donating electrons to the electron-deficient t2gd-orbitals of Fe(III) species through the bridging O2?viaπdonation [4].Moreover,CBZ degradation and Fe(II) generation after external addition of Fe(III) into V2O4/PMS and V2O3/PMS systems (Fig.S5 in Supporting information) also imply low-valent V species as electron-rich promoters mediate electron shuttles to expedite Fe(III) reduction and pollutant degradation.To further confirm the interaction of oxygen vacancy and PMS molecules,we further conductedin-situRaman spectroscopy analysis.TheinsituRaman spectroscopy shows that the peak intensities of FeVO3-xat 146,286,and 703 cm?1increase after adding PMS (Fig.S6 in Supporting information),indicating peroxo species bound to the surface oxygen vacancies might be formed [17].

    Previous studies suggested that co-existing anions in water might react with?OH and SO4??(Eqs.5-12) [35–37].Therefore,the effects of different anions,such as Cl?,H2PO4?,NO3?and HCO3?,on CBZ degradation in the FeVO3-x/PMS system were investigated.From Fig.5a,it is clear that the common anions,such as Cl?,H2PO4?and NO3?in natural water almost show negligible effects on CBZ degradation,which suggests the great matrix resistance of this system.The obvious inhibition of CBZ degradation in the presence of HCO3?might originate from the considerable alkalinity induced by the introduction of HCO3?.However,in actual water samples such as tap water,Jinjiang water and Jiangan water,the degradation performance severely decreased (Fig.5b).This might be ascribed to the pH buffer effects of natural water samples and the presence of natural organic matters,which could severely compete with target contaminants for oxidative ROS.Finally,the system exhibited satisfactory cyclic performance during consecutive runs (Fig.5c).Despite a little decrease of CBZ removal from 100% to 80%,a facile N2or NH3regeneration could effectively restore the reactivity of used FeVO3-xand ensure the long-term stability.

    Fig.5. (a) The effect of Cl?,NO3?,HCO3?,and H2PO4? co-existing ions on CBZ degradation.(b) CBZ degradation in different water samples.(c) CBZ degradation in FeVO3-x/PMS system during 5 consecutive runs and after FeVO3-x regeneration.Experiment condition: [FeVO3-x]0=100 mg/L,[PMS]0=0.2 mmol/L,[CBZ]0=2.5 mg/L,pHini=6.3,[Cl?]=5 mg/L,[NO3?]=5 mg/L,[HCO3?]=20 mg/L,[H2PO4?]=5 mg/L.

    Based on the detected seven intermediates,we proposed the possible degradation pathway of CBZ in the FeVO3-x/PMS system(Fig.6a,Table S2 and Figs.S7-S14 in Supporting information).First,the olefinic unsaturated bond of central heterocyclic ring is readily attacked [4,38],and thusP1(m/z=251.0821) andP2(m/z=269.0922) are formed owing to the attack of SO4??,?OH and Fe(IV).P2is then oxidized toP5(m/z=267.0772)viaintramolecular cyclisation and carboxylation reactions.In addition,the dialdehyde moieties ofP2are unstable,which leads to the rotation of benzene ring ofP2to generateP6(m/z=267.0774).The aldehyde moiety on theP6can be further oxidized by the ROS to form a carboxylic acid product (P7,m/z=283.0723).Subsequently,P7could be oxidized to form P4 (m/z=196.0766)viadeamination,acrylamido abstraction,and decarboxylation reactions.Moreover,P1can also be oxidized to generateP3(m/z=180.0813)viaintramolecular cyclisation,amine/acrylamido cleavage and de-formyl,which further be oxidized to produceP4.Finally,these detected intermediates are mineralized to CO2and H2O.Specifically,the TOC removal drastically increased with treatment time (Fig.S15 in Supporting information): the TOC removal reached 17% after 10 min treatment,while it increased to 55% after 120 min treatment.

    Fig.6. (a) CBZ degradation pathways in the FeVO3-x/PMS system.(b) Acute toxicity,(c) bioaccumulation factor,(d) developmental toxicity,and (e) mutagenicity of CBZ and its intermediates.Experimental conditions for (a): [FeVO3-x]0=100 mg/L,[PMS]0=0.2 mmol/L,[CBZ]0=2.5 mg/L,and initial pHini=6.3.

    Furthermore,we also evaluated the developmental toxicity,acute toxicity,bioaccumulation factor and mutagenicity of original CBZ and its intermediates through the Toxicity Estimation Software Tool.Fig.6b shows the oral rat LD50 ofP1andP5are 213.16 and 287.73 mg/kg,respectively,which are much lower than that of CBZ(1636.63 mg/kg),implying the acute toxicities ofP1andP5are quite more toxic than original CBZ.However,the acute toxicities of most types of intermediates are much lower than CBZ.Since the potential hazards of these intermediates are negative correlation with bioaccumulation factor,and Fig.6c shows the bioaccumulation factors ofP2,P5,P6,P7(9.56,7.41,19.70,and 4.98,respectively) are much lower than that of CBZ (27.38),four intermediates have quite lower risks than CBZ.However,the results of developmental toxicity (Fig.6d) and mutagenicity (Fig.6e) suggest that five developmental toxicants (P1,P2,P5,P6andP7) and five mutagenicity negative intermediates (P1,P3,P4,P5andP7) are generated after treatment process.

    In this work,we synthesized a novel catalysts FeVO3-xviaa facile ammonia reduction method.The high-temperature reduction process endowed the catalysts with abundant low-valent V species and electron-rich oxygen vacancy,which are both conducive to the circulation of Fe(III) to Fe(II).Through quenching experiments and EPR analysis,we found that?OH,SO4??,O2??and Fe(IV) were all generated in this system,but only SO4??and Fe(IV) primarily contributed to the degradation of CBZ.X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy indicated that both the low-valent V provides and oxygen vacancy could accelerate the internal electron transfer to Fe(III)viathe unsaturated V?O?Fe bond.Despite a little decrease of performance after consecutive runs,the activity could be effectively regeneratedviare-calcination treatment.Finally,the degradation product and the corresponding toxicity analysis revealed that this system is basically a toxicity attenuation process,demonstrating its potential in practical application.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The first author is funded by the Shanghai Tongji Gao Tingyao Environmental Science &Technology Development Foundation.Additionally,the authors acknowledge the staff at beamline 1WB at the Beijing Synchronic Radiation Facility (BSRF) for their assistance during the XAS measurements.And the authors would like to acknowledge the financial support from National Natural Science Foundation of China (Nos.52070133,2022NSFSC0972),Sichuan Science and Technology Program: Key Research and Development Program (Nos.2019YFG0314,2017SZ0180 and 2019YFG0324).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108580.

    后天国语完整版免费观看| 国产黄色视频一区二区在线观看| 精品人妻1区二区| 国产午夜精品一二区理论片| cao死你这个sao货| 高清av免费在线| 最近手机中文字幕大全| av线在线观看网站| 老司机影院毛片| 欧美人与性动交α欧美精品济南到| 婷婷成人精品国产| 蜜桃在线观看..| 亚洲一码二码三码区别大吗| 欧美中文综合在线视频| 久久国产精品影院| 亚洲第一青青草原| av网站在线播放免费| 午夜精品国产一区二区电影| 亚洲精品在线美女| 97精品久久久久久久久久精品| 亚洲欧美激情在线| 无限看片的www在线观看| 色播在线永久视频| 看免费av毛片| 欧美精品av麻豆av| 脱女人内裤的视频| 午夜免费鲁丝| 人人澡人人妻人| 久久青草综合色| 国产黄色视频一区二区在线观看| 久久毛片免费看一区二区三区| 日韩av不卡免费在线播放| 成人三级做爰电影| 老司机亚洲免费影院| 老熟女久久久| 亚洲欧美精品自产自拍| 国产97色在线日韩免费| 美女国产高潮福利片在线看| 国产欧美日韩一区二区三 | 亚洲成人国产一区在线观看 | 中文字幕亚洲精品专区| 女性生殖器流出的白浆| 亚洲国产av新网站| 我要看黄色一级片免费的| 涩涩av久久男人的天堂| 男女下面插进去视频免费观看| 可以免费在线观看a视频的电影网站| 国语对白做爰xxxⅹ性视频网站| 成年av动漫网址| 捣出白浆h1v1| 操出白浆在线播放| 日韩免费高清中文字幕av| 女人高潮潮喷娇喘18禁视频| 最近最新中文字幕大全免费视频 | 欧美黄色片欧美黄色片| 亚洲天堂av无毛| 午夜免费鲁丝| 天天躁夜夜躁狠狠躁躁| 美女脱内裤让男人舔精品视频| 免费不卡黄色视频| 亚洲欧美一区二区三区久久| 亚洲少妇的诱惑av| 母亲3免费完整高清在线观看| 一边亲一边摸免费视频| 国产精品久久久久久精品电影小说| 国产精品久久久av美女十八| 久久免费观看电影| 久久精品久久精品一区二区三区| 男女午夜视频在线观看| 亚洲黑人精品在线| 久久人人爽av亚洲精品天堂| 成年av动漫网址| 夫妻性生交免费视频一级片| 自拍欧美九色日韩亚洲蝌蚪91| 不卡av一区二区三区| 搡老岳熟女国产| 纵有疾风起免费观看全集完整版| 亚洲国产精品一区三区| 欧美日韩黄片免| 国产在线视频一区二区| 欧美黄色淫秽网站| 亚洲精品第二区| 蜜桃在线观看..| 如日韩欧美国产精品一区二区三区| 国产成人av激情在线播放| 丝袜在线中文字幕| 男女之事视频高清在线观看 | 极品少妇高潮喷水抽搐| 亚洲av欧美aⅴ国产| av网站在线播放免费| 欧美日韩av久久| 考比视频在线观看| 精品国产乱码久久久久久小说| 国产成人a∨麻豆精品| 亚洲少妇的诱惑av| 视频在线观看一区二区三区| 亚洲 欧美一区二区三区| 成年av动漫网址| 国产av精品麻豆| 色综合欧美亚洲国产小说| 欧美日韩av久久| 亚洲精品一二三| 亚洲色图 男人天堂 中文字幕| 日日爽夜夜爽网站| 日本欧美视频一区| 香蕉国产在线看| 午夜福利视频精品| 巨乳人妻的诱惑在线观看| 久久久久久久久久久久大奶| 多毛熟女@视频| 国产亚洲一区二区精品| 成在线人永久免费视频| 十分钟在线观看高清视频www| 国产1区2区3区精品| 成人手机av| 国产福利在线免费观看视频| 黑丝袜美女国产一区| 伊人亚洲综合成人网| 精品国产一区二区久久| 日本一区二区免费在线视频| 久久这里只有精品19| 高清av免费在线| 国产免费一区二区三区四区乱码| 99久久综合免费| 2021少妇久久久久久久久久久| 午夜激情av网站| 欧美成人精品欧美一级黄| 一个人免费看片子| 国产av一区二区精品久久| 久久国产精品大桥未久av| 最新的欧美精品一区二区| 久久久精品94久久精品| 亚洲国产欧美网| 精品亚洲成国产av| 亚洲精品久久久久久婷婷小说| 久久99热这里只频精品6学生| 亚洲av在线观看美女高潮| 国产成人精品在线电影| 免费高清在线观看视频在线观看| 一本一本久久a久久精品综合妖精| 高清欧美精品videossex| xxxhd国产人妻xxx| netflix在线观看网站| 日本欧美国产在线视频| 亚洲av综合色区一区| 久久久久久久国产电影| 男女无遮挡免费网站观看| 岛国毛片在线播放| 欧美xxⅹ黑人| 女警被强在线播放| 777米奇影视久久| 亚洲国产中文字幕在线视频| 一本久久精品| 美女视频免费永久观看网站| 日韩精品免费视频一区二区三区| 国产黄色免费在线视频| 精品少妇久久久久久888优播| 久久久久久免费高清国产稀缺| 久久狼人影院| 亚洲国产欧美一区二区综合| netflix在线观看网站| 精品一品国产午夜福利视频| 亚洲熟女精品中文字幕| 丰满少妇做爰视频| 亚洲精品美女久久久久99蜜臀 | 好男人电影高清在线观看| 亚洲欧美一区二区三区黑人| 国产99久久九九免费精品| 国产日韩欧美亚洲二区| 亚洲精品久久久久久婷婷小说| 国产成人a∨麻豆精品| 男人添女人高潮全过程视频| 黄色片一级片一级黄色片| 热99国产精品久久久久久7| 亚洲成人国产一区在线观看 | 午夜免费观看性视频| 国产一区二区三区av在线| 99久久99久久久精品蜜桃| 亚洲精品久久成人aⅴ小说| 制服诱惑二区| 一本综合久久免费| 黄片小视频在线播放| 亚洲国产av影院在线观看| 丝袜脚勾引网站| 亚洲精品美女久久av网站| 精品欧美一区二区三区在线| 黄色 视频免费看| 叶爱在线成人免费视频播放| 中文字幕最新亚洲高清| 国产在线观看jvid| 欧美日韩福利视频一区二区| 国产亚洲av高清不卡| 成人亚洲精品一区在线观看| 久久热在线av| 午夜福利视频在线观看免费| av福利片在线| 亚洲熟女毛片儿| 午夜福利在线免费观看网站| 一级毛片电影观看| 国产精品久久久av美女十八| 精品熟女少妇八av免费久了| 国产亚洲av高清不卡| 免费高清在线观看日韩| 久久久久久久久免费视频了| 国产精品久久久av美女十八| 久久精品久久久久久噜噜老黄| 下体分泌物呈黄色| 国产亚洲欧美在线一区二区| 精品第一国产精品| 久久精品aⅴ一区二区三区四区| 日本av免费视频播放| 丰满少妇做爰视频| 欧美97在线视频| 亚洲精品自拍成人| 午夜91福利影院| 亚洲 国产 在线| 久久人妻熟女aⅴ| 精品一区二区三区av网在线观看 | 中文乱码字字幕精品一区二区三区| 91精品三级在线观看| 国产成人欧美在线观看 | 国产精品亚洲av一区麻豆| 久久久精品区二区三区| 久久人妻熟女aⅴ| 精品少妇久久久久久888优播| 精品一区二区三卡| 国产97色在线日韩免费| 婷婷色av中文字幕| 亚洲一码二码三码区别大吗| 99九九在线精品视频| 亚洲视频免费观看视频| av网站在线播放免费| 999久久久国产精品视频| 久久天躁狠狠躁夜夜2o2o | 国产黄色免费在线视频| a级毛片黄视频| 女性生殖器流出的白浆| 亚洲欧美日韩高清在线视频 | 精品人妻1区二区| 久久99精品国语久久久| 国产精品免费视频内射| 大型av网站在线播放| 国精品久久久久久国模美| 两个人免费观看高清视频| av片东京热男人的天堂| 在线观看www视频免费| 国产免费福利视频在线观看| 黄色毛片三级朝国网站| 99国产精品免费福利视频| 婷婷丁香在线五月| av在线app专区| 91国产中文字幕| 热99国产精品久久久久久7| 国产三级黄色录像| xxxhd国产人妻xxx| 高清视频免费观看一区二区| 亚洲欧洲精品一区二区精品久久久| 免费黄频网站在线观看国产| 国产一区二区在线观看av| 亚洲精品在线美女| 亚洲人成电影观看| 侵犯人妻中文字幕一二三四区| 一级毛片黄色毛片免费观看视频| 亚洲中文日韩欧美视频| 国产一区二区激情短视频 | 超碰97精品在线观看| 欧美精品一区二区大全| 咕卡用的链子| 日韩,欧美,国产一区二区三区| 日韩av免费高清视频| 亚洲图色成人| 日本一区二区免费在线视频| 晚上一个人看的免费电影| 久久免费观看电影| 丝袜脚勾引网站| 欧美日韩亚洲综合一区二区三区_| 我的亚洲天堂| av网站免费在线观看视频| 真人做人爱边吃奶动态| 久久精品国产亚洲av涩爱| 一边亲一边摸免费视频| 精品国产一区二区三区四区第35| 国产一区亚洲一区在线观看| 亚洲伊人色综图| 波多野结衣一区麻豆| 又紧又爽又黄一区二区| 母亲3免费完整高清在线观看| 国产在视频线精品| 成人亚洲欧美一区二区av| 黄色a级毛片大全视频| 久热这里只有精品99| 少妇的丰满在线观看| 成人国产一区最新在线观看 | 国产野战对白在线观看| 国产极品粉嫩免费观看在线| 丝袜在线中文字幕| 最新的欧美精品一区二区| 亚洲一区中文字幕在线| 国产成人精品久久久久久| 久久精品国产综合久久久| 黄色视频不卡| 一级毛片女人18水好多 | 99久久综合免费| 久久久久精品人妻al黑| 亚洲精品久久午夜乱码| 精品少妇黑人巨大在线播放| 9色porny在线观看| 深夜精品福利| 亚洲欧美日韩高清在线视频 | 在线观看免费视频网站a站| av片东京热男人的天堂| 国产亚洲精品第一综合不卡| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 一区二区av电影网| 91字幕亚洲| 亚洲美女黄色视频免费看| 久久国产精品影院| 亚洲av国产av综合av卡| 午夜两性在线视频| 亚洲人成电影观看| 亚洲精品在线美女| 男人操女人黄网站| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 国产亚洲一区二区精品| 成年人黄色毛片网站| 一边摸一边做爽爽视频免费| 亚洲av国产av综合av卡| 国产精品国产三级国产专区5o| 交换朋友夫妻互换小说| 九色亚洲精品在线播放| 国产成人精品无人区| 午夜福利影视在线免费观看| 久久人妻熟女aⅴ| 国语对白做爰xxxⅹ性视频网站| 90打野战视频偷拍视频| 精品国产国语对白av| 性高湖久久久久久久久免费观看| 亚洲 欧美一区二区三区| 久久精品国产亚洲av涩爱| 国产一区二区 视频在线| kizo精华| 久久热在线av| 国产欧美日韩精品亚洲av| 91老司机精品| www.999成人在线观看| 久久影院123| 欧美变态另类bdsm刘玥| 青春草亚洲视频在线观看| 两个人免费观看高清视频| 国产成人啪精品午夜网站| 精品视频人人做人人爽| 国产精品三级大全| 热99久久久久精品小说推荐| 两个人看的免费小视频| 男女床上黄色一级片免费看| 亚洲精品久久午夜乱码| 五月开心婷婷网| 亚洲精品av麻豆狂野| 亚洲,欧美,日韩| 亚洲av电影在线观看一区二区三区| 两个人免费观看高清视频| 多毛熟女@视频| 久久亚洲精品不卡| 欧美大码av| 亚洲第一青青草原| 脱女人内裤的视频| 国产成人精品在线电影| 夜夜骑夜夜射夜夜干| 99精国产麻豆久久婷婷| 在现免费观看毛片| 一级,二级,三级黄色视频| 又紧又爽又黄一区二区| 超色免费av| 日韩中文字幕欧美一区二区 | 十八禁高潮呻吟视频| 精品一区二区三区四区五区乱码 | 99香蕉大伊视频| 欧美 日韩 精品 国产| 欧美日韩一级在线毛片| 精品亚洲乱码少妇综合久久| 亚洲精品乱久久久久久| 国产又爽黄色视频| 免费av中文字幕在线| 久久毛片免费看一区二区三区| 国产高清videossex| 1024香蕉在线观看| 一级毛片女人18水好多 | 亚洲精品日本国产第一区| 国产免费福利视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | bbb黄色大片| 国产在线一区二区三区精| 国产成人免费观看mmmm| 国产淫语在线视频| 制服人妻中文乱码| 十八禁网站网址无遮挡| 丝袜美足系列| 亚洲七黄色美女视频| 9热在线视频观看99| 麻豆av在线久日| 麻豆乱淫一区二区| 中文字幕人妻熟女乱码| 涩涩av久久男人的天堂| 日韩av免费高清视频| 赤兔流量卡办理| 久久国产精品人妻蜜桃| 九草在线视频观看| 99九九在线精品视频| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 两性夫妻黄色片| 老司机靠b影院| 国产成人一区二区三区免费视频网站 | avwww免费| 国产精品 欧美亚洲| 1024香蕉在线观看| 日日摸夜夜添夜夜爱| 色94色欧美一区二区| 精品久久久精品久久久| 亚洲av欧美aⅴ国产| 秋霞在线观看毛片| 精品熟女少妇八av免费久了| 日本91视频免费播放| 国产亚洲欧美精品永久| 18禁国产床啪视频网站| 国产成人免费无遮挡视频| 国产av精品麻豆| 老司机影院成人| 满18在线观看网站| 亚洲熟女毛片儿| 别揉我奶头~嗯~啊~动态视频 | 精品国产乱码久久久久久男人| 老司机亚洲免费影院| 日韩av不卡免费在线播放| 在线观看www视频免费| 国产欧美日韩综合在线一区二区| 99久久人妻综合| 狂野欧美激情性xxxx| 日韩欧美一区视频在线观看| 色视频在线一区二区三区| 久久精品人人爽人人爽视色| 国产精品熟女久久久久浪| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲高清精品| 一本—道久久a久久精品蜜桃钙片| 精品一品国产午夜福利视频| 91老司机精品| 精品国产一区二区三区久久久樱花| 热99国产精品久久久久久7| 亚洲精品自拍成人| 在线亚洲精品国产二区图片欧美| 成人国产av品久久久| 亚洲成人免费电影在线观看 | 青春草视频在线免费观看| 中文字幕最新亚洲高清| 日韩熟女老妇一区二区性免费视频| 一本综合久久免费| 视频在线观看一区二区三区| 久久久久久久国产电影| 国产97色在线日韩免费| videos熟女内射| 久久久久视频综合| 宅男免费午夜| 少妇猛男粗大的猛烈进出视频| 免费观看av网站的网址| 97人妻天天添夜夜摸| 亚洲熟女精品中文字幕| av在线老鸭窝| 久久热在线av| 国产av精品麻豆| 欧美精品亚洲一区二区| 欧美日韩一级在线毛片| 国产xxxxx性猛交| www.熟女人妻精品国产| 岛国毛片在线播放| 欧美精品啪啪一区二区三区 | 色婷婷av一区二区三区视频| 成人午夜精彩视频在线观看| av国产精品久久久久影院| 你懂的网址亚洲精品在线观看| 亚洲专区国产一区二区| 黄色片一级片一级黄色片| 精品一区二区三卡| 亚洲精品久久午夜乱码| 成年美女黄网站色视频大全免费| 黄网站色视频无遮挡免费观看| 一区二区av电影网| 午夜免费观看性视频| 久久精品久久精品一区二区三区| 男女之事视频高清在线观看 | 伊人亚洲综合成人网| 老司机靠b影院| 爱豆传媒免费全集在线观看| 亚洲,欧美精品.| 大片免费播放器 马上看| 欧美精品人与动牲交sv欧美| 久久久久久人人人人人| 大码成人一级视频| 人妻一区二区av| 精品国产国语对白av| 久久免费观看电影| 伊人久久大香线蕉亚洲五| 熟女少妇亚洲综合色aaa.| 久久精品国产亚洲av涩爱| 一本大道久久a久久精品| 亚洲精品日韩在线中文字幕| 黑人巨大精品欧美一区二区蜜桃| 国产精品 欧美亚洲| 五月开心婷婷网| 亚洲国产精品成人久久小说| 婷婷色综合大香蕉| 日韩精品免费视频一区二区三区| 日日夜夜操网爽| 高清黄色对白视频在线免费看| 欧美日韩黄片免| 一本色道久久久久久精品综合| 亚洲精品一二三| 99九九在线精品视频| 久久精品成人免费网站| 亚洲精品一区蜜桃| 中国国产av一级| 美女脱内裤让男人舔精品视频| 久久人人爽人人片av| 亚洲国产av新网站| 蜜桃在线观看..| 91九色精品人成在线观看| 久久精品成人免费网站| 精品人妻一区二区三区麻豆| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区久久久樱花| 精品少妇一区二区三区视频日本电影| 国产欧美日韩综合在线一区二区| av欧美777| 在线观看免费高清a一片| 老鸭窝网址在线观看| 男人舔女人的私密视频| 精品一区在线观看国产| 欧美日韩综合久久久久久| 麻豆乱淫一区二区| 桃花免费在线播放| 亚洲,欧美,日韩| 不卡av一区二区三区| 成人黄色视频免费在线看| 巨乳人妻的诱惑在线观看| 脱女人内裤的视频| av网站免费在线观看视频| 天天躁夜夜躁狠狠躁躁| av一本久久久久| 老司机影院毛片| 亚洲成人免费电影在线观看 | 欧美激情 高清一区二区三区| 精品久久久精品久久久| 久久九九热精品免费| 天天影视国产精品| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠久久av| 国产在线一区二区三区精| 久久影院123| 免费观看av网站的网址| 欧美成人精品欧美一级黄| 国产男女内射视频| 亚洲av电影在线进入| 亚洲精品成人av观看孕妇| 日韩大片免费观看网站| 久久精品国产亚洲av涩爱| 美女国产高潮福利片在线看| 午夜老司机福利片| 尾随美女入室| 女性被躁到高潮视频| 日本一区二区免费在线视频| 国产欧美日韩一区二区三 | 韩国高清视频一区二区三区| 各种免费的搞黄视频| 亚洲成人国产一区在线观看 | 中文欧美无线码| 国产成人系列免费观看| 啦啦啦视频在线资源免费观看| 母亲3免费完整高清在线观看| 亚洲伊人色综图| 91老司机精品| 亚洲av欧美aⅴ国产| av天堂在线播放| 青青草视频在线视频观看| cao死你这个sao货| 黑人巨大精品欧美一区二区蜜桃| 亚洲av电影在线观看一区二区三区| 国产一区二区激情短视频 | 久久人人爽人人片av| 亚洲伊人久久精品综合| www.999成人在线观看| a 毛片基地| 国产成人免费观看mmmm| 亚洲精品美女久久av网站| 一级a爱视频在线免费观看| av片东京热男人的天堂| 精品少妇黑人巨大在线播放| 欧美精品亚洲一区二区| 十分钟在线观看高清视频www| 亚洲精品美女久久av网站| 久久国产精品影院| 狂野欧美激情性xxxx| 女人久久www免费人成看片| 午夜两性在线视频| 久久久国产一区二区| 亚洲av电影在线进入| 婷婷成人精品国产| www.熟女人妻精品国产| 男女之事视频高清在线观看 | 后天国语完整版免费观看| 久久久精品免费免费高清| 一区二区三区乱码不卡18| 中文字幕人妻熟女乱码| 国产91精品成人一区二区三区 |