• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New insight into polystyrene ion exchange resin for efficient cesium sequestration: The synergistic role of confined zirconium phosphate nanocrystalline

    2023-02-18 01:55:32MengzhouWngMingynFuJunfengLiYihuiNiuQingruiZhngQinSun
    Chinese Chemical Letters 2023年12期

    Mengzhou Wng ,Mingyn Fu ,Junfeng Li ,Yihui Niu ,Qingrui Zhng,? ,Qin Sun,?

    a Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse,School of Environmental and Chemical Engineering,Yanshan University,Qinhuangdao 066004,China

    b Laboratory of Environmental Technology,INET,Tsinghua University,Beijing 100084,China

    Keywords:Zirconium phosphate Nanocrystalline Polystyrene resin Cesium Removal

    ABSTRACT Polystyrene resins (PS) have been practical ion exchangers for radionuclides removal from water.However,nonspecific effects of ion exchange groups continue to be a major obstacle for emergency treatment with coexisting ions of high concentrations.The selectivity for Cs+ enables zirconium phosphate (ZrP)to be the most promising inorganic sorbent for radioactive cesium extraction,despite being difficult to synthesize and causing excessive pressure loss in fixed-bed reactors due to fine powder.Herein,through facile confined crystallization in host macropores,we prepared PS confined α-ZrP nanocrystalline(ZrP-PS).Size-screen sorption of layered α-ZrP and sulfonic acid group preconcentration of PS synergistically enable a considerably higher Cs+ affinity of ZrP-PS than PS,as confirmed by X-ray photoelectron spectroscopy (XPS) analysis.ZrP-PS demonstrated remarkable cesium sequestration performance in both batch and continuous experiments,with a high adsorption capacity of 269.58 mg/g,a rapid equilibrium within 80 min,and a continuous effluent volume of 2300 L/kg sorbents.Given the excellent selectivity for Cs+ and flexibility to separate from treated water,ZrP-PS holds great promise as purification packages for the emergency treatment of radioactively contaminated water.

    In the last 50 years,severe nuclear reactor accidents in Europe,Asia,and North America have caused local radiation to rise above natural background levels in the short term,as well as chronic contamination exceeding prescribed standards in different parts of the world [1–3].The total discharges of radioactive cesium (mostly137Cs and134Cs) after the Fukushima accident were estimated at 27.1 PBq,the most massive amount of artificial radioactive material ever released into the sea [4].As an alkali metal,radioactive cesium exists mainly as the cation of Cs+in water,migrates easily and eventually enters the human body through the food chain,increasing the risk of developing tumors through external and internal exposure [5–7].Therefore,it is of imperative interests to sequestrate cesium from aqueous environments in nuclear emergency treatment.

    Many separation technologies have been used to remove radioisotopes from wastewater in nuclear power plants,including Cs+,such as precipitation,solvent extraction,evaporation concentration,membrane and ion exchange [8–10].Ion exchange technology benefits from flexible operations,adaptability to various scenarios,easy integration of devices and recycling,especially from reducing the amount of final solid waste generated effectively by avoiding large amounts of radioactive sludge or organic solvents[11].However,studies are inadequate on removing radioactive alkaline and alkaline earth metal cations by ion exchange resins when coexisting with cations of high concentration [12,13].As a common feature of ionic pollutants purification by ion exchange resins,the nonspecific effect between ion exchange groups and ions may cause the competitive exchange of coexisting cations and reduce Cs+removal efficiency [14–17].This low Cs+selectivity is the main limitation of ion exchange technology for emergency treatment in real waters.

    Unlike ion exchange resins,inorganic ion exchangers such as zirconium compounds,metal hexacyanoferrates (MHCF),ammonium molybdophosphate (AMP),and clay minerals allow selective enrichment of alkaline metals and alkaline earth metals cations and halide anions [14,18–27].For sequestrating cesium,the performances of Prussian blue,zeolite,and AMP still need to be improved regarding adsorption equilibrium time,adsorption capacity,and stability [14,18].At the same time,zirconium phosphate (ZrP) has received much interest in recent decades on its excellent performance [23–27].Since Clearfield and Alberti pioneered the synthesis and structural description of layered ZrP,analogous layered semicrystalline phosphates have been actively researched for solid acid catalysis,adsorption and drug delivery basing on their similar layered structures [23,24].These semicrystalline ZrP are cationic layered compounds with a permanent surface charge and flexible layered structures bound by van der Waals forces,in which the Zr atoms connectedviathe HPO42?groups with the pristine exchangeable counter-ions located within the interlayer space [25].For the separation and extraction of fission products from high-level liquid wastes (HLLWs),ZrP and its derivatives exhibited remarkable Cs selectivity,very sparing aqueous solubility,and excellent radiation resistance,making them the most promising inorganic ion exchangers in Cs extraction [26].However,it is still a problem for ZrP to be directly employed in flow-through treatment systems due to the excessive pressure drop from the fine powder,which greatly limits the practical engineering application of ZrP as the Cs-selective ion exchangers.

    Despite its low selectivity of Cs+,commercial resins have been proposed to be an ideal host for incorporating inorganic particles as an engineering application solution,notably polystyrene ion change resins (PS).In previous studies,PS-hosted nanoparticles were proved efficient in purifying trace heavy metal cations,oxyanions,and halide anions [28–31].PS host primarily provides three benefits.Firstly,immobilize charged groups of the polymeric PS,namely the sulfonic acid group or quaternary ammonium group,permeate and preconcentration target ions by ‘Donnan membrane effect’before surface bonding,enhancing final capacity of target ions [32].Secondly,charged groups facilitate dispersion of small-size particles,providing greater adsorption capacities and/or faster adsorption rates [33].Thirdly,millimeter-scale PS beads are appropriate for continuous flow systems for satisfactory hydrodynamic performance in typical water purification units like continuous packed columns.Thus,we speculate that PS-hosted ZrP exhibits efficient cesium sequestration and is feasible for continuous packed columns.Moreover,universal purification components for emergency treatment could be fabricated based on cesium sequestration behavior and mechanism by PS-hosted ZrP from complex aqueous environments.However,to the best of our knowledge,such research has not been reported.

    Herein,we aim to sequestrate cesium using PS-hosted ZrP and investigate the behavior and mechanism of cesium sequestration.Through facile confined crystallization in the host macropores,we prepared the PS-confinedα-ZrP nanocrystalline,noted as ZrP-PS.Batch sorption runs were performed to examine the adsorption performance of ZrP-PS on simulated radioactive cesium,including the effects of solution pH,coexisting ions,reaction temperature and time.A series of characterizations revealed the mechanism of cesium sequestration.Byin-situcrystalline growth in macropores,nanoα-ZrP was embedded in the porous inner surface of PS.The specific affinity between layeredα-ZrP nanocrystalline and Cs+synergized the Donnan film effect of PS,which allowed cesium to be efficiently separated from water coexisting with highconcentration cations.The continuous packed column assessment predicted ZrP-PS to be an excellent solution for cesium sequestration in emergency treatment applications.

    A polystyrene macroporous cation exchange resin charged with sulfonic acid groups (-SO3–) was used as host.Detailed materials,synthesis and characterization of ZrP-PS and Cs+adsorption experiment sections were in Support Information (Texts S1-S5 in Supporting information).

    By a facile process similar to amorphous ZrP synthesis,nanocrystallineα-ZrP was dispersed in PS and confined in macropores of the host.ZrP-PS was shown with uniformly distributed ZrP particles of diameters of 200–400 nm without aggregation (Fig.1a).In contrast,nano ZrP synthesized without PS host aggregated severely only showing ~50 nm particles at the edges (Fig.1b).For the N2sorption isotherms (Fig.1c),macropores in PS exhibited a type II isotherm with a steep increase in adsorption volume atP/P0=0.95–1.00,while the hysteresis loop of ZrP-PS appeared in the lower relative pressure range reflecting the decreased pore size distribution [34].Also,the pore volume and average pore size of ZrP-PS both decreased (Fig.1c,insert).The atomic force microscope (AFM) 3D analysis in Fig.S1a (Supporting information)showed that the vertical height approximate 200 nm of the central cross-section of ZrP-PS was smoother than that of PS.Both the N2sorption isotherms and the AFM images indicated pore confined ZrP blocked some macropores.Pore-confinement is also demonstrated by the gradually growth of ZrP from the outer surface to the inner part of PS (Text S6 and Fig.S1b in Supporting information).The confined ZrP exhibits the characteristic diffraction peaks at 2θof 11.6,20.3,and 24.9° in the X-ray powder diffractometer(XRD) pattern (Fig.1d),which correspond to the crystal planes(002),(110),and (112) of crystallineα-Zr(HPO4)2·H2O (α-ZrP,JCPDS No.22–1022).The (002) crystal plane spacing was 7.6 ?A calculated from Bragg’s law (Text S7 in Supporting information),indicating the PS-confined ZrP was layeredα-ZrP crystalline [35–38].

    Fig.1. Characterization of ZrP-PS and ZrP: (a) the TEM image of ZrP-PS and (b)the TEM images of ZrP powder,(c) nitrogen adsorption-desorption isotherms (inset:pore size distribution) of PS and ZrP-PS,and (d) XRD patterns of ZrP powder,ZrP-PS and Cs-sequestrated ZrP-PS (ZrP-PS-Cs),and the standard pattern of Zr(HPO4)2·H2O(top to bottom).

    The typical synthesis of layered structural ZrP involves hightemperature calcination [24,38–40].In this study,Zr4+,as the ZrP precursor,dispersed throughout macropores of the PS host due to negative charges of -SO3–,which significantly altered the crystallization behavior of ZrP.Confined formation of the crystalline phase is possible because of altered crystallization kinetics and thermodynamics in PS pores [30,41].Without pore-confinement,ZrP was mainly amorphous and showed broad diffraction peaks in XRD pattern (Fig.1d).Accordingly,through porous and crosslinking matrix and ample surface charge of PS,α-ZrP was confined in the host,which was presumed to facilitate good cesium sequestration in addition to -SO3–groups.

    Cesium sequestration of ZrP-PS demonstrated removal efficiencies higher than 95.2% in the wide pH range of 3.27–10.93 (Fig.2a).This performance benefited from the stably negative zeta potentials of ZrP-PS due to permanently negatively charged -SO3–in PS[42].H+release was observed in cesium sequestration by ZrP-PS(Fig.S2 in Supporting information),suggesting similar proton-Cs+exchange to that of amorphous ZrP,and thus an excess of H+ions inhibited the Cs+removal at pH values 0.84 and 1.91.Furthermore,surface protonation of ZrP-PS at high acidity resulted in the most positive zeta potential at pH around 1.0,which weakened nonspecific electrostatic interaction of ZrP-PS toward Cs+,thereby affecting cesium sequestration.

    Fig.2. (a) Solution pH effects on Cs+ removal (ZrP-PS dose: 1.0 g/L,initial Cs+=50 mg/L,298 K for 24 h) and zeta potentials of ZrP-PS,(b) effects of competing cations Na+and Ca2+ on Cs+ removal (sorbent dose 1.0 g/L,initial Cs+=50 mg/L,298 K for 24 h,pH 6.5–7.0),(c) kinetic models fitting results,inset: intraparticle diffusion model fitting(ZrP-PS dose: 0.4 g/L,initial Cs+=80 mg/L,298 K,pH 6.5–7.0),and (d) adsorption isotherm curves fitted by Langmuir and Freundlich models (ZrP-PS dose: 1.0 g/L,24 h,pH 6.5–7.0).

    It is essential for emergency treatment to investigate the selectivity of Cs+under coexistence of competing cations.Both ZrP-PS and PS were affected to some extent with increasing concentrations of Na+and Ca2+(Fig.2b).When Na+/Cs+(mol/mol)was increased from 0 to 16,the Cs+removal efficiency by ZrP-PS remained greater than 90.0%;in contrast,that by PS decreased dramatically from 94.6% to 72.8% and was only 44.8% at Na+/Cs+(mol/mol)=64.When Ca2+/Cs+(mol/mol) was increased from 0 to 32,the removal efficiency of Cs+by ZrP-PS decreased from 97.0% to 40.2%,while that of PS from 94.6% to 16.2%.However,with the further increase of Ca2+/Cs+,the removal efficiency of ZrP-PS stabilized.The solid-liquid distribution ratioKdof ZrP-PS(310 mL/g) was about 24 times greater than that of PS (Text S8 in Supporting information).ZrP-PS is expected to sequestrate Cs+viaproton exchange by ZrP [43] in addition to the nonspecific interaction of -SO3–groups,with the latter to be a main interaction of PS.The proton-exchange sites onα-ZrP provide a specific affinity and high selectivity for Cs+,while the selectivity by PS with coexisting cations was inferior because cations competed the nonspecific sites of -SO3–.In addition,effects of Mg2+,typical coexisting anions (Cl?,NO3?,SO42?),humic acid and salinity on Cs+selectivity supported the benefits of ZrP-PS for emergency treatment in natural waters (Text S9,Fig.S3 in Supporting information).

    The adsorption kinetics and isotherm experiments were conducted through batch adsorption tests to investigate further the cesium sequestration performance of ZrP-PS (Text S10 in Supporting information).Fig.2c shows the adsorption kinetics of Cs+on ZrP-PS,with PS as the reference in Fig.S4a (Supporting information).Cs+uptake equilibriums reached within ~80 min for both ZrP-PS and PS;however,ZrP-PS exhibited a faster kinetic process.Cs+removal efficiencies by ZrP-PS at 30 and 80 min were 55.1% and 84.5%,respectively.Thepseudo-first-order,pseudosecond-order,and intraparticle diffusion models fitted the kinetic data of ZrP-PS well,with higher rate constantsK1,K2andKintrepresenting the faster kinetic rate than PS (Table S1 in Supporting information).The intraparticle diffusion model exhibited a higher correlation to ZrP-PS (R2=0.9825) than PS (R2=0.8393),inferring that decreased average pore size in ZrP-PS affected intraparticle diffusion of Cs+.The isothermal adsorption data of Cs+on PS and ZrP-PS were fitted well by Langmuir and Freundlich models(Fig.2d,Fig.S4b and Table S2 in Supporting information).According to the Langmuir model,the adsorption capacity of Cs+on PS was 230.61 mg/g and did not change much at the experimental temperatures.The adsorption capacity of Cs+by ZrP-PS increased with decreasing temperatures,indicating the exothermic nature of cation exchange ofα-ZrP [44].The maximum adsorption capacity of Cs+on ZrP-PS was 269.85 mg/g at 293 K,greater than that on PS and an almost unmatched maximum capacity for Cs+adsorption compared with the literature in the last ten years [45–54] (Table 1).In addition,when ZrP-PS was used in simulated radioactive wastewater (Table S3 in Supporting information),removal efficiency was not significantly influenced by high Cs+concentrations of 50 and 200 mg/L (Fig.S5 in Supporting information),further demonstrating efficient cesium sequestration performance of ZrP-PS.

    Table 1 Comparison of Cs adsorption capacities and kinetics by adsorbents in literatures in the last ten years.

    To disclose the mechanism of efficient Cs+sequestration by ZrP-PS,XRD,Fourier transform infrared (FT-IR) spectra and X-ray photoelectron spectroscopy (XPS) analysis of different samples was performed,and the results are depicted in Figs.1d and 3,Figs.S6 and S7 (Supporting information).By XPS analysis,differences of P 2p,Zr 3d and O 1s binding energies between PS-confinedα-ZrP nanocrystalline and amorphous ZrP further approved the structural characteristics ZrP-PS and ZrP shown in the XRD patterns(Text S11 in Supporting information).After Cs+adsorption on ZrPPS,cesium was detected in the ZrP-PS-Cs sample both in the XRD and XPS analyses,as the characteristic peaks of Cs+solid solutions(Cs2Zr(PO4)2and CsZrH(PO4)2·xH2O) in Fig.1d and Cs 3d bonding energies at 725.0–740.0 eV in the full XPS spectrum shown in Fig.3b.XRD characteristic peaks ofα-ZrP were observed without position variation.FT-IR spectra comparison of ZrP-PS and ZrP-PS-Cs in Fig.3a presents that most functional groups remained before and after Cs+adsorption,confirming the stable chemical composite of ZrP-PS.Weak bands at 1410 cm?1of ZrP-PS are attributed to the presence ofδ(POH),indicating the existence of structural hydroxyl as exchangeable proton sites in confinedα-ZrP.This involvement of proton exchange in phosphate groups during Cs+adsorption could also be inferred from the notable reduction of the (002) peak intensity of ZrP-PS in Fig.1d and the intensity changes of bands at 1035 and 670 cm?1in Fig.S6 (Text S12 in Supporting information).More information on the mechanism of Cs+sequestration is revealed in the XPS spectra.In the high-resolution analysis,Cs 3d5/2binding energy of ZrP-PS-Cs shifted 0.4 eV compared to the standard peak of CsNO3located at 724.2 eV (Fig.3c) [55],and P 2p binding energy shifted from 134.2 eV of ZrP-Cs to 133.8 eV of ZrP-PS-Cs (Fig.S7d in Supporting information).These bonding energies shifts hint the strong interaction between Cs+and ZrP-PS.In addition,as shown in Fig.S7e (Supporting information),the Cs 3d5/2peak around 723.8 eV is attributable to the electrostatic interaction of -SO3–toward Cs+(noted as -SO3–Cs+),whereas the one around 724.1 eV is attributable to the ion exchange between Cs+and protons of P-O-H inα-ZrP (noted as P-O-Cs) [56].The O 1s of ZrP-PS-Cs shows a broad peak which could correspond to O atoms bonded to Cs atoms in addition to those in Zr-O,P-O andS-O (Fig.3d).The shift of O 1s from 532.2 eV to 531.8 eV after Cs+adsorption also suggests an interaction between Cs+and ZrP-PS using oxygen atoms as bridges,forming the P-O-Cs and lowering the O 1s binding energy [57].Thus,proton exchange by P-OH and electrostatic interaction by -SO3H are associated mechanisms of Cs sequestration by ZrP-PS.

    Fig.3. (a) FT-IR spectra of ZrP-PS,ZrP-PS-Cs and ZrP-PS-Cs/Ca samples,(b) XPS survey spectra of PS-Cs,ZrP-Cs,ZrP-PS,and ZrP-PS-Cs,(c) Cs 3d5/2 XPS spectra of CsNO3,ZrP-PS-Cs,and ZrP-PS-Cs/Ca (Ca:Cs=1) samples,(d) O 1s XPS spectra of Zr-PS and ZrP-PS-Cs,and (e) the illustration of synergistic role of confined α-ZrP on cesium sequestration.

    Furthermore,the synergy ofα-ZrP is emphasized by characterizing the competing adsorption of Ca2+on different materials.When Cs+and Ca2+co-existed,the FT-IR peak of -SO3H at 1035 cm?1blue-shifted by 6.75 cm?1,more than just 1.84 cm?1without Ca2+,suggesting nonspecific interaction of -SO3H with both cations.Compared to fresh ZrP-PS,the POH peaks blue-shifted for 4 cm?1after Cs sequestration without and with Ca2+competitive adsorption,which implies specific interaction of P-O-H and Cs+.In high-resolution XPS analysis of Cs 3d5/2in Fig.S7e and Fig.3c,negligible shift on Cs 3d5/2binding energy could be observed from PS-Cs to ZrP-PS-Cs,but a–0.7 eV positive shift exhibited for ZrPPS-Cs/Ca compared to PS-Cs.This is because of different deconvoluted peaks area portions with and without Ca2+coexistence.In both cases,the Cs 3d5/2spectra were divided into two peaks corresponding to P-O-Cs and -SO3–Cs+.The area fractions of P-O-Cs and-SO3?Cs+of ZrP-PS-Cs were 18.2% and 81.8%,respectively.However,as for ZrP-PS-Cs/Ca,peak fractions varied distinguishably with 60.2% P-O-Cs and 39.8% -SO3–Cs+.Such results certify that with high concentration Ca2+coexistence,Cs sequestration by -SO3–Cs+path abated while P-O-Cs dominated and contributed high selectivity of Cs+by ZrP-PS.

    Based on the removal performance and characteristic results,the mechanism of efficient Cs+sequestration by ZrP-PS was elucidated,as illustrated in Fig.3e.Cs+sequestration by ZrP-PS is attributed to the synergistic effect of confined nanocrystallineα-ZrP and -SO3–groups covalently binding in the PS polymer host.

    Firstly,negatively charged -SO3–groups enrich Cs+viaelectrostatic interaction,a fundamental effect of cation exchange resins,to a concentration higher than in the bulk solution by the Donnan membrane effect.This widely verified effect [28–32,34] promotes Cs+diffusion to interaction sites.Secondly,confinedα-ZrP absorb Cs+through interlayer proton exchange.Inα-ZrP,Zr atoms planes severe as the basic layered structure,with -HPO4groups attached by three O atoms coordinating to Zr.While the fourth O of -HPO4,bearing a proton,points toward the interlayer space as a potential cation exchange site [37].The maximum opening to the interlayer space expands to adequate for Cs+(radius 1.69 ?A) to diffuse into interlayers and exchange with the proton in P-O-H [26,58-60],then the accessibility of Cs is constrained by crystal lattice match and restraint,shown as Eq.1.

    Thirdly,with the presence of monovalent alkali metal and divalent alkali earth metal cations that lacking outermost electron distinction from Cs+,confinedα-ZrP plays a vital role in selective adsorption toward Cs+.Competitive Na/Ca/Mg cations occupied the nonspecific adsorption sites of -SO3–,which somewhat reduced Cs+adsorption capacity of ZrP-PS.However,different radius and dehydration enthalpy of hydrated Cs+and competitive cations determine the approachability toα-ZrP interlayers for these cations.The dehydration enthalpy for alkali metal and alkali earth metal ions increases with hydration radius,in the order of Cs+(3.29 ?A)<Na+(3.58 ?A)<Ca2+(4.12 ?A)<Mg2+(4.28 ?A) [61–64].This order indicates that it is more facile for hydrated Cs+to dehydrate than hydrated Na+,Ca2+,and Mg2+.Cs+enter the interlayers ofα-ZrP and exchange with protons,however,hydrated Na+,Ca2+and Mg2+are too large to fit the interlayer channels.Therefore,Na+,Ca2+and Mg2+demonstrate little competition onto the interlayer proton exchange sites.Nanocrystalline and porous structures with particular channel or ring window sizes are also reported in other studies for selectively removing Cs+or Sr2+from aqueous solutions [19,20,65].In all,the synergy of size-screen assisted ion exchange of confinedα-ZrP and -SO3–preconcentration of PS contributes to the efficient sequestration of cesium.

    The practicality of ZrP-PS for cesium sequestration was evaluated by a simulated emergency treatment test using flow-through columns packed with ZrP-PS and PS,respectively,with the results shown in Fig.4.As expected,ZrP-PS demonstrated a considerable improvement in Cs+removal efficiency over PS.After a continuous run of approximately 2300 liters per kilo sorbents,Cs+concentration in the effluent from the ZrP-PS column rose,reaching the breakthrough at ~3200 liters per kilo sorbents.In contrast,the effluent was only approximately 208 liters per kilo sorbents at the breakthrough of PS.It is noteworthy that for PS,the concentration of Cs+in the effluent around 300 L/kg sorbent was higher than 2 mg/L,which can be explained by the elution effect in continuous sorption [66,67].Some Cs+initially sorbed by PS was replaced by competing cations Na+,Ca2+,and Mg2+because of the nonspecific effect of -SO3–on these cations.Due to the specific affinity ofα-ZrP for Cs+,the elution effect in Cs+adsorption by ZrPPS was suppressed,and therefore a larger treatment capacity was obtained.The amount of water treated by ZrP-PS was more than ten times that of PS,indicating the promising application of PSconfinedα-ZrP nanocrystalline.

    Fig.4. Assessment of continuous sorption performances of ZrP-PS and PS (SLV:0.3 m/h,EBCT: 6 min,Cs+: 2 mg/L,Ca2+: 100 mg/L,Mg2+: 100 mg/L,Na+: 100 mg/L).

    In summary,we developed efficient cesium sequestration using the PS confinedα-ZrP nanocrystalline.Macropores and -SO3–in the PS host permitted uniform dispersion ofα-ZrP,whose interlayer spacing screened competitive hydrated cations out and allowed Cs+retention on interlayer ion exchange sites.The specific ion exchange and nonspecific electrostatic reaction synergistically prompted a high Cs+adsorption capacity of 269.58 mg/g and a quick equilibrium within 80 min.The continuous treatment exhibited a remarkable capacity of approximately 2300 L water/kg ZrPPS.Given its efficient cesium sequestration and flexibility to separate from treated water,ZrP-PS has excellent potential for emergency treatment and deep purification of radioactively contaminated water.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by NSFC (Nos.U22A20403,21301151 and 52070115),Natural Science Foundation of Hebei Province (Nos.B2021203036 and E2022203011),and Key Project of the Hebei Education Department (No.ZD2021103).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108442.

    大型av网站在线播放| 校园春色视频在线观看| 一本大道久久a久久精品| 午夜福利高清视频| 色综合站精品国产| 亚洲成人久久爱视频| 成人18禁高潮啪啪吃奶动态图| 99国产精品一区二区三区| 又粗又爽又猛毛片免费看| 亚洲激情在线av| a级毛片a级免费在线| 国产成年人精品一区二区| 久久久久久久久中文| 国产精品电影一区二区三区| 亚洲国产精品合色在线| 女同久久另类99精品国产91| 无限看片的www在线观看| 在线观看www视频免费| 亚洲精品在线观看二区| 精品人妻1区二区| 少妇人妻一区二区三区视频| 巨乳人妻的诱惑在线观看| 国产免费av片在线观看野外av| 国产精品一区二区三区四区久久| av有码第一页| 搡老妇女老女人老熟妇| 国产成人影院久久av| 日韩有码中文字幕| 国产单亲对白刺激| 国产精品一区二区免费欧美| 欧美日本视频| 久热爱精品视频在线9| 欧美日韩黄片免| 97人妻精品一区二区三区麻豆| 深夜精品福利| av福利片在线| 国产亚洲精品av在线| 男人舔奶头视频| 国产亚洲欧美在线一区二区| 国产精品美女特级片免费视频播放器 | 国内精品久久久久久久电影| 欧美乱色亚洲激情| 国产不卡一卡二| 国产高清有码在线观看视频 | 一进一出抽搐gif免费好疼| 岛国视频午夜一区免费看| 亚洲五月婷婷丁香| xxx96com| 亚洲全国av大片| 国产av不卡久久| 欧美色视频一区免费| 91老司机精品| 好男人电影高清在线观看| 女生性感内裤真人,穿戴方法视频| 1024手机看黄色片| 亚洲av片天天在线观看| 国产真人三级小视频在线观看| 18禁美女被吸乳视频| 狂野欧美激情性xxxx| 欧美 亚洲 国产 日韩一| 国产亚洲精品第一综合不卡| 黄频高清免费视频| 久久久久精品国产欧美久久久| 国产精品免费视频内射| 久久99热这里只有精品18| 日本 欧美在线| 久久伊人香网站| 一二三四在线观看免费中文在| 国产精品av视频在线免费观看| 人成视频在线观看免费观看| 久久人妻av系列| 日本黄色视频三级网站网址| 99在线人妻在线中文字幕| 精品熟女少妇八av免费久了| 久久精品亚洲精品国产色婷小说| 久久精品夜夜夜夜夜久久蜜豆 | 好看av亚洲va欧美ⅴa在| 国产三级在线视频| 亚洲国产精品成人综合色| 午夜福利成人在线免费观看| 中文亚洲av片在线观看爽| 免费电影在线观看免费观看| 好男人在线观看高清免费视频| 高潮久久久久久久久久久不卡| 免费在线观看影片大全网站| av在线天堂中文字幕| 欧美3d第一页| 岛国在线观看网站| 午夜免费观看网址| 亚洲人与动物交配视频| 熟妇人妻久久中文字幕3abv| 丰满的人妻完整版| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩国产亚洲二区| 两个人免费观看高清视频| 久久天躁狠狠躁夜夜2o2o| 午夜日韩欧美国产| 搡老岳熟女国产| cao死你这个sao货| 欧洲精品卡2卡3卡4卡5卡区| 日本成人三级电影网站| 精品乱码久久久久久99久播| bbb黄色大片| 99久久99久久久精品蜜桃| 亚洲乱码一区二区免费版| 久久人妻福利社区极品人妻图片| 国产精品 欧美亚洲| 国产精品久久久久久久电影 | av欧美777| 精品久久久久久久末码| 日日爽夜夜爽网站| 在线视频色国产色| 久久中文字幕一级| 欧美成人一区二区免费高清观看 | 在线十欧美十亚洲十日本专区| 一区福利在线观看| 俺也久久电影网| 国产精品电影一区二区三区| 欧美在线黄色| 亚洲五月天丁香| 最新美女视频免费是黄的| 国产一级毛片七仙女欲春2| 国产黄a三级三级三级人| 午夜激情福利司机影院| 好男人电影高清在线观看| 香蕉av资源在线| 欧美乱妇无乱码| 久久 成人 亚洲| 久久欧美精品欧美久久欧美| 男女视频在线观看网站免费 | 亚洲精品粉嫩美女一区| 欧美黄色淫秽网站| 国产精品98久久久久久宅男小说| 在线免费观看的www视频| 一级作爱视频免费观看| 欧美日韩瑟瑟在线播放| 国产高清视频在线观看网站| 国产97色在线日韩免费| 岛国在线观看网站| 97人妻精品一区二区三区麻豆| 90打野战视频偷拍视频| 亚洲色图 男人天堂 中文字幕| 精品久久久久久成人av| 天天一区二区日本电影三级| 18禁黄网站禁片免费观看直播| 亚洲av第一区精品v没综合| 久久草成人影院| 欧美乱码精品一区二区三区| 亚洲乱码一区二区免费版| 香蕉丝袜av| 夜夜夜夜夜久久久久| 午夜精品一区二区三区免费看| 精品国产超薄肉色丝袜足j| 亚洲成人国产一区在线观看| 亚洲人成网站在线播放欧美日韩| 国产三级在线视频| 免费高清视频大片| 精品久久久久久久末码| 美女扒开内裤让男人捅视频| 国产亚洲精品综合一区在线观看 | 国产成人欧美在线观看| 欧美成人午夜精品| 叶爱在线成人免费视频播放| 在线播放国产精品三级| 国产精品综合久久久久久久免费| cao死你这个sao货| 久久久精品大字幕| av在线播放免费不卡| 青草久久国产| 老司机深夜福利视频在线观看| 男女做爰动态图高潮gif福利片| 好男人在线观看高清免费视频| 搡老熟女国产l中国老女人| 日本 av在线| 久久午夜亚洲精品久久| 欧美日韩瑟瑟在线播放| videosex国产| 国产又黄又爽又无遮挡在线| 无遮挡黄片免费观看| 久久精品成人免费网站| 国产伦一二天堂av在线观看| 亚洲,欧美精品.| 老司机午夜十八禁免费视频| 不卡一级毛片| 日韩av在线大香蕉| 亚洲中文日韩欧美视频| 国产私拍福利视频在线观看| 亚洲第一欧美日韩一区二区三区| 99久久久亚洲精品蜜臀av| 18禁美女被吸乳视频| 99热这里只有是精品50| 一区福利在线观看| 三级毛片av免费| 欧美激情久久久久久爽电影| 欧美日韩中文字幕国产精品一区二区三区| 国产高清videossex| 18禁观看日本| 亚洲精品久久国产高清桃花| 亚洲自偷自拍图片 自拍| 国产精品一及| 精品午夜福利视频在线观看一区| 大型黄色视频在线免费观看| a在线观看视频网站| 精品高清国产在线一区| 99精品欧美一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 麻豆成人av在线观看| 色综合站精品国产| 午夜成年电影在线免费观看| 国产精品久久久久久亚洲av鲁大| 欧美黑人欧美精品刺激| 久久天躁狠狠躁夜夜2o2o| 丝袜美腿诱惑在线| 国产在线精品亚洲第一网站| 一a级毛片在线观看| 最近在线观看免费完整版| 欧美日韩国产亚洲二区| 精品乱码久久久久久99久播| 亚洲男人的天堂狠狠| 少妇粗大呻吟视频| 久久天躁狠狠躁夜夜2o2o| 亚洲乱码一区二区免费版| 欧美成人一区二区免费高清观看 | 波多野结衣高清无吗| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜理论影院| 亚洲av成人av| 伦理电影免费视频| 欧美在线黄色| 欧美丝袜亚洲另类 | 18禁国产床啪视频网站| 欧美极品一区二区三区四区| 伊人久久大香线蕉亚洲五| 1024视频免费在线观看| 亚洲国产精品合色在线| 叶爱在线成人免费视频播放| 亚洲av中文字字幕乱码综合| 美女黄网站色视频| 欧美日韩亚洲国产一区二区在线观看| 婷婷精品国产亚洲av在线| 一本久久中文字幕| 国产男靠女视频免费网站| av视频在线观看入口| 欧美最黄视频在线播放免费| 黄片小视频在线播放| 国产精品亚洲av一区麻豆| 亚洲精品中文字幕在线视频| 久久精品成人免费网站| 激情在线观看视频在线高清| 叶爱在线成人免费视频播放| 精品久久久久久久人妻蜜臀av| 久久这里只有精品中国| 国产单亲对白刺激| 国产精品影院久久| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 欧美在线一区亚洲| 搞女人的毛片| 变态另类丝袜制服| 久久热在线av| 日韩欧美一区二区三区在线观看| 麻豆av在线久日| 50天的宝宝边吃奶边哭怎么回事| 老熟妇仑乱视频hdxx| 叶爱在线成人免费视频播放| 国产av麻豆久久久久久久| 午夜a级毛片| 久久香蕉国产精品| 日韩大尺度精品在线看网址| 免费电影在线观看免费观看| 亚洲第一电影网av| 欧美av亚洲av综合av国产av| 亚洲人成伊人成综合网2020| 精品电影一区二区在线| 一本一本综合久久| 在线观看免费视频日本深夜| 精品久久久久久久末码| 在线十欧美十亚洲十日本专区| 国产三级黄色录像| 正在播放国产对白刺激| 黄色女人牲交| 久久伊人香网站| 色在线成人网| 亚洲免费av在线视频| 12—13女人毛片做爰片一| 亚洲精华国产精华精| 成年免费大片在线观看| 国产午夜福利久久久久久| 免费搜索国产男女视频| 曰老女人黄片| 久久久久久久久久黄片| 国产真实乱freesex| 日韩大尺度精品在线看网址| 国产高清视频在线播放一区| 国产精品免费一区二区三区在线| 免费看十八禁软件| 精品第一国产精品| 两个人的视频大全免费| 欧美一区二区国产精品久久精品 | 9191精品国产免费久久| 色噜噜av男人的天堂激情| 高清毛片免费观看视频网站| 国产探花在线观看一区二区| 亚洲真实伦在线观看| а√天堂www在线а√下载| 欧美大码av| 999久久久国产精品视频| 丝袜美腿诱惑在线| 国产成人啪精品午夜网站| 亚洲精品中文字幕在线视频| 免费看美女性在线毛片视频| 久久伊人香网站| 久久久久久人人人人人| 丝袜人妻中文字幕| 久久国产精品影院| 亚洲五月天丁香| 757午夜福利合集在线观看| 叶爱在线成人免费视频播放| 亚洲一区二区三区不卡视频| 亚洲九九香蕉| 国产伦一二天堂av在线观看| 在线观看美女被高潮喷水网站 | 国产成年人精品一区二区| 亚洲第一电影网av| 午夜a级毛片| 亚洲欧美精品综合久久99| av中文乱码字幕在线| 黄色片一级片一级黄色片| 悠悠久久av| 嫁个100分男人电影在线观看| 亚洲色图av天堂| 亚洲欧美一区二区三区黑人| 不卡av一区二区三区| 成在线人永久免费视频| 人人妻人人看人人澡| 哪里可以看免费的av片| 国产99久久九九免费精品| 亚洲成人国产一区在线观看| 两个人看的免费小视频| 国产欧美日韩一区二区三| 亚洲精品国产一区二区精华液| 精品久久久久久,| 两人在一起打扑克的视频| 国产高清视频在线播放一区| 日本一区二区免费在线视频| 伊人久久大香线蕉亚洲五| 99精品久久久久人妻精品| 国产一级毛片七仙女欲春2| 男人的好看免费观看在线视频 | 制服诱惑二区| 午夜视频精品福利| 久99久视频精品免费| 两个人的视频大全免费| 操出白浆在线播放| 91字幕亚洲| 99精品久久久久人妻精品| 久久婷婷成人综合色麻豆| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼| 99在线视频只有这里精品首页| 妹子高潮喷水视频| 久9热在线精品视频| 全区人妻精品视频| 日韩高清综合在线| 999久久久精品免费观看国产| 青草久久国产| 我的老师免费观看完整版| 毛片女人毛片| 午夜视频精品福利| 女警被强在线播放| 国产av在哪里看| e午夜精品久久久久久久| 波多野结衣高清无吗| x7x7x7水蜜桃| 色在线成人网| 校园春色视频在线观看| 丰满的人妻完整版| 淫妇啪啪啪对白视频| 国产成年人精品一区二区| 国产精品av久久久久免费| 日日爽夜夜爽网站| 嫩草影院精品99| 91老司机精品| 99re在线观看精品视频| 午夜福利成人在线免费观看| 午夜a级毛片| 国产成人aa在线观看| 三级男女做爰猛烈吃奶摸视频| a级毛片在线看网站| 一级黄色大片毛片| 国产精华一区二区三区| 身体一侧抽搐| 99久久国产精品久久久| 村上凉子中文字幕在线| 熟女少妇亚洲综合色aaa.| 国产不卡一卡二| 欧洲精品卡2卡3卡4卡5卡区| 黄片小视频在线播放| 在线播放国产精品三级| 五月玫瑰六月丁香| 丁香六月欧美| 久久久精品欧美日韩精品| 黑人操中国人逼视频| 香蕉丝袜av| 天天一区二区日本电影三级| 麻豆av在线久日| 久久精品91蜜桃| 麻豆国产av国片精品| 精品电影一区二区在线| 给我免费播放毛片高清在线观看| 国产精品乱码一区二三区的特点| 免费av毛片视频| 黄色片一级片一级黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩欧美三级三区| 亚洲第一欧美日韩一区二区三区| 欧美日韩黄片免| 亚洲av熟女| 国内精品久久久久精免费| 97碰自拍视频| 国模一区二区三区四区视频 | 少妇熟女aⅴ在线视频| 亚洲精品国产精品久久久不卡| svipshipincom国产片| 欧美又色又爽又黄视频| 在线观看免费日韩欧美大片| 在线十欧美十亚洲十日本专区| 90打野战视频偷拍视频| 男女那种视频在线观看| 中文字幕人成人乱码亚洲影| www.熟女人妻精品国产| 亚洲av成人av| 亚洲人成77777在线视频| 精品国内亚洲2022精品成人| 最近视频中文字幕2019在线8| 久久久久免费精品人妻一区二区| 色播亚洲综合网| av福利片在线观看| 久9热在线精品视频| 此物有八面人人有两片| 色av中文字幕| 国产精品免费一区二区三区在线| 亚洲av中文字字幕乱码综合| 一级毛片高清免费大全| 精品国产乱码久久久久久男人| 国产成+人综合+亚洲专区| 亚洲黑人精品在线| 欧美三级亚洲精品| 亚洲人成伊人成综合网2020| 一级a爱片免费观看的视频| 亚洲国产精品久久男人天堂| 免费高清视频大片| 欧美日韩国产亚洲二区| 亚洲五月天丁香| 国产一区二区三区视频了| 午夜老司机福利片| 亚洲美女黄片视频| 欧美中文综合在线视频| 国产欧美日韩精品亚洲av| 黑人操中国人逼视频| www日本在线高清视频| 欧美黑人巨大hd| 国产99白浆流出| 最近在线观看免费完整版| 99国产极品粉嫩在线观看| 欧美中文日本在线观看视频| 香蕉av资源在线| 日日夜夜操网爽| 欧美日韩亚洲综合一区二区三区_| 国内精品一区二区在线观看| 青草久久国产| 免费看a级黄色片| 国产精品久久电影中文字幕| АⅤ资源中文在线天堂| 欧美日韩国产亚洲二区| 亚洲精品久久国产高清桃花| 伊人久久大香线蕉亚洲五| 欧美黄色淫秽网站| 一进一出好大好爽视频| 亚洲精品av麻豆狂野| 国产精品av久久久久免费| 国产乱人伦免费视频| 精品欧美国产一区二区三| 亚洲真实伦在线观看| 欧美中文综合在线视频| 变态另类丝袜制服| 亚洲欧美日韩东京热| 丝袜人妻中文字幕| 天天躁夜夜躁狠狠躁躁| 欧美另类亚洲清纯唯美| АⅤ资源中文在线天堂| 亚洲欧美日韩东京热| www.www免费av| 嫩草影视91久久| 久久久久国产一级毛片高清牌| 丰满的人妻完整版| 可以在线观看毛片的网站| 男女之事视频高清在线观看| 小说图片视频综合网站| 18禁黄网站禁片午夜丰满| 亚洲国产精品sss在线观看| 久久午夜综合久久蜜桃| 国产一区二区在线av高清观看| 国产伦在线观看视频一区| 午夜福利在线观看吧| 老熟妇仑乱视频hdxx| 欧美中文日本在线观看视频| 久久精品国产清高在天天线| 国产成人精品久久二区二区免费| 欧美在线一区亚洲| 老熟妇仑乱视频hdxx| 婷婷丁香在线五月| 十八禁网站免费在线| 国产亚洲精品一区二区www| 在线观看午夜福利视频| 人人妻,人人澡人人爽秒播| 久久伊人香网站| av有码第一页| 国产精品99久久99久久久不卡| 精品熟女少妇八av免费久了| 色噜噜av男人的天堂激情| 免费在线观看日本一区| 最近最新中文字幕大全免费视频| 999精品在线视频| 老司机午夜福利在线观看视频| 亚洲男人天堂网一区| 女人爽到高潮嗷嗷叫在线视频| 欧美成人一区二区免费高清观看 | 国产三级黄色录像| 精品福利观看| 午夜老司机福利片| 色综合亚洲欧美另类图片| 国产1区2区3区精品| 亚洲一码二码三码区别大吗| 国产精品综合久久久久久久免费| 亚洲avbb在线观看| 亚洲国产欧美人成| 777久久人妻少妇嫩草av网站| 亚洲成人久久爱视频| 久久精品夜夜夜夜夜久久蜜豆 | 久久这里只有精品中国| 真人做人爱边吃奶动态| 久久天躁狠狠躁夜夜2o2o| 日韩欧美国产一区二区入口| 日韩欧美国产在线观看| 嫩草影院精品99| 午夜两性在线视频| 成人国语在线视频| 一二三四社区在线视频社区8| 亚洲va日本ⅴa欧美va伊人久久| 欧美乱妇无乱码| 美女免费视频网站| 国产激情欧美一区二区| 日韩av在线大香蕉| www.自偷自拍.com| 亚洲天堂国产精品一区在线| 精品国产乱码久久久久久男人| 在线观看www视频免费| 国产区一区二久久| 中文字幕人妻丝袜一区二区| 超碰成人久久| 在线观看日韩欧美| 欧美黑人精品巨大| netflix在线观看网站| a在线观看视频网站| 亚洲成人精品中文字幕电影| 日本一本二区三区精品| 俄罗斯特黄特色一大片| 国产精品久久久久久久电影 | 禁无遮挡网站| 五月伊人婷婷丁香| 天堂av国产一区二区熟女人妻 | 欧美乱色亚洲激情| 国产欧美日韩一区二区精品| 村上凉子中文字幕在线| 日韩大尺度精品在线看网址| 亚洲av熟女| 久久精品人妻少妇| 天堂影院成人在线观看| or卡值多少钱| 在线观看www视频免费| 免费看日本二区| 国产精品免费一区二区三区在线| 日韩国内少妇激情av| 日韩欧美精品v在线| 久久久久久久久免费视频了| 日本a在线网址| 久久久久久九九精品二区国产 | 国产精品九九99| 国产精品98久久久久久宅男小说| 97超级碰碰碰精品色视频在线观看| 美女高潮喷水抽搐中文字幕| 色老头精品视频在线观看| 久久这里只有精品19| 岛国视频午夜一区免费看| 日韩精品中文字幕看吧| 99热6这里只有精品| 免费电影在线观看免费观看| 在线十欧美十亚洲十日本专区| 国产成人aa在线观看| 亚洲成人国产一区在线观看| 成人高潮视频无遮挡免费网站| 无人区码免费观看不卡| 免费在线观看完整版高清| 亚洲国产精品合色在线| 好男人在线观看高清免费视频| 久久精品夜夜夜夜夜久久蜜豆 | 哪里可以看免费的av片| av福利片在线观看| 欧美中文日本在线观看视频| av有码第一页| 亚洲国产高清在线一区二区三| 老司机福利观看| 久久久精品欧美日韩精品| 久久婷婷成人综合色麻豆|