• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoluminescent nickel(II) carbene complexes with ligand-to-ligand charge-transfer excited states

    2023-02-18 01:55:28ChunLiangHouJiaXiSongXiaoyongChangYongChen
    Chinese Chemical Letters 2023年12期

    Chun-Liang Hou ,Jia-Xi Song ,Xiaoyong Chang ,Yong Chen

    a Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    b University of Chinese Academy of Sciences,Beijing 100049,China

    c Department of Chemistry,Southern University of Science and Technology,Shenzhen 518055,China

    Keywords:Nickel(II) complexes N-Heterocyclic carbene Luminescence Ligand-to-ligand charge-transfer character Low-lying d-d excited states

    ABSTRACT While nickel(II) complexes have been widely used as catalysts for carbon-carbon coupling reactions,the exploration of their photophysical and photochemical properties is still in the infancy.Here,a series of square-planar Ni(II) complexes [(diNHC)NiX2] bearing chelating benzimidazole-based bis(N-heterocyclic carbene) ligands and varying anionic coligands (1,X=Cl;2,X=Br;3,X=I) are synthesized and structurally characterized.In solid state,both 1 and 2 exhibit orange-red photoluminescence under ambient conditions.The photophysical and electrochemical measurements along with density functional theory(DFT) calculations reveal that the low-energy emissions can be attributed to singlet excited states with ligand-to-ligand charge-transfer (LLCT) character.This work suggests that strong-field N-heterocyclic carbene ligands play a crucial role to achieve the luminescence of Ni(II) complexes.

    Platinum(II) and palladium(II) complexes with d8valence electron configuration usually display efficient charge-transfer (CT) luminescence [1–11],which has been extensively used in optoelectronic devices [2,7,11–13],bio-imaging [2,14,15],photocatalytic reactions [16–20] and so on.However,their scarcity and high costs have stimulated the search for candidates based on earth-abundant elements [21,22].Nickel,as a first-row transition metal that belongs to the same periodic group as palladium and platinum,provides an economically and ecologically benign alternative to precious metal systems [22].However,photoluminescent nickel(II)complexes with charge-transfer excited state character are very rare [23–25].The lack of luminescence properties of Ni(II) complexes can be attributed to their little metal-ligand orbitals overlap between the contracted 3d8metal center orbitals and the relevant ligand orbitals,which leads to relatively weak d-d ligand-field(LF) splitting energies and low-lying d-d LF excited states [26].As a result,these structurally distorted metal-centered (MC) LF states provide a thermally-activated d-d deactivation pathway for other close-lying excited states (i.e.,CT states) and thus quench the emission (Scheme 1a) [27,28].

    Scheme 1. (a) A thermally-activated deactivation pathway for Ni(II) complexes.Exc.,excitation;CT,the emissive charge-transfer state;d-d,low-lying metalcentered excited states;black arrows represent vibrational relaxation and nonradiative decay.(b) Representative Ni(II) complex emitter.(c) Molecular structures of Ni(II) complexes in this work.(d) Synthetic routes of complexes 1–3a and 1–3b.

    Theoretically,the thermally-activated d-d deactivation process can be suppressed by increasing the energy gap (ΔE) between the CT and d-d states,which can be realized by either raising the dd state or lowering the CT state.To this end,Yam and coworkers recently reported an emissive cyclometalated Ni(II) complex by introducing a pincer-type 1,3-di(pyridin-2-yl)benzene (N^C^N) ligand and a strongσ-donating carbazolyl ligand (Scheme 1b) [29].In solid state,this complex was found to demonstrate weak luminescence at room temperature and intense luminescence at low temperature with excited state lifetimes in the submicrosecond regime.N-Heterocyclic carbene compounds (NHCs) are characterized by strongσ-donating ability,which have been used as ligands to synthesize photoluminescent transition metal complexes,i.e.,platinum(II) [30–33],iridium(III) [34–37] and gold(I) [38–45].We envision that such strongσ-donor properties of NHCs are capable of pushing nonradiative MC d-d transitions to higher energy,thereby generating emissive Ni(II) complexes.

    Herein,we designed,synthesized and structurally characterized a class of square-planar Ni(II) carbene complexes containing benzimidazole-basedN-heterocyclic carbene ligands and halogen ligands (Scheme 1c).The [(diNHC)NiX2] (X=Cl or Br) complexes show solid-state luminescence under ambient conditions with temperature-independent lifetimes.A combination of photophysical properties and density functional theory (DFT) calculations unveils that the orange-red emission is derived from the S1state having predominant ligand (halogen)-to-ligand (NHCs)charge-transfer (LLCT) character.

    The synthetic routes to Ni(II) carbene complexes are depicted in Scheme 1d and further experimental details are provided in the Supporting information.The synthesis of ligand precursors have been described previously [46–48].Complexes [(diNHC)NiCl2] and[(diNHC)NiBr2] were readily prepared by stirring the corresponding ligands with nickel halide in dimethylformamide in the presence of NaOAc under reflux conditions.After reaction,the precipitate was filtered,washed by water and recrystallized from methanol to give yellow solid.[(diNHC)NiI2] was obtained by simple ligand exchange [46].All complexes have been characterized by1H nuclear magnetic resonance (NMR),13C NMR,and high-resolution ESI (HRESI) mass spectrometry and elemental analyses (Scheme S1,Figs.S1–S19 in Supporting information).

    Dark yellow single crystals of1–3bwere obtained by slow diffusion of hexane into saturated dichloromethane solutions at room temperature and their structures have been determined through single-crystal X-ray diffraction analysis.The selected bond lengths of Ni-CNHCand Ni-X bonds and bond angles around the metal center are given in Tables S1 and S2 (Supporting information).As depicted in Fig.1,all complexes have an approximately square-planar coordination geometry.The CNHC-Ni-CNHCbite angle of the three complexes are consistent throughout the series,being 86.46° for1b,86.96° for2b,89.94° for3b.The X-Ni-X bite angles lie in the range of 93°–94°.The Ni-CNHCbonds in three complexes have an average bond length of 1.86 ?A,which is shorter than the reported Ni(II) complexes [23,25,49],implying that the benzimidazole derivedN-heterocyclic carbene ligands can serve as a strongσ-donor ligand to raise the energy of the MC excited state.Additionally,for halogen atoms with coplanar structures,the Ni-X bond length increases with increasing atomic radius of X,2.23 ?A for1b,2.35 ?A for2b,and 2.55 ?A for3b.All Ni(II) complexes pair in a head-to-tail manner with intermolecular Ar-H···X and intramolecular Ar-H···X(2.8–3.2 ?A) (Figs.S20–S22 in Supporting information).

    Fig.1. Thermal ellipsoid plots of (a) 1b,(b) 2b and (c) 3b.

    The ultraviolet–visible (UV–vis) absorption spectra of Ni(II)complexes1–3aand1–3bwere recorded at 298 K in diluted dichloromethane (Fig.2a and Fig.S23 in Supporting information),and the photophysical data are collected in Table S3 (Supporting information).All Ni(II) complexes exhibit similar UV–vis absorption spectra with absorption maxima at 292 nm and a weak and broad absorption band between 350 and 550 nm,the latter accounting for the yellow color of Ni(II) complexes.The high energy absorption region of the Ni(II) complexes are the same as ligandsaandb(Fig.S24 in Supporting information).The lowest-energy absorption band of all Ni(II) complexes exhibit slightly blue-shifted with increasing solvent polarity from dichloromethane to acetone to acetonitrile (Fig.S25 in Supporting information).Hence,the high energy absorption band is attributed to localizedπ-π?transitions of the carbene moiety,while the lowest-energy absorption band in the visible range is ascribed to CT interactions between halogen units or nickel metal center and benzimidazole-based carbenes.As shown in Fig.2a and Table S3,with the variation of anions (Cl,Br,I),the maximum absorption peaks of complexes1–3bundergo a red shift in dichloromethane from 424 nm to 456 nm.In addition,when the two phenyl substituents of benzimidazole carbenes are replaced by methyl groups,a blue shift of the absorption peak is observed in dichloromethane.These spectral differences are attributed to the effect of halide anions and benzimidazole carbenes on the energy levels of the ground state frontier molecular orbitals(FMOs).These data suggest that the relatively low-energy bands can be assigned to a mixture of LLCT and d-d transitions (see theoretical calculations section).

    Fig.2. (a) Absorption spectra of complexes 1–3b in dichloromethane.(b) Electrochemical redox potentials and transition energies for CT states of 1–3b.The energy of the CT state was estimated from the onset of the absorption band in dichloromethane,where the intensity was 0.10 at λmax.(c) Normalized excitation and emission spectra of complexes 1–3b in solid state at room temperature.(d)Normalized PL decay at different temperatures for complex 2b.

    The redox properties of1–3aand1–3bwere determined using cyclic voltammetry (CV) and differential pulse voltammetry(DPV) in dry and degassed dimethylformamide solutions (0.1 mol/LnBu4NPF6) at room temperature.All potentials are referencedvs.ferrocene/ferrocenium (Fc/Fc+) as internal standard which are listed in Table S4 (Supporting information) and graphically presented in Fig.2b and Figs.S26 and S27 (Supporting information).The oxidation and reduction of all complexes exhibit irreversible waves,which may be caused by coordination of a solvent molecule and anionic ligand dissociation.Notably,the first reduction potentials of complexes1–3bgradually shift towards a more positive potential.Besides,the first oxidation potentials for1–3bare highly sensitive to the identity of anionic ligands.A pronounced cathodic shift in the oxidation potentials for1–3bis observed in the range Cl<Br<I,leading to a similar shift in the lowest-energy absorption band.The energy level of highest occupied molecular orbitals(HOMOs) is dominated by contribution from the halide orbitals.Furthermore,a slight shift to more negative potentials for the first reduction peaks along with a blue-shift in the lowest-energy absorption band,is observed for given complexes,e.g.,1aversus1b,2aversus2b,and3aversus3b.The oxidation and reduction potentials of all complexes are consistent with the CT transition of these complexes.

    Although no detectable emission was observed for Ni(II) complexes in solution,the solid-state luminescence was clearly visible to the naked eye under 365 nm UV irradiation.Hence,photoluminescent properties of Ni(II) complexes were investigated in solid state at room temperature (Fig.2c).The emission spectra(λmax(em)=620 nm for1b;λmax(em)=631 nm for2b;solid line) and excitation spectra (λmax(ex)=410 nm for1b;λmax(ex)=425 nm for2b;dotted line) of Ni(II) complexes were recorded.The designed Ni(II) complexes display large Stokes shifts with excitation and emission peaks,which are similar to that reported in previous literature [24].When iodide ions act as anionic coligands,3bis found to be nonemissive at both low and ambient temperatures due to the iodine-induced heavy atom effect which enhanced intersystem crossing (ISC) and then quenched fluorescence [50].

    Thermally activated delayed fluorescence (TADF) and roomtemperature phosphorescence (RTP) emitters typically involve triplet excitons that are particularly sensitive to temperature and molecular oxygen [40,51,52].The emission intensity and peak position of complexes1–2bare not perturbed by oxygen (Fig.S29 in Supporting information),which indicates no involvement of triplet state.The photoluminescence (PL) decays of complex2bat different temperatures (77–300 K) were determined by time-correlated single photon counting (TCSPC),whose emission is fluorescence with a temperature-independent lifetime of 3.01–3.12 ns (Fig.2d).The PL lifetime curves are slightly longer than the temporal width of the IRF.The PL decays of complex1bshow the same result at various temperatures (77–300 K) with lifetime of 1.61–1.89 ns (Fig.S31 in Supporting information).There is no evidence for either delayed fluorescence or phosphorescence in1–2b.As mentioned earlier,complexes1–2bdisplay large Stokes shifts in solid state and electrochemical properties.We can confidently attribute the lowenergy emission of1–2bto fluorescence from the excited singlet state.

    To investigate the electronic structure features among complexes1–3b,DFT and time-dependent density functional theory(TDDFT) calculations are employed.The geometries,FMOs,corresponding energy levels and atoms/fragments distributions of three complexes in solid state are displayed in Fig.3 based on each crystal S0structure.Accompanied with the varying of halogen ligands,little structural difference but obvious gradation of FMO components and energies are formed.The HOMO of1bis mainly accorded by NiX2parts (Ni 45%+X244%),while the HOMOs in2b(Ni 3%vs.X288%) and3b(Ni 2%vs.X292%) are lack of Ni participation.Similar but opposite trend resulting from the halogen donor ability is also observed in the analysis of the lowest unoccupied molecular orbitals (LUMOs).The LUMO of1bis mainly formed by NHC carbene unit with little Ni composition.However,when the halogen ligand switches to I,a Ni atom involvement cannot be ignored.The composition changing confirms the emissive phenomenon,as a lower composition of Ni in FMOs would improve the effective emission by precluding the d-d MC state and forming LLCT state,especially in complex2b.

    Fig.3. Frontier molecular orbital isosurfaces and energies of (a) 1b,(b) 2b,and(c) 3b in the solid S0 states at the crystal S0 geometries without the optimization of heavy atoms (isovalue=0.04).The corresponding fragment distributions of each FMO are also illustrated.

    The simulated absorption spectra by TDDFT of all three complexes are displayed and the fit between calculated and observed in the visible region is acceptable (Table S5 in Supporting information).The lowest energy absorption bands can be identified as S0→S4transitions.To gain the intuitive features of compositions in these transitions,we perform the natural transition orbitals (NTO)analyses.As shown in Fig.S32 (Supporting information),all S0→S4transitions get the obvious LLCT and d-d features.Since a low-lying d-d MC state is essential for photoluminescence quenching,we further study the role of LF splitting Ni d-orbitals in FMOs,especially highest occupied LF dz2and lowest unoccupied LF dx2-y2.As given in Fig.S33 (Supporting information),the features of Ni dz2orbitals are performed in HOMO-1 for1band HOMO-5 for2b/3b.Besides,the Ni dx2-y2orbitals exhibit less significant in LUMO+3 for1b,LUMO+1 for2band LUMO for3b.The larger d-d gaps shown in1band2bimply that the decrease of d orbital compositions in FMOs means the less MC disturbance on LLCT state,so the photoluminescence would be lit up.Nonetheless,a widely dispersed Ni d orbital configuration in the LUMO of3bmay offer the neighboring MC state,which might result in a thermally d-d deactivation pathway,which is consistent with our characterization that can quench the photoluminescence.

    In summary,a class of square-planar nickel(II) carbene complexes bearing halogen ligands as electron donors have been prepared by a new synthetic route and structurally characterized by single-crystal X-ray diffraction.Wherein,the [(diNHC)NiX2] (X=Cl or Br) complexes display apparent fluorescence with temperatureindependent decay lifetimes in solid state.The experimental data and theoretical calculations altogether reveal that the solid-state fluorescence in Ni(II) complexes is likely to be a result of LLCT character.Collectively,these data lead us to conclude that NHCs are demonstrated to be a sagacious choice in developing luminescent Ni(II) complexes in the red spectral region.Our study provides new ideas and strategies for Ni(II) complexes research in photophysics and photochemistry.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by the Natural Science Foundation of China (No.22175191).Y.C.thanks the financial support from CASCroucher Funding Scheme for Joint Laboratories and Beijing Municipal Science &Technology Commission (No.Z211100007921020).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108333.

    国产精品av久久久久免费| 免费看美女性在线毛片视频| 后天国语完整版免费观看| 国产激情久久老熟女| netflix在线观看网站| 一级a爱视频在线免费观看| 婷婷精品国产亚洲av在线| 亚洲精品色激情综合| 男女视频在线观看网站免费 | 国产精品野战在线观看| 久久 成人 亚洲| 欧美激情久久久久久爽电影| 一本综合久久免费| 国产成人精品久久二区二区免费| 精品国内亚洲2022精品成人| 黄色a级毛片大全视频| 99国产精品99久久久久| 两个人看的免费小视频| 中文字幕久久专区| 精品一区二区三区av网在线观看| 窝窝影院91人妻| 看免费av毛片| 国产激情偷乱视频一区二区| 99精品在免费线老司机午夜| 无限看片的www在线观看| 在线观看66精品国产| 精品国产亚洲在线| 国产成人精品久久二区二区免费| 亚洲成人国产一区在线观看| 男女做爰动态图高潮gif福利片| 女生性感内裤真人,穿戴方法视频| 久久中文字幕人妻熟女| 亚洲色图 男人天堂 中文字幕| aaaaa片日本免费| 欧美另类亚洲清纯唯美| 怎么达到女性高潮| 久久精品91无色码中文字幕| 无人区码免费观看不卡| 性欧美人与动物交配| 国产激情欧美一区二区| 老司机深夜福利视频在线观看| 久久精品91蜜桃| 亚洲欧美日韩无卡精品| 国产精品久久久av美女十八| 一a级毛片在线观看| 免费看美女性在线毛片视频| 99热这里只有精品一区 | 91成年电影在线观看| 久久香蕉激情| 人妻丰满熟妇av一区二区三区| 一区二区三区激情视频| 国产精品九九99| 操出白浆在线播放| 在线观看舔阴道视频| 亚洲专区中文字幕在线| av有码第一页| 欧美色欧美亚洲另类二区| 日日摸夜夜添夜夜添小说| 999久久久精品免费观看国产| 男女做爰动态图高潮gif福利片| 国产精品 国内视频| 色av中文字幕| 国产精品亚洲一级av第二区| 国产精品免费一区二区三区在线| 在线观看免费午夜福利视频| 亚洲中文日韩欧美视频| 久久人人精品亚洲av| 亚洲精品粉嫩美女一区| √禁漫天堂资源中文www| 国产免费av片在线观看野外av| 国产精品免费一区二区三区在线| videosex国产| 国产精品 国内视频| 中文字幕精品亚洲无线码一区 | 亚洲午夜理论影院| 欧美三级亚洲精品| 亚洲,欧美精品.| 1024视频免费在线观看| 一级毛片女人18水好多| 在线国产一区二区在线| 变态另类成人亚洲欧美熟女| 国产蜜桃级精品一区二区三区| a级毛片在线看网站| 99热这里只有精品一区 | 亚洲人成伊人成综合网2020| 9191精品国产免费久久| 久久精品91蜜桃| 免费看a级黄色片| 亚洲男人天堂网一区| 国产一区二区三区在线臀色熟女| 国产精品美女特级片免费视频播放器 | 亚洲成人精品中文字幕电影| 欧美日韩亚洲综合一区二区三区_| 亚洲人成电影免费在线| 人人妻人人看人人澡| 日日爽夜夜爽网站| 成人亚洲精品av一区二区| 国产精品亚洲美女久久久| 波多野结衣av一区二区av| 黄色视频不卡| 久久这里只有精品19| 欧美一级a爱片免费观看看 | 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久男人| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清videossex| 久久青草综合色| 变态另类成人亚洲欧美熟女| 亚洲第一av免费看| 香蕉丝袜av| 午夜精品在线福利| 亚洲精品国产一区二区精华液| 久久精品亚洲精品国产色婷小说| 欧美又色又爽又黄视频| www.999成人在线观看| 国产成人影院久久av| 成人18禁在线播放| 日本熟妇午夜| 丝袜人妻中文字幕| 国产精品亚洲av一区麻豆| 精品久久久久久久人妻蜜臀av| 麻豆久久精品国产亚洲av| 国产真人三级小视频在线观看| 老汉色av国产亚洲站长工具| 欧美成人一区二区免费高清观看 | 欧美在线黄色| 欧美性猛交黑人性爽| 黄片大片在线免费观看| 老司机午夜十八禁免费视频| 一本精品99久久精品77| 在线十欧美十亚洲十日本专区| 日本免费一区二区三区高清不卡| 婷婷六月久久综合丁香| 哪里可以看免费的av片| 中国美女看黄片| 在线看三级毛片| 我的亚洲天堂| 黄色成人免费大全| 亚洲精品在线观看二区| 妹子高潮喷水视频| 久久久久久人人人人人| 午夜影院日韩av| 久久久久久久久久黄片| 免费高清视频大片| 日本免费a在线| 嫁个100分男人电影在线观看| 亚洲一区高清亚洲精品| 人人澡人人妻人| 国产伦一二天堂av在线观看| 亚洲熟女毛片儿| 婷婷精品国产亚洲av在线| 亚洲av成人av| 亚洲国产欧美一区二区综合| 成人国语在线视频| 一级毛片精品| 亚洲片人在线观看| 午夜激情福利司机影院| 美女国产高潮福利片在线看| 美女高潮到喷水免费观看| 可以免费在线观看a视频的电影网站| 一级黄色大片毛片| 久久人妻福利社区极品人妻图片| 欧美+亚洲+日韩+国产| 俄罗斯特黄特色一大片| 精品一区二区三区av网在线观看| 亚洲国产精品sss在线观看| a级毛片在线看网站| 亚洲 欧美一区二区三区| 亚洲美女黄片视频| 给我免费播放毛片高清在线观看| 老司机深夜福利视频在线观看| 久久天堂一区二区三区四区| 国产区一区二久久| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女| 久久国产精品人妻蜜桃| 亚洲国产毛片av蜜桃av| 精品欧美国产一区二区三| 黑人操中国人逼视频| avwww免费| 一级作爱视频免费观看| 美女国产高潮福利片在线看| 精品久久久久久久毛片微露脸| 熟女少妇亚洲综合色aaa.| 国产一区二区三区视频了| 亚洲九九香蕉| 日本一本二区三区精品| 男女下面进入的视频免费午夜 | av电影中文网址| 日韩欧美一区视频在线观看| 中文字幕精品亚洲无线码一区 | 日韩视频一区二区在线观看| 手机成人av网站| 丰满的人妻完整版| 最新在线观看一区二区三区| 欧美日韩黄片免| 午夜亚洲福利在线播放| 国产激情欧美一区二区| 国产一卡二卡三卡精品| 成人三级做爰电影| 久久久久亚洲av毛片大全| а√天堂www在线а√下载| 国产人伦9x9x在线观看| 91成人精品电影| 国产精华一区二区三区| 人人澡人人妻人| 国产在线精品亚洲第一网站| 婷婷精品国产亚洲av在线| 久久久久久久午夜电影| 在线观看午夜福利视频| 亚洲av日韩精品久久久久久密| 午夜免费激情av| 看片在线看免费视频| 精华霜和精华液先用哪个| 麻豆av在线久日| 欧美久久黑人一区二区| 午夜两性在线视频| 一a级毛片在线观看| 国内毛片毛片毛片毛片毛片| 久久久久国产一级毛片高清牌| 欧美 亚洲 国产 日韩一| 日韩成人在线观看一区二区三区| 狠狠狠狠99中文字幕| 成人三级做爰电影| 精品不卡国产一区二区三区| 色综合亚洲欧美另类图片| 久久亚洲真实| 国产精品 欧美亚洲| 悠悠久久av| 国产成人精品久久二区二区91| 中文字幕久久专区| 国产精品,欧美在线| 亚洲免费av在线视频| 国产一级毛片七仙女欲春2 | 一级毛片高清免费大全| 岛国视频午夜一区免费看| 成人国语在线视频| 12—13女人毛片做爰片一| 免费搜索国产男女视频| 亚洲av成人一区二区三| 啦啦啦 在线观看视频| 亚洲精品国产一区二区精华液| 成人国产一区最新在线观看| 久9热在线精品视频| 国产精品自产拍在线观看55亚洲| 欧美av亚洲av综合av国产av| 少妇裸体淫交视频免费看高清 | 满18在线观看网站| 久久伊人香网站| 悠悠久久av| 国产伦人伦偷精品视频| 久久伊人香网站| 好男人电影高清在线观看| 99国产精品一区二区蜜桃av| 级片在线观看| 亚洲国产欧美日韩在线播放| 19禁男女啪啪无遮挡网站| 久久久精品国产亚洲av高清涩受| 波多野结衣巨乳人妻| 日韩中文字幕欧美一区二区| 精品乱码久久久久久99久播| 18美女黄网站色大片免费观看| 国产激情久久老熟女| 成人国产综合亚洲| 国产真人三级小视频在线观看| 国产一区二区激情短视频| 欧美色欧美亚洲另类二区| 在线国产一区二区在线| 欧美日本亚洲视频在线播放| 欧美性猛交╳xxx乱大交人| 精品熟女少妇八av免费久了| 啦啦啦韩国在线观看视频| 亚洲全国av大片| 欧美性猛交╳xxx乱大交人| 又黄又粗又硬又大视频| 啦啦啦观看免费观看视频高清| 免费在线观看影片大全网站| 俺也久久电影网| 欧美性长视频在线观看| 欧美性猛交╳xxx乱大交人| 一级毛片女人18水好多| 国产免费av片在线观看野外av| 少妇的丰满在线观看| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 成人国产综合亚洲| 最近最新中文字幕大全免费视频| 超碰成人久久| 亚洲av日韩精品久久久久久密| 黑人欧美特级aaaaaa片| 一进一出好大好爽视频| svipshipincom国产片| 亚洲国产精品999在线| 国产成人一区二区三区免费视频网站| 久久久久久九九精品二区国产 | 欧美一级毛片孕妇| 女人高潮潮喷娇喘18禁视频| 免费在线观看成人毛片| 亚洲精品在线观看二区| 免费在线观看亚洲国产| 亚洲精品在线观看二区| 国内精品久久久久久久电影| 国产精品久久久久久亚洲av鲁大| 在线观看免费午夜福利视频| 国产精品综合久久久久久久免费| 真人一进一出gif抽搐免费| 一级黄色大片毛片| 在线观看午夜福利视频| 女同久久另类99精品国产91| 久久天躁狠狠躁夜夜2o2o| 日本熟妇午夜| 国产成人精品久久二区二区91| 欧美乱码精品一区二区三区| 国产精品精品国产色婷婷| 国产精品电影一区二区三区| 国产精品二区激情视频| 欧美一级a爱片免费观看看 | 一本一本综合久久| 国产伦一二天堂av在线观看| 国产一级毛片七仙女欲春2 | 伊人久久大香线蕉亚洲五| 丝袜人妻中文字幕| 黄网站色视频无遮挡免费观看| 69av精品久久久久久| 国产伦在线观看视频一区| 欧美性猛交黑人性爽| 可以在线观看毛片的网站| 深夜精品福利| 高潮久久久久久久久久久不卡| 国产蜜桃级精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 久久狼人影院| 国产精品亚洲av一区麻豆| 亚洲精品一区av在线观看| 非洲黑人性xxxx精品又粗又长| 丝袜在线中文字幕| 亚洲av熟女| 黑人操中国人逼视频| 国产精品一区二区三区四区久久 | 999久久久国产精品视频| 国产亚洲av嫩草精品影院| 午夜两性在线视频| 91国产中文字幕| 国产精品亚洲一级av第二区| 大香蕉久久成人网| 欧美亚洲日本最大视频资源| 在线观看日韩欧美| 老熟妇仑乱视频hdxx| 两性夫妻黄色片| 一边摸一边做爽爽视频免费| 国产亚洲av嫩草精品影院| 成人特级黄色片久久久久久久| 午夜福利在线观看吧| 午夜激情av网站| 国产成人精品久久二区二区91| 在线十欧美十亚洲十日本专区| 国产黄色小视频在线观看| 搡老熟女国产l中国老女人| videosex国产| 亚洲午夜理论影院| 免费女性裸体啪啪无遮挡网站| 久久精品国产综合久久久| 久久久久久久午夜电影| 免费一级毛片在线播放高清视频| 国产免费av片在线观看野外av| aaaaa片日本免费| 久久久久久亚洲精品国产蜜桃av| 香蕉丝袜av| √禁漫天堂资源中文www| 国内少妇人妻偷人精品xxx网站 | 欧美一级a爱片免费观看看 | 国产野战对白在线观看| 满18在线观看网站| 黑人欧美特级aaaaaa片| 亚洲第一av免费看| 听说在线观看完整版免费高清| 法律面前人人平等表现在哪些方面| 亚洲一区二区三区色噜噜| 国内毛片毛片毛片毛片毛片| 久久久久精品国产欧美久久久| 国内少妇人妻偷人精品xxx网站 | 丝袜在线中文字幕| 欧美日韩乱码在线| 国产成人啪精品午夜网站| 欧美日韩黄片免| 午夜福利免费观看在线| 最近最新中文字幕大全电影3 | 黄色片一级片一级黄色片| 大型黄色视频在线免费观看| 夜夜夜夜夜久久久久| 在线视频色国产色| 午夜成年电影在线免费观看| 精品国产美女av久久久久小说| 午夜久久久久精精品| 亚洲第一青青草原| 欧美最黄视频在线播放免费| a级毛片a级免费在线| 中文资源天堂在线| av视频在线观看入口| 精品福利观看| 俺也久久电影网| 亚洲中文字幕一区二区三区有码在线看 | 美女免费视频网站| 日本在线视频免费播放| 免费看a级黄色片| 一区二区三区精品91| 免费一级毛片在线播放高清视频| 一级a爱片免费观看的视频| 亚洲精品一区av在线观看| 日韩高清综合在线| 国产伦在线观看视频一区| 十八禁网站免费在线| 免费在线观看成人毛片| av免费在线观看网站| 少妇裸体淫交视频免费看高清 | av在线天堂中文字幕| 日韩欧美国产在线观看| 日韩成人在线观看一区二区三区| 夜夜爽天天搞| 午夜成年电影在线免费观看| 国内少妇人妻偷人精品xxx网站 | 一区二区三区高清视频在线| 日日干狠狠操夜夜爽| 男女那种视频在线观看| 亚洲国产高清在线一区二区三 | 校园春色视频在线观看| 黄色 视频免费看| 日韩欧美免费精品| 淫妇啪啪啪对白视频| 男女午夜视频在线观看| 看黄色毛片网站| 一个人免费在线观看的高清视频| 在线国产一区二区在线| 51午夜福利影视在线观看| 白带黄色成豆腐渣| 一本久久中文字幕| 日本免费一区二区三区高清不卡| 精品一区二区三区四区五区乱码| 无遮挡黄片免费观看| 熟女少妇亚洲综合色aaa.| 久久婷婷人人爽人人干人人爱| 黑人欧美特级aaaaaa片| 久久中文看片网| 日韩欧美在线二视频| 中文字幕人成人乱码亚洲影| 两人在一起打扑克的视频| 波多野结衣av一区二区av| 校园春色视频在线观看| 99热只有精品国产| 国产1区2区3区精品| 听说在线观看完整版免费高清| 色婷婷久久久亚洲欧美| 嫁个100分男人电影在线观看| 午夜视频精品福利| 久久久国产成人精品二区| 一a级毛片在线观看| 91大片在线观看| 亚洲,欧美精品.| 国产激情偷乱视频一区二区| 久久中文字幕一级| 久热爱精品视频在线9| 一本一本综合久久| 最好的美女福利视频网| 桃色一区二区三区在线观看| 女人高潮潮喷娇喘18禁视频| 日本一区二区免费在线视频| 在线十欧美十亚洲十日本专区| 国产三级黄色录像| 国产99久久九九免费精品| 亚洲一码二码三码区别大吗| 精品久久久久久成人av| 日韩精品免费视频一区二区三区| 日韩欧美在线二视频| 免费av毛片视频| 国产精品一区二区免费欧美| 亚洲熟妇中文字幕五十中出| 高潮久久久久久久久久久不卡| 国产蜜桃级精品一区二区三区| 人妻久久中文字幕网| 亚洲国产毛片av蜜桃av| 国产精品一区二区三区四区久久 | 少妇熟女aⅴ在线视频| 日本a在线网址| 99国产精品一区二区三区| 国产一区二区激情短视频| 日韩大尺度精品在线看网址| 日韩欧美一区二区三区在线观看| 色av中文字幕| 美女免费视频网站| 国产97色在线日韩免费| 久久久久久九九精品二区国产 | aaaaa片日本免费| 此物有八面人人有两片| 欧美日韩一级在线毛片| 身体一侧抽搐| 精品欧美国产一区二区三| 亚洲中文字幕一区二区三区有码在线看 | 亚洲av成人一区二区三| 视频区欧美日本亚洲| 精品久久久久久久人妻蜜臀av| 国产午夜精品久久久久久| 看免费av毛片| 黄色视频不卡| 国产激情偷乱视频一区二区| videosex国产| 99久久99久久久精品蜜桃| 国产伦人伦偷精品视频| 欧美三级亚洲精品| 在线av久久热| 日韩欧美三级三区| 久久精品亚洲精品国产色婷小说| 99riav亚洲国产免费| 欧美又色又爽又黄视频| 国产片内射在线| 亚洲无线在线观看| 免费无遮挡裸体视频| 麻豆成人午夜福利视频| 国产不卡一卡二| 久久青草综合色| 狠狠狠狠99中文字幕| 身体一侧抽搐| 精品午夜福利视频在线观看一区| 岛国视频午夜一区免费看| 国产伦在线观看视频一区| 久久久久九九精品影院| 亚洲美女黄片视频| 亚洲在线自拍视频| 亚洲欧美一区二区三区黑人| 久久婷婷成人综合色麻豆| 中出人妻视频一区二区| 亚洲国产欧洲综合997久久, | 久久久久九九精品影院| 2021天堂中文幕一二区在线观 | 黑丝袜美女国产一区| 国语自产精品视频在线第100页| 中文字幕人妻熟女乱码| 久久狼人影院| 亚洲av中文字字幕乱码综合 | 18禁观看日本| 日本在线视频免费播放| 嫩草影院精品99| 精品不卡国产一区二区三区| 国产亚洲欧美98| 亚洲,欧美精品.| 欧美乱色亚洲激情| 亚洲成av人片免费观看| 国产真人三级小视频在线观看| 免费在线观看日本一区| 亚洲黑人精品在线| 久久精品91蜜桃| 日韩有码中文字幕| 男女午夜视频在线观看| 久久久国产成人免费| 久久婷婷成人综合色麻豆| 999久久久精品免费观看国产| av在线播放免费不卡| svipshipincom国产片| 宅男免费午夜| 免费在线观看日本一区| АⅤ资源中文在线天堂| 国产成人av激情在线播放| 十八禁网站免费在线| 久久 成人 亚洲| 成在线人永久免费视频| 国产伦一二天堂av在线观看| 久久精品国产亚洲av高清一级| 亚洲精品一卡2卡三卡4卡5卡| 日韩高清综合在线| 亚洲成人久久性| 在线看三级毛片| 巨乳人妻的诱惑在线观看| 国产精品永久免费网站| 国产精品二区激情视频| 成人精品一区二区免费| 91av网站免费观看| 亚洲av五月六月丁香网| 男人的好看免费观看在线视频 | 日韩欧美 国产精品| 热99re8久久精品国产| 午夜影院日韩av| www.精华液| 在线免费观看的www视频| 日日摸夜夜添夜夜添小说| 免费观看人在逋| 午夜激情av网站| aaaaa片日本免费| 天堂动漫精品| 成年版毛片免费区| 亚洲欧美激情综合另类| 男女床上黄色一级片免费看| 国产精品国产高清国产av| 99热6这里只有精品| 深夜精品福利| 老司机在亚洲福利影院| 两人在一起打扑克的视频| 免费高清视频大片| 一级a爱视频在线免费观看| 两人在一起打扑克的视频| 老汉色av国产亚洲站长工具| 婷婷精品国产亚洲av| 在线av久久热| 国产一区二区激情短视频| 国产亚洲av高清不卡| 欧美中文日本在线观看视频| 国产午夜精品久久久久久| 欧美成人午夜精品| 特大巨黑吊av在线直播 | 国产精品99久久99久久久不卡| 亚洲成a人片在线一区二区| 久久精品国产亚洲av香蕉五月| 国产精品电影一区二区三区| а√天堂www在线а√下载| 国产99白浆流出| 久久伊人香网站| 18禁美女被吸乳视频|