• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Supramolecular cyclization induced emission enhancement in a pillar[5]arene probe for discrimination of spermine

    2023-02-18 01:55:16YibinZhouHaoTangHanlunWuXiaomeiJiangLingyunWangDerongCao
    Chinese Chemical Letters 2023年12期

    Yibin Zhou,Hao Tang ,Hanlun Wu,Xiaomei Jiang,Lingyun Wang,Derong Cao

    State Key Laboratory of Luminescent Materials and Devices,School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510641,China

    Keywords:Spermine Pillar[5]arene Probe Supramolecular chemistry Supramolecular cyclization induced emission enhancement

    ABSTRACT Early diagnosis and treatment of cancer requires the development of tools that are both sensitive and selective in detecting spermine.In this study,we presented a "supramolecular cyclization-induced emission enhancement" strategy for the sensitive and selective detection of spermine.A new pillar[5]arene probe (P1) demonstrated excellent solution/solid dual-state emission properties,and the addition of certain spermine (Spm) resulted in fluorescence enhancement due to the synergy of multiple weak interactions that restricted the free motion of P1 in the P1?Spm complex.This mechanism was further confirmed by time-resolved spectroscopy,DFT calculations,and IGM analysis.With its low limit of detection and high selectivity,P1 is a promising tool for measuring spermine in artificial urine samples.

    Spermine (Spm) is a polyamine widely present in eukaryotic cells and bodily fluids,playing a critical role in cell proliferation and development [1–3].Recent studies have linked elevated levels of spermine to the presence of cancer,making it a promising biomarker for early detection and efficacy evaluation of cancer treatment [4,5].However,conventional detection methods such as chromatography and immunoassays are time-consuming and expensive [6,7],necessitating the development of a swift and accurate diagnostic tool.Fluorescent probes have been recognized as a potent approach for spermine detection,with various organic molecules [8–13],quantum dots [14],conjugated polymers [15–17],organic metal compounds [18,19],and supramolecular selfassemblies [20–25] being employed in the past decade.However,the development of novel fluorescent probes for its detection remains desired because the probes for the identification of spermine with high selectivity are still rare.

    Pillar[5]arene has been extensively employed in supramolecular chemistry due to its rigid structure and favorable host-guest characteristics [26–33].By altering its structure,functionalized pillar[5]arenes have been developed and used for the detection of ions and small molecules [34–39].Recently,we designed a functionalized pillar[5]arene with aggregation-induced emission (AIE)group and multiple-binding-site for the selective discrimination of specific alkylenediamines [40].Here we proposed a “supramolecular cyclization-induced emission enhancement” (SCIEE) strategy for the selective detection of spermine.By introducing multiple binding sites to pillar[5]arene as a new host (P1),P1and spermine can form a host-guest complex with a ring-like structure by supramolecular cyclization.Such a ring-like self-assembly restricts the free motion of the host,resulting in the fluorescence enhancement and selective detection of spermine.

    In this study,two modified versions of pillar[5]arene (P1and its control counterpartP2,Scheme 1) were designed and synthesized for the purpose of sensing spermine.Due to the inclusion of diphenylethene groups,bothP1andP2exhibited strong emission properties in both dilute solutions and solid state,featuring dual state emission.P1was designed with three binding sites specifically suited for spermine,with the distance between two carboxyl groups ofP1matching the alkyl chain length of spermine.This design activated the supramolecular cyclization upon the addition of spermine,restricting the free motion ofP1in the host-guest complex and resulting in enhanced fluorescence.However,P2was not effective in recognizing spermine despite also having three binding sites,as the distance between two carboxyl groups ofP2was too great for the amino groups at the end of the spermine to bind to them simultaneously.

    Scheme 1. Chemical structures of P1, P2,and NP and the schematic illustration of detection mechanism.

    The synthetic route ofP1andP2was shown in Scheme S1(Supporting information).Initially,intermediates6aand6bwere produced through the Suzuki reaction of compounds2/4and5,respectively.These intermediates were subjected to a sequence of Williamson and hydrolysis reactions to obtain the desiredP1andP2compounds.NMR and HRMS analysis were conducted to fully characterize the related compounds,as shown in Figs.S1-S25 (Supporting information).

    The photophysical characteristics ofP1andP2were examined in acetonitrile and solid states.The absorption spectra ofP1andP2were similar with two absorption bands being observed atca.305 and 331 nm (Fig.S26a in Supporting information).Similarly,the normalized fluorescence spectra of both compounds were nearly indistinguishable,with blue emission at 397 nm (Fig.1a and Fig.S26b in Supporting information).DFT calculations indicated that the photophysical properties ofP1andP2were nearly identical due to their comparable conjugated structures and energy gaps(Fig.1b and Fig.S27 in Supporting information).Additionally,the emission ofP1andP2showed weak solvatochromic properties,with a redshift of 16 and 20 nm,respectively,from toluene to DMF(Fig.S28 and Table S1 in Supporting information).

    Fig.1. (a) Photos of the fluorescence emitted by P1 and P2 in solution and the solid state;(b) Spatial distribution of the HOMO and LUMO of P1 and P2.Fluorescence spectra of P1 (c) and P2 (d) (2.5 μmol/L) in DMSO/H2O mixtures with varying water content ranging from 0 to 99%.

    In the solid state,bothP1andP2emitted strong blue emission atca.413 and 415 nm,respectively (Fig.S29 in Supporting information).To investigate their fluorescence properties in the aggregated state,dimethyl sulfoxide and water were chosen as the good solvent and poor solvent,respectively.In a dimethyl sulfoxide solution,P1(2.5 μmol/L) exhibited blue emission at 401 nm.The fluorescence intensity of the mixture solution showed a tendency to increase and then decrease with the increase of water volume fraction (fw).However,the magnitude of the fluorescence change was not significant for all samples,and all samples emitted strong blue light (Fig.1c and Fig.S30a in Supporting information).Similarly,P2also displayed significant blue fluorescence in both the solution and aggregated state (Fig.1d and Fig.S30b in Supporting information).These findings demonstrate thatP1andP2possess excellent solvent/solid dual state emission properties.The large conjugated structure of both compounds enables efficient fluorescence in dilute solutions,while the presence of the pillar[5]arene structure prevents the formation ofπ-πstacking in the aggregated state,resulting in excellent fluorescence performance of the aggregates.

    Furthermore,solution-thickening experiments were conducted to confirm whether fluorescence enhancement could be attained by limiting the free motion ofP1andP2.As depicted in Fig.S31(Supporting information),the fluorescence of bothP1andP2underwent a significant enhancement as the volume fraction of glycerol increased,indicating that the intramolecular rotation ofP1andP2could be constrained by the thickening approach,resulting in an increase in fluorescence.

    The host–guest complexation betweenP1and spermine was investigated in acetonitrile.The emission ofP1was significantly increased upon the addition of spermine (Fig.S32 in Supporting information).The observed fluorescence enhancement correlated with the results of time-resolved spectroscopy experiments,where the fluorescence lifetime ofP1was found to increase from 2.80 ns to 3.14 ns upon the addition of spermine,as shown in Fig.S33 and Table S2 (Supporting information).To quantify the hostguest binding,a fluorescence titration experiment was conducted with the concentration ofP1held constant.As depicted in Fig.2,the fluorescence intensity ofP1increased gradually with the addition of spermine.The binding isotherms were fitted well to a 1:1 binding model using the Scientist 3 program.The equilibrium binding constant ofP1to spermine was determined to be (7.7±0.6)×105L/mol in acetonitrile.In order to examine the solvent effect on theP1-spermine binding,we investigated the fluorescence response ofP1(2.5 μmol/L) upon adding 5 μmol/L spermine in various solutions,including an acetonitrile/water mixture (1:9,v/v),an aqueous solution,and PBS buffer solutions (pH 6.5 and 7.4).As shown in Fig.S34 (Supporting information),the fluorescence of theP1solution barely changed when spermine was added to the aqueous solution or PBS buffer solution,indicating that the binding capacities ofP1to spermine were not high in those media.The fluorescence enhancement ofP1was observed in the acetonitrile/water mixture (1:9,v/v) with the equilibrium binding constant ofP1to spermine determined to be (2.3± 0.2)×104L/mol,which is 33 times lower than that in acetonitrile (Fig.S35 in Supporting information).The binding capacity ofP1to spermine decreased greatly in the presence of water,which may be attributed to the competition between spermine and water for the binding of carboxylic unit ofP1and high solubility of spermine in water.

    Fig.2. Binding isotherm of P1?Spm complex fitted with a 1:1 binding model.Inset: Dependence of fluorescence of P1 on the concentration of spermine in acetonitrile.[P1]=2.5 μmol/L.

    To confirm the host-guest interactions betweenP1and spermine,1H NMR was conducted (Fig.3).The disappearance of the peak of protons HAon the carboxyl group ofP1indicated a proton exchange process betweenP1and spermine,while upfield shifts of the NMR peak was observed for protons HBon the methylene group.The NMR peaks for protons Hc,Hd,and Heon spermine displayed substantial upfield shifts and broadening,which were attributed to the inclusion-induced shielding effects and complexation dynamics [41].Comparatively,the NMR peaks for protons Haand Hbon spermine exhibited downfield shifts,possibly due to the effect of protonation of the amino group and the inability of the cavity ofP1to fully encapsulate spermine,leaving the exposed Haand Hbprotons outside the cavity.Besides,1H NMR titration experiments were performed to further investigate the binding betweenP1and spermine where DMSO was used as the solvent instead of acetonitrile due toP1’s inadequate solubility in acetonitrile for NMR experiments (Fig.S36 in Supporting information).The chemical shifts of protons on spermine were shifted with the addition ofP1and the binding isotherm was fit well with a 1:1 binding model,suggesting a 1:1 host-guest binding.The equilibrium binding constant ofP1to spermine in DMSO was calculated to be(5.3± 0.8)×103L/mol using the Scientist 3 program (Fig.S37 in Supporting information).Additionally,an ESI-MS experiment was conducted,which also revealed the formation of 1:1 host-guest complex in theP1/Spm system,as evidenced by the presence of the [P1?Spm]+peak in the spectrum (Fig.S38 in Supporting information).

    Fig.3. 1H NMR spectra for the binding of P1 with spermine (400 MHz,DMSO–d6).(a) P1 (5 mmol/L);(b) P1 (5 mmol/L) and spermine (5 mmol/L);(c) spermine(5 mmol/L).

    The control experiments were conducted by observing the fluorescent behavior of two control molecules ofP1(i.e.,P2andNP)upon the addition of spermine (Fig.S39 in Supporting information).The absence of substantial fluorescence enhancement inP2andNPindicated their inability to effectively bind with spermine,which was attributed to the great distance between two carboxyl groups ofP2and the lack of a pillar[5]arene cavity inNP.This finding reinforced the importance of the pillar[5]arene cavity and the dual carboxyl-amine interactions in the selective recognition of spermine.

    To further investigate the mechanism behindP1’s selective recognition of spermine,several methods were employed,including DFT calculations and independent gradient model (IGM) analysis.The complex structure ofP1?Spm was optimized by DFT and depicted in Fig.4a.One binding site showed a strong electrostatic interaction (1.328 ?A) between the carboxylate anion and the alkylammonium cation due to proton transfer from a carboxyl group ofP1to an amino group of spermine.At another binding site,an O–H???N bond (1.607 ?A) was formed between a carboxyl group ofP1and an amine group of spermine,consistent with the characteristics of carboxyl-amine interaction,namely,charge-assisted hydrogen bond [42].IGM analysis revealed strong electrostatic interaction,hydrogen bond (indicated by blue areas in the isosurfaces),and van der Waals interactions (indicated by green areas in the isosurfaces) betweenP1and spermine (Fig.4c) [43].In contrast,the amino groups at the end of spermine could not attach to twoP2carboxyl groups simultaneously to establish two carboxyl-amine interactions,as shown in Fig.4b.These theoretical studies confirmed that the synergy of carboxyl-amine interactions and van der Waals interactions between the host and the guest played a key role in restricting the free motion ofP1and achieving supramolecular cyclization-induced emission enhancement.

    Fig.4. The complex structure of P1?Spm (a) and P2?Spm (b) predicted by DFT calculation.(c) δginter=0.01 a.u.isosurfaces graphs of P1?Spm.

    The investigation of the selectivity ofP1towards spermine in the presence of various amines was carried out.Firstly,1,12-diaminododecane,which has the same chain length as spermine,was chosen to bind toP1.As shown in Fig.S40 (Supporting information),the emission ofP1was significantly increased upon the addition of 1,12-diaminododecane,indicating that the presence of 1,12-diaminododecane may cause interference in the detection of spermine.However,1,12-diaminododecane is not biogenic amine and not typically present in the physiological environment and is therefore unlikely to cause interference in the detection of spermine [44].Thus,taking into account practical application scenarios,interference was mainly selected from some common biogenic amines.Secondly,the results presented in Fig.5 showed that the fluorescence emission ofP1was significantly enhanced upon the addition of spermine,while no significant increase in fluorescence was observed in any of the other biogenic amine solutions.Thirdly,considering that spermine is a basic compound,the impact of NH3on the spermine sensing process was investigated.As depicted in Fig.S41 (Supporting information),P1was capable of accurately detecting spermine in the presence of varying concentrations of NH3.Additionally,competition experiments were conducted to evaluateP1’s ability to distinguish spermine from other amines,as shown in Fig.S42 (Supporting information).The experimental findings indicated thatP1exhibited selective detection of spermine andwas barely influenced by basic compounds.The limit of detection (LOD) for spermine in acetonitrile was determined as 0.094±0.002 μmol/L using the equation 3σ/S (where standard deviation,σ=1.1 and slope,S=3.5× 107) (Fig.S43 in Supporting information) [20].These results indicated thatP1possessed high sensitivity and selectivity in recognizing spermine,placing it among the most selective and sensitive probes (Table S3 in Supporting information).

    Fig.5. The fluorescence spectra of P1 (2.5 μmol/L) with different biogenic amines(5 μmol/L) in acetonitrile.Inset: photographs of samples under 365 nm UV illumination.Guests are 1: Spermine,2: Spermidine,3: 1,5-pentanediamine,4: 1,4-butanediamine,5: Tryptamine,6: Histamine,7: Tyramine,8: Urea,9: Ethylenediamine.

    To showcase the potential utility ofP1in detecting spermine in artificial urine,the fluorescence spectra ofP1were determined with the addition of artificial urine (depicted in Fig.S44a in Supporting information).The results showed that the fluorescence intensities at 400 nm were linearly proportional to the spermine concentration in the range of 0–17 μmol/L,as demonstrated in Fig.S44b (Supporting information).The LOD for spermine in artificial urine was determined to be 0.4 μmol/L,which is sensitive enough in pathological conditions.The findings of the recovery experiments are summarized in Table 1.

    Table 1 Real sample analysis data for different samples pre-spiked with the known concentrations of spermine.

    In conclusion,we used supramolecular cyclization induced emission enhancement as a new strategy to detect spermine by pillar[5]arene derivative (i.e.,P1) bearing three binding sites for spermine.An increase in the fluorescent emission ofP1with the addition of spermine was attributed to the inhibition ofP1’s free motion in theP1?Spm complex by supramolecular cyclization,aided by multiple weak interactions.P1possessed high sensitivity and selectivity in recognizing spermine (with LOD of 0.094 μmol/L and 0.4 μmol/L for spermine in acetonitrile and artificial urine) due to the synergism based on the pillar[5]arene cavity,the dual carboxyl-amine interactions,and the proper chain lengths ofP1and spermine,placing it among the most selective and sensitive probes.However,a similar pillar[5]arene derivativeP2cannot form such a ring-like structure by supramolecular cyclization,resulting no obvious emission enhancement because the chain length ofP2does not match that of spermine.Another similar probeNPdoes not show the supramolecular cyclization-induced emission enhancement due to the lack of a pillar[5]arene cavity.This study presents a novel approach to developing probes for spermine detection,and suggests potential applications in early cancer diagnosis.However,it should be mentioned that other alkanediamines with similar chain lengths,i.e.,1,12-diaminododecane may increase the emission ofP1.Fortunately,1,12-diaminododecane is not biogenic amine and therefore may not interfere the detection of spermine in the physiological environment samples.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22071066,22071065),the National Key Research and Development Program of China (No.2016YFA0602900),the Guangdong Natural Science Foundation,China (No.2018B030311008),and the Guangzhou Science and Technology Project,China (No.202102020802).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108626.

    中文字幕av在线有码专区| 熟女人妻精品中文字幕| 在线a可以看的网站| 乱人视频在线观看| 天堂av国产一区二区熟女人妻| 国产精品免费一区二区三区在线| 欧美成人免费av一区二区三区| 自拍偷自拍亚洲精品老妇| 99久久精品国产国产毛片| 一级黄色大片毛片| 免费搜索国产男女视频| 亚洲,欧美,日韩| 亚洲内射少妇av| 国产色爽女视频免费观看| 九九久久精品国产亚洲av麻豆| 午夜精品国产一区二区电影 | 两性午夜刺激爽爽歪歪视频在线观看| 91久久精品国产一区二区三区| 国产 一区 欧美 日韩| 国产精品国产三级国产av玫瑰| 色尼玛亚洲综合影院| 亚洲欧美成人综合另类久久久 | 久久久久国产精品人妻aⅴ院| 国产黄色小视频在线观看| 国产精品人妻久久久久久| 国产一区二区激情短视频| 中文字幕久久专区| 变态另类丝袜制服| 国产成人a区在线观看| 久久久久久久久大av| 久久精品国产99精品国产亚洲性色| 亚洲精品一区av在线观看| avwww免费| 亚洲性夜色夜夜综合| 亚洲在线观看片| 国产一区亚洲一区在线观看| 国产aⅴ精品一区二区三区波| 国产成人91sexporn| 观看免费一级毛片| 亚州av有码| 成人综合一区亚洲| 国产一区二区激情短视频| 午夜免费男女啪啪视频观看 | 国产乱人偷精品视频| 美女黄网站色视频| 午夜精品一区二区三区免费看| 国产国拍精品亚洲av在线观看| 成人综合一区亚洲| 久久久久久大精品| 国产午夜精品论理片| 日日摸夜夜添夜夜爱| 变态另类成人亚洲欧美熟女| 最近手机中文字幕大全| 国产免费一级a男人的天堂| 精品不卡国产一区二区三区| 国产男靠女视频免费网站| 日本-黄色视频高清免费观看| 欧美不卡视频在线免费观看| 毛片一级片免费看久久久久| 成人亚洲欧美一区二区av| 免费观看的影片在线观看| 一进一出抽搐gif免费好疼| 国产高清三级在线| 99热这里只有是精品50| 亚洲天堂国产精品一区在线| 国产欧美日韩一区二区精品| 一夜夜www| 五月玫瑰六月丁香| 我的女老师完整版在线观看| 午夜日韩欧美国产| 毛片一级片免费看久久久久| 日韩欧美 国产精品| 国产69精品久久久久777片| 搡女人真爽免费视频火全软件 | 欧美高清成人免费视频www| 两个人视频免费观看高清| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区精品| 禁无遮挡网站| 午夜福利在线观看吧| or卡值多少钱| 色吧在线观看| 蜜臀久久99精品久久宅男| 国产熟女欧美一区二区| 黄色日韩在线| 亚洲国产色片| 国产不卡一卡二| 欧美日韩一区二区视频在线观看视频在线 | 变态另类丝袜制服| 久久久久国产精品人妻aⅴ院| 久久久色成人| 日本色播在线视频| 成人美女网站在线观看视频| 校园人妻丝袜中文字幕| 国产精品久久久久久久电影| 桃色一区二区三区在线观看| 久久亚洲精品不卡| 国产精品电影一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 天天一区二区日本电影三级| 久久精品国产自在天天线| 99久久无色码亚洲精品果冻| 久久亚洲精品不卡| 日韩制服骚丝袜av| 国模一区二区三区四区视频| 色尼玛亚洲综合影院| 欧美区成人在线视频| 色吧在线观看| 欧美色视频一区免费| 日韩一区二区视频免费看| 狂野欧美激情性xxxx在线观看| 波野结衣二区三区在线| 国产黄色视频一区二区在线观看 | 深爱激情五月婷婷| 国产精品亚洲一级av第二区| 非洲黑人性xxxx精品又粗又长| 婷婷六月久久综合丁香| 亚洲av中文字字幕乱码综合| 一个人观看的视频www高清免费观看| 成人毛片a级毛片在线播放| 久久草成人影院| 床上黄色一级片| h日本视频在线播放| 热99re8久久精品国产| 久久久久久久久大av| 中文资源天堂在线| 给我免费播放毛片高清在线观看| 婷婷精品国产亚洲av在线| 国产乱人偷精品视频| 深爱激情五月婷婷| 麻豆久久精品国产亚洲av| 亚洲久久久久久中文字幕| 色综合站精品国产| 欧美区成人在线视频| 极品教师在线视频| 女生性感内裤真人,穿戴方法视频| 国语自产精品视频在线第100页| 99热6这里只有精品| 免费不卡的大黄色大毛片视频在线观看 | 看非洲黑人一级黄片| 少妇的逼水好多| 插阴视频在线观看视频| 亚洲精品成人久久久久久| 99久久精品一区二区三区| 一边摸一边抽搐一进一小说| 欧美日韩在线观看h| 亚洲丝袜综合中文字幕| 亚洲精品久久国产高清桃花| 国产精品无大码| 免费一级毛片在线播放高清视频| 国产精品久久视频播放| 91av网一区二区| 97超碰精品成人国产| 国产欧美日韩一区二区精品| 久久99热这里只有精品18| 精品少妇黑人巨大在线播放 | 久久综合国产亚洲精品| 老女人水多毛片| 亚洲欧美日韩无卡精品| 亚洲最大成人手机在线| 国产免费男女视频| 国产精品国产三级国产av玫瑰| 成人鲁丝片一二三区免费| 国产成人精品久久久久久| 国内久久婷婷六月综合欲色啪| 亚洲最大成人手机在线| 亚洲18禁久久av| 免费观看在线日韩| 最新在线观看一区二区三区| 真实男女啪啪啪动态图| 国产 一区 欧美 日韩| 禁无遮挡网站| 长腿黑丝高跟| 日韩av不卡免费在线播放| 少妇的逼水好多| 97超级碰碰碰精品色视频在线观看| 久久久精品欧美日韩精品| 免费看a级黄色片| 欧美+日韩+精品| 免费看日本二区| 岛国在线免费视频观看| 男女下面进入的视频免费午夜| 69人妻影院| 最近在线观看免费完整版| 亚洲三级黄色毛片| 成人特级黄色片久久久久久久| 亚洲av.av天堂| 国产亚洲精品久久久com| 国产大屁股一区二区在线视频| 国语自产精品视频在线第100页| 在线观看一区二区三区| 狠狠狠狠99中文字幕| 欧美另类亚洲清纯唯美| 日韩成人伦理影院| 国产三级中文精品| 99热网站在线观看| 日日摸夜夜添夜夜添小说| 长腿黑丝高跟| 亚洲va在线va天堂va国产| 老师上课跳d突然被开到最大视频| 午夜福利在线观看免费完整高清在 | 级片在线观看| 国产午夜福利久久久久久| 97人妻精品一区二区三区麻豆| 一夜夜www| av黄色大香蕉| 99久久久亚洲精品蜜臀av| 亚洲最大成人av| 久久精品夜色国产| 欧美人与善性xxx| 久久精品久久久久久噜噜老黄 | 婷婷精品国产亚洲av在线| 嫩草影院精品99| 色视频www国产| 久久亚洲国产成人精品v| 少妇人妻一区二区三区视频| 少妇猛男粗大的猛烈进出视频 | 性插视频无遮挡在线免费观看| 成熟少妇高潮喷水视频| 国产黄片美女视频| 99热网站在线观看| 欧美zozozo另类| 色尼玛亚洲综合影院| 在线观看免费视频日本深夜| 国产精品久久久久久精品电影| av在线播放精品| 亚洲人成网站在线播| 国产精品国产高清国产av| 国产精品久久久久久精品电影| 99久久精品国产国产毛片| 美女被艹到高潮喷水动态| 国产高潮美女av| 露出奶头的视频| 免费看日本二区| 一个人看的www免费观看视频| 国产成年人精品一区二区| 精品一区二区三区视频在线| 一级毛片aaaaaa免费看小| 午夜福利在线观看免费完整高清在 | 国语自产精品视频在线第100页| 日韩中字成人| а√天堂www在线а√下载| 欧美3d第一页| 国产精品国产高清国产av| 久久这里只有精品中国| 久久天躁狠狠躁夜夜2o2o| 久久久精品大字幕| 国产精品一区二区性色av| 男女边吃奶边做爰视频| 日韩 亚洲 欧美在线| 久久久欧美国产精品| 99视频精品全部免费 在线| 亚洲精品亚洲一区二区| 亚洲精品国产成人久久av| 日本黄色片子视频| 国产精品99久久久久久久久| 91av网一区二区| 卡戴珊不雅视频在线播放| 九九爱精品视频在线观看| 日韩欧美 国产精品| av视频在线观看入口| 可以在线观看毛片的网站| 精品国产三级普通话版| 男人狂女人下面高潮的视频| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 婷婷亚洲欧美| 日本a在线网址| 国产 一区 欧美 日韩| 啦啦啦韩国在线观看视频| 午夜免费激情av| 国内精品宾馆在线| 最近2019中文字幕mv第一页| 精品久久久久久久久久久久久| 亚洲第一电影网av| 大又大粗又爽又黄少妇毛片口| 97超碰精品成人国产| 免费无遮挡裸体视频| 内射极品少妇av片p| 久久欧美精品欧美久久欧美| 波多野结衣高清作品| 18禁在线播放成人免费| 夜夜爽天天搞| 欧美3d第一页| 久久久久国产精品人妻aⅴ院| 草草在线视频免费看| 99久久无色码亚洲精品果冻| 天堂影院成人在线观看| 亚洲欧美精品自产自拍| 国产一区二区在线av高清观看| 一本一本综合久久| 在线播放国产精品三级| 美女被艹到高潮喷水动态| 99热精品在线国产| 一个人看视频在线观看www免费| 国产免费一级a男人的天堂| 一进一出好大好爽视频| 亚洲精品国产成人久久av| 久久精品国产亚洲网站| 搡老熟女国产l中国老女人| 亚洲国产精品sss在线观看| 免费搜索国产男女视频| 久久人妻av系列| 亚洲成人久久性| 超碰av人人做人人爽久久| 欧美极品一区二区三区四区| 成人永久免费在线观看视频| 不卡视频在线观看欧美| 一个人看的www免费观看视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲在线观看片| 久久热精品热| 免费观看人在逋| 高清毛片免费看| 亚洲欧美精品自产自拍| 久久精品综合一区二区三区| 偷拍熟女少妇极品色| 十八禁网站免费在线| 搡老妇女老女人老熟妇| 久久精品国产99精品国产亚洲性色| 亚洲国产精品合色在线| 日韩欧美精品v在线| 99九九线精品视频在线观看视频| 国产v大片淫在线免费观看| av天堂中文字幕网| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲网站| 国产精品国产高清国产av| 久久久久久久久久黄片| 99热6这里只有精品| 99久久精品一区二区三区| 看十八女毛片水多多多| 两个人的视频大全免费| 亚洲成人中文字幕在线播放| 嫩草影院精品99| 国产亚洲欧美98| 欧美日韩国产亚洲二区| 少妇被粗大猛烈的视频| 亚洲欧美清纯卡通| 少妇的逼水好多| avwww免费| 亚洲欧美中文字幕日韩二区| 欧美激情国产日韩精品一区| 亚洲一级一片aⅴ在线观看| 男人和女人高潮做爰伦理| 中文字幕久久专区| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久| 变态另类丝袜制服| 午夜爱爱视频在线播放| 九九爱精品视频在线观看| 久久久欧美国产精品| 国产女主播在线喷水免费视频网站 | 女的被弄到高潮叫床怎么办| 在线天堂最新版资源| 亚洲无线在线观看| 国产v大片淫在线免费观看| 精品一区二区三区人妻视频| 免费观看人在逋| 亚洲精华国产精华液的使用体验 | 18禁黄网站禁片免费观看直播| 俄罗斯特黄特色一大片| 在现免费观看毛片| 蜜桃久久精品国产亚洲av| 成人永久免费在线观看视频| 久久人人精品亚洲av| 女人十人毛片免费观看3o分钟| 校园春色视频在线观看| av福利片在线观看| 国产精品日韩av在线免费观看| 内地一区二区视频在线| ponron亚洲| 一个人观看的视频www高清免费观看| 人妻夜夜爽99麻豆av| 听说在线观看完整版免费高清| av在线老鸭窝| 亚洲精品成人久久久久久| 国产麻豆成人av免费视频| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇中文字幕五十中出| 久久草成人影院| 1000部很黄的大片| 欧美性猛交黑人性爽| 熟女人妻精品中文字幕| 99热精品在线国产| 日韩欧美 国产精品| 校园人妻丝袜中文字幕| 国产欧美日韩一区二区精品| 男女那种视频在线观看| 日韩人妻高清精品专区| av视频在线观看入口| 国产精品电影一区二区三区| 看非洲黑人一级黄片| 麻豆成人午夜福利视频| 成年版毛片免费区| 成人特级av手机在线观看| 在线播放国产精品三级| 日日啪夜夜撸| 六月丁香七月| 极品教师在线视频| 亚洲最大成人中文| 久久久成人免费电影| 亚洲精品国产av成人精品 | 国内精品美女久久久久久| 日韩欧美三级三区| 麻豆乱淫一区二区| 亚洲av二区三区四区| or卡值多少钱| 国产色爽女视频免费观看| 3wmmmm亚洲av在线观看| 可以在线观看的亚洲视频| 变态另类成人亚洲欧美熟女| 久久久精品欧美日韩精品| 国产高清三级在线| 村上凉子中文字幕在线| 韩国av在线不卡| 亚洲中文字幕日韩| 欧美性猛交╳xxx乱大交人| 国产精品一二三区在线看| 国产免费男女视频| 日产精品乱码卡一卡2卡三| 超碰av人人做人人爽久久| 亚洲第一电影网av| 天天躁夜夜躁狠狠久久av| 日本免费a在线| 国产av一区在线观看免费| 无遮挡黄片免费观看| 亚洲国产精品成人久久小说 | 插逼视频在线观看| 91在线精品国自产拍蜜月| 久久久久久久久中文| 波多野结衣高清作品| 内地一区二区视频在线| 国产乱人视频| 嫩草影院精品99| 欧美3d第一页| 色综合色国产| 香蕉av资源在线| 午夜爱爱视频在线播放| 欧美不卡视频在线免费观看| 亚洲av成人av| 别揉我奶头~嗯~啊~动态视频| 白带黄色成豆腐渣| 中国美女看黄片| 国产久久久一区二区三区| 国产精品,欧美在线| 精品久久久噜噜| 亚洲熟妇中文字幕五十中出| 亚洲精华国产精华液的使用体验 | 久99久视频精品免费| 此物有八面人人有两片| 精品午夜福利视频在线观看一区| 久久婷婷人人爽人人干人人爱| 丝袜喷水一区| a级毛片a级免费在线| 搞女人的毛片| 欧美成人一区二区免费高清观看| 身体一侧抽搐| 麻豆av噜噜一区二区三区| 男女下面进入的视频免费午夜| 亚洲精品乱码久久久v下载方式| 久久婷婷人人爽人人干人人爱| 亚洲在线自拍视频| 乱人视频在线观看| 一个人看的www免费观看视频| 亚洲最大成人手机在线| 又粗又爽又猛毛片免费看| 国产亚洲欧美98| 久久精品夜夜夜夜夜久久蜜豆| 十八禁国产超污无遮挡网站| a级毛片a级免费在线| 亚洲最大成人中文| 美女cb高潮喷水在线观看| 欧美一区二区精品小视频在线| 夜夜夜夜夜久久久久| 黄片wwwwww| 国产综合懂色| 国国产精品蜜臀av免费| 内射极品少妇av片p| 欧美成人一区二区免费高清观看| 午夜福利高清视频| 精品午夜福利视频在线观看一区| 亚洲av美国av| 日日摸夜夜添夜夜添av毛片| 日日干狠狠操夜夜爽| 免费看光身美女| 观看美女的网站| 在线国产一区二区在线| 久久久久久久久久黄片| 尤物成人国产欧美一区二区三区| 五月伊人婷婷丁香| 精品无人区乱码1区二区| 22中文网久久字幕| 99riav亚洲国产免费| 伦精品一区二区三区| 亚洲一级一片aⅴ在线观看| 91精品国产九色| 悠悠久久av| 午夜老司机福利剧场| 两性午夜刺激爽爽歪歪视频在线观看| 少妇的逼好多水| 成年免费大片在线观看| 亚洲经典国产精华液单| 俄罗斯特黄特色一大片| 久久久久久久久中文| 久久人人爽人人爽人人片va| 国产成人a区在线观看| 色吧在线观看| 亚洲图色成人| 草草在线视频免费看| 老司机午夜福利在线观看视频| 亚洲精品在线观看二区| 午夜亚洲福利在线播放| 亚洲三级黄色毛片| 99热网站在线观看| 如何舔出高潮| 欧美+亚洲+日韩+国产| 久久综合国产亚洲精品| 老司机福利观看| 日产精品乱码卡一卡2卡三| 日日干狠狠操夜夜爽| 在线播放国产精品三级| 午夜福利18| 男人舔奶头视频| 别揉我奶头~嗯~啊~动态视频| 日本黄大片高清| 给我免费播放毛片高清在线观看| 日本成人三级电影网站| 1024手机看黄色片| 精华霜和精华液先用哪个| 国产成人a区在线观看| 我要搜黄色片| 国产极品精品免费视频能看的| 日本黄色片子视频| 欧美日韩精品成人综合77777| 精品午夜福利视频在线观看一区| 国产 一区精品| 亚洲国产色片| 国内少妇人妻偷人精品xxx网站| 别揉我奶头~嗯~啊~动态视频| 老熟妇仑乱视频hdxx| 国产淫片久久久久久久久| 成人毛片a级毛片在线播放| 在线免费十八禁| 亚洲国产高清在线一区二区三| 成人午夜高清在线视频| 国产毛片a区久久久久| 成人午夜高清在线视频| 国产毛片a区久久久久| 深爱激情五月婷婷| 免费一级毛片在线播放高清视频| 亚洲18禁久久av| 国产高清三级在线| 日日撸夜夜添| 级片在线观看| 国产精品久久久久久精品电影| 亚洲国产精品久久男人天堂| 97人妻精品一区二区三区麻豆| 女人被狂操c到高潮| 成人三级黄色视频| 人妻久久中文字幕网| 亚洲欧美成人综合另类久久久 | 亚洲国产精品sss在线观看| 免费看日本二区| 国产一区二区在线观看日韩| 久久精品国产99精品国产亚洲性色| 久久久午夜欧美精品| 亚洲欧美日韩高清专用| 国产精品亚洲一级av第二区| 在线观看午夜福利视频| 少妇熟女aⅴ在线视频| 中国国产av一级| 午夜视频国产福利| 色哟哟·www| 啦啦啦韩国在线观看视频| 在线免费观看的www视频| 国产av一区在线观看免费| 丰满人妻一区二区三区视频av| 啦啦啦观看免费观看视频高清| 国产高清有码在线观看视频| 国产爱豆传媒在线观看| 精品99又大又爽又粗少妇毛片| 成人特级av手机在线观看| 久久久久免费精品人妻一区二区| 日本免费a在线| 亚洲欧美日韩东京热| 狠狠狠狠99中文字幕| 亚洲国产日韩欧美精品在线观看| 一级毛片电影观看 | 欧美区成人在线视频| 精品欧美国产一区二区三| 日日啪夜夜撸| 国产91av在线免费观看| 99久久精品热视频| 又爽又黄a免费视频| 久久中文看片网| 一本精品99久久精品77| 亚洲av成人av| 国产伦精品一区二区三区四那| 久久久精品欧美日韩精品| 一个人看视频在线观看www免费| 亚洲国产色片| 国产蜜桃级精品一区二区三区| 97超碰精品成人国产| 亚洲四区av| 日韩av不卡免费在线播放| 欧美丝袜亚洲另类| 精华霜和精华液先用哪个| 国产91av在线免费观看| 亚洲美女视频黄频| 亚洲天堂国产精品一区在线| 99热只有精品国产| 中文字幕久久专区| 色综合站精品国产| 久久久久免费精品人妻一区二区|