• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Radical cascade cyclization for the green and simple synthesis of silylated indolo[2,1-a]isoquinoline derivatives via visible light-mediated Si–H bonds activation

    2023-02-18 01:55:10ZhenkiLeiFeiXueBinWngShijieWngYuXiYonghongZhngWeiweiJinChenjingLiu
    Chinese Chemical Letters 2023年12期

    Zhenki Lei ,Fei Xue ,Bin Wng ,Shijie Wng ,Yu Xi ,Yonghong Zhng ,Weiwei Jin,Chenjing Liu,b,?

    a State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources,Key Laboratory of Oil and Gas Fine Chemicals,Ministry of Education& Xinjiang Uygur Autonomous Region,Urumqi Key Laboratory of Green Catalysis and Synthesis Technology,College of Chemistry,Xinjiang University,Urumqi 830017,China

    b College of Future Technology,Institute of Materia Medica,Xinjiang University,Urumqi 830017,China

    c Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute,Urumqi 830011,China

    Keywords:Indolo[2,1-a]isoquinolines Silyl radicals Green photocatalytic Simple photoinduced Silylated Hydrogen atom transfer EDA complex

    ABSTRACT Photocatalytic and photoinduced silyl radicals cascade cyclization procedures for the green and simple preparation of fused tetracyclic skeleton silylated indolo[2,1-a]isoquinoline-6(5H)-ones from 2-aryl-N-acryloyl indoles with hydrosilanes are developed.The photocatalytic reaction is carried out with 9,10-dicyanoanthracene (DCA) as an organophotocatalyst and 3-acetoxyquinuclidine as hydrogen atom transfer(HAT) catalyst at room temperature under metal-and oxidant-free conditions.The keys to the success of photoredox-catalytic conversion include (1) the reductive quenching of DCA?[E1/2(?P/P–)=+1.97 V vs. SCE in MeCN] by 3-acetoxyquinuclidine (Ep=+1.22 V vs. SCE in MeCN),and (2) the thermodynamic feasibility of hydrogen atom abstraction from hydridic Si–H bond by electrophilic N+?.Particularly,the simple photoinduced cascade cyclization using (TMS)3SiH with 2-aryl-N-acryloyl indoles was exploited via an electron?donor?acceptor (EDA) complex under visible light irradiation.

    Organosilicon molecules are evoked remarkable interests and explored deeply by synthetic chemists,pharmacologists and material scientists because of their conspicuous chemical,physical,and biological properties (I-V,Fig.1) [1–7].Especially,silicon as isostere of carbon in biomolecules have become new drug-like candidates in drug discovery [8].Classically,organosilicon derivatives were prepared by nucleophilic reactions of organometallic reagents with halosilanes [9–10],and transition-metal catalyzed cross-coupling of hydrocarbons or halogenated hydrocarbons with silylating reagents [11–20].Recently,there were two effective methods for the synthesis of organosilicon compounds from hydrosilanes [21] or Si–X (X=Si [22],B [23],COOH [24]) reagents with alkenes,alkynes and arenes [25].Among them,it was an atom-economical silylated approachviahomolytic cleavage of Si–H bonds in hydrosilanes to generate silyl radicals.The archetypical way was thermo-promoted peroxide decomposition to trigger silyl radicals [26].The second protocol was electron induced peroxide to initiate silyl radicals,the electron donors including transition-metal[27–29],TBAI [30] and photocatalyst [31].The third way was that alkali initiated silyl radicals [32].Although there have been significant advances,some methods suffered from harsh conditions or poor group compatibility,which would drive to find new strategies of triggering silyl radicals.

    Fig.1. Special examples of silicon-containing active molecules (I-V) and indolo[2,1-a]isoquinoline derivatives (VI-VIII).

    Photoredox catalysis [33–44] has appeared as a attractive protocol for silyl radicals generation via hydrogen atom transfer (HAT)of Si–H bonds [45–48].Fagnonietal.pioneered the tetrabutylammonium decatungstate (TBADT) as HAT photo-catalyst for trisubstituted silanes activation under phosphor-coated lamps irradiated by 310 nm [49].Unfortunately,due to the comparably high bond dissociation energies (BDEs) of Si–H andα–Si–C–H bonds in alkyl-substituted silanes (e.g.,triethylsilane) [50],the HAT process initiated simultaneously the cleavage of Si–H andα–Si–C–H bonds.So the selectivity of HAT catalyst for Si-H bonds was poor.For achieving the desired HAT of Si–H bonds,it is necessary that using “aggressive” radicals to break the BDEs of Si–H bonds [51],hence the process is thermodynamically favorable.For instance,an electrophotocatalytic HAT process was developed for silyl radicals generation using MeOH as HAT reagent [52].This work confirmed that hydrogen atom abstraction could be achieved by “aggressive” MeO?(BDEO–H=105 kcal/mol).Wuetal.developed an effective method for silyl radicals formation employing 3-acetoxyquinuclidine or triisopropyl-silanethiol as HAT reagent [53].This also showed the feasibility of hydrogen atom abstraction by“aggressive” N+?(BDEN+–H=100 kcal/mol) or S?(BDES–H=88.2 kcal/mol).What is more,because hydrogen is more electronegative than silicon in hydrosilanes,according to the polarity-matched effect [54],the electrophilic radical (e.g.,O?,N+?,S?) could be used to selectively abstract hydrogen of Si–H bonds in hydrosilanes rather thanα–Si–C–H bonds.

    (TMS)3SiH was an ideal reagent in radical chemistry,which was used in many tris(trimethylsilyl)silylation or conversion processes.Because (TMS)3SiH has noα–Si–C–H bond and BDESi–His relatively low,(TMS)3Si?radical could be initiatedviahydrogen atom abstraction by HAT reagent,single electron oxidation of (TMS)3SiH by PC?and then deprotonation [55],phosphor coating fluorescent lamp and UV light irradiation [49,56-58],etc.[59,60].However,only two examples were reported that (TMS)3Si?radical was producedviaformation an electron?donor?acceptor (EDA) complex with alkyl or aryl halide to abstract halogen under visible light irradiation [61,62].

    Indolo[2,1-a]isoquinolines containing the tetracyclic skeleton are widely found in bioactive and pharmaceutical molecules(VI-VIII,Fig.1) [63–69].Due to the potential of silicon incorporation in drug discovery,it is of great significance for the synthesis of silylated indolo[2,1-a]isoquinoline compounds.So far,few cases of synthesis have been reported,including Cu(acac)2/TBPB-initiated triethylsilyl radical cascade cyclization(Scheme 1a) [70],cerium-electrophotocatalyzed methoxyl radicalmediated triethylsilyl radical cascade cyclization (Scheme 1b) [52],and palladium-catalyzed cascade cyclization with hexamethyldisilane [71] or Me3SiSiMe2(OnBu) (Scheme 1c) [72].Despite significant advances,the fly in the ointment was that these examples were heating conditions,besides,there were one or more shortcomings,such as stoichiometric oxidant,poor atom economy,preactivation of substrates and expensive transition-metal catalysts.

    Taking into account the above aspects and our continuing interest in the preparation of heterocyclic molecules under visible light conditions [73–79],herein we report photocatalytic HAT selectively initiated silyl radicals cascade cyclization for the synthesis of silylated indolo[2,1-a]isoquinoline compounds.In addition,the simpler and greener cascade cyclization using (TMS)3SiH was exploitedvianovel EDA complex,the tris(trimethylsilyl)silylated indolo[2,1-a]isoquinolines can be obtained successfully under visible light irradiation even in the absence of photocatalyst and HAT catalyst (Scheme 1d).

    Preliminary research was investigated by 1-(2,3-diphenyl-1Hindol-1-yl)-2-methylprop-2-en-1-one (1a) and triethyl-silane (2a)as model reaction substrates,and the outcomes were summarized in Table 1 and Tables S1-S5 (Supporting information).After screening these detailed conditions,it was found that the optimal choice including 0.1 mmol of1a,10 equiv.of2a,10 mol% of PC1,and 12.5 mol% of HAT cat.1in 2 mL dry MeCN under 10 W blue LEDs irradiation at room temperature for 30 h.And the target product3awas isolated with a yield of 70% under the optimal conditions.

    Table 1 Optimization of reaction conditions.a

    Having confirmed the optimal reaction conditions,we next evaluated the scope of 2-aryl-N-acryloyl indoles (Scheme 2).For example,substrates containing electron-withdrawing groups (F-,Cl-,CN-,and CF3O-) at C5-position of indole ring could yield the desired products3b-3ein 42%-53% yields.Electron-donating groups (Me-,Et-,andiPr-) were also good compatibility,giving the expected products3f-3hwith yields of 53%-65%.

    Scheme 2. Scope of 2-aryl-N-acryloyl indoles.Reaction conditions: 1 (0.1 mmol), 2a (1 mmol),PC 1 (10 mol%),HAT cat. 1 (12.5 mol%),dry MeCN (2 mL),10 W blue LEDs,N2,r.t.,30 h.Isolated yields.

    We next inspected the scope of hydrosilanes (Scheme 3).Under optimal conditions,arylsubstituted silanes such as triphenylsilane,diphenylmethylsilane and phenyldimethylsilane could be gave the desired products3k(proved by X-ray crystallography),3land3min 42%-55% yields.Trialkylsilanes showed good selectivity to afford the desired products3n-3qin 54%-66% yields,whereas the competing reaction of the C–H adjacent to silicon was not observed.Moreover,2-aryl-N-acryloyl indoles and hydrosilanes could also combine freely to make new products,such as substrates1cand triphenylsilane worked smoothly.But the synthesis of triethoxysilylated product3swas failed,presumably because the BDE of Si-H bond in triethoxysilane is high.

    Scheme 3. Scope of hydrosilanes.Reaction conditions: 1a or 1c (0.1 mmol), 2 (1 mmol),PC (DCA,10 mol%),HAT cat. 1 (12.5 mol%),dry MeCN (2 mL),10 W blue LEDs,N2,r.t.,30 h.Isolated yields.

    We further found that 2-aryl-N-acryloyl indoles could successfully react with (TMS)3SiH under 10 W blue LEDs irradiation(Scheme 4).The reaction conditions were optimized and displayed in Tables S6-S9 (Supporting information).Under the optimized reaction conditions,expected products3t(confirmed by X-ray crystallography),3u-3w,3yfrom F-,Cl-,Br-,and CF3O-groups located at C4-or C5-position of indole ring could be gained with moderate yields of 50%-66%.The 6,7-dichloro substituted product was also obtained,although the product3xwith a low yield.Electrondonating groups (5-methyl,5-isopropyl,4,6-dimethyl) were tolerated,giving the desired products (3aa,3ab,3ac) in 58%-69% yields.

    Scheme 4. Scope of reaction between 2-aryl-N-acryloyl indoles and (TMS)3SiH.Reaction conditions: 1 (0.1 mmol), 2 (1 mmol),dry EtOHb or MeCNc (1 mL),10 W blue LEDs,N2,r.t.,30 h.Isolated yields.

    The synthetic application of compound3twas presentedviafurther transformations (Scheme 5).Reduction of3twas investigated,the carbonyl group could be reduced to obtain compound5in 60% yield.Desilylation of the tri(trimethylsilyl)silyl group in3twas performed with Bu4NF (TBAF) to give a disilane product6in 38% yield under microwave irradiation.

    Scheme 5. Synthetic transformations of 3t.

    To explore the reaction mechanism,control experiments were implemented.The photocatalytic reaction was completely restrained while adding 2 equiv.of TEMPO under the standard conditions.Similarly,the reaction was conducted in the presence of BHT or 1,1-diphenylethane,the yield of3awas significantly reduced(Fig.2a),which demonstrated that a radical process might be involved.Furthermore,the BHT-trapped product7was detected by HRMS.Besides,no reaction happened while employing deuterated diphenylmethyl silane (Ph2MeSiD) (Fig.2b).Such a significant kinetic isotope effect (KIE) suggested that the rate-determining step involved the cleavage of the Si–H bonds.The H2was monitored by H2detector and GC under standard conditions (Fig.S4 in Supporting information).“On/off” experiments indicated that visible light played an important role (Fig.2c).In addition,Stern-Volmer fluorescence quenching experiments demonstrated that the excitedstate DCA?was quenched by HAT cat.1(Figs.2d and e) through single electron transfer (SET) process.

    Fig.2. Mechanistic investigations.(a) Radical trapping experiment;(b) Investigation of the KIE;(c) ON/off experiments;(d) Fluorescence quenching experiment (DCA (1 μmol/L in MeCN) with different concentration of HAT cat. 1 were irradiated by 365 nm);(e) Stern-Volmer plot of HAT cat. 1.

    On the basis of the above mechanistic investigations,a plausible mechanism was proposed,as depicted in Fig.3a.Initially,DCA was excited to produce the long-life photoexcited-state DCA?(t=14.9 ns) [80].The reductive quenching of DCA?[E1/2(?P/P–)=+1.97 Vvs.SCE in MeCN] [81] by 3-acetoxyquinuclidine (Ep=+1.22 Vvs.SCE in MeCN) [82] leaded to the radical anionAand a radical cation intermediateB.Due to its high electrophilicity,quinuclidinium radical cationBselectively abstracted the hydrogen atom from the more hydridic Si-H bonds of hydrosilanes to produce the corresponding silyl radicalC,as well as quinuclidinium cationD.This abstraction event should be thermosdynamically favorable because the BDESi–Hof hydrosilanes was up to 94.6 kcal/mol and the BDEN+–Hin quinuclidinium cationDwas 100 kcal/mol.Subsequently,a carbon-centered radical intermediateEwas generated by the addition of the silylic radicalCto the C=C bond of the indole substrate1a,then the radical intermediateEwas cyclizedvia6-exo-trigpathway to afford the radical intermediateF.Afterwards,the single-electron oxidation process ofFandA[E1/2(P/P–)=–0.97 Vvs.SCE in MeCN] [81] occurred simultaneously to give the cationGand regenerate the DCA.In this process,there was sufficient driving forces to yield H2through the reduction of two protons[83,84].Finally,the deprotonation of the cationGgave the silylated product3.

    Fig.3. Proposed reaction mechanism for the formation of silylated indolo[2,1-a]isoquinoline-6(5H)-ones.

    Particularly,controlled experiments were performed to study the mechanism of the reaction that1creact with (TMS)3SiH (4)under the photoinduced conditions in Scheme 4.The product3twas fully inhibited when 2 equiv.of TEMPO was added.Meanwhile,the BHT or 1,1-diphenylethane was added,the yield of3twas decreased (Section 4.1 in Supporting information),which demonstrated a radical pathway might also be involved.With the reaction proceeded,the color of the solution became yellow gradually,the H2was observed clearly and the concentration increased gradually (Fig.S5 in Supporting information).Subsequently,“on/off” LED irradiation experiments also showed that visible light played a key role in the reaction (Fig.S6b in Supporting information).We tested optical absorption of the EtOH solution of1cand4,it was not observed the red-shift or new absorption peak in the UV-vis absorption spectra (Fig.S8 in Supporting information).Next,we conducted1H NMR experiments,and the chemical shift of4shifted downfield with increasing amounts of1c(Fig.4).These experimental results showed the formation of EDA complexes from 2-aryl-N-acryloyl indoles1with4.So the (TMS)3Si?radical could be formed by excited EDA complexes and an energy transfer under blue LEDs irradiation (Fig.3b).The remaining mechanism including (TMS)3Si?radical addition and cascade cyclization was the same as described in Fig.3a.It was worth noting that the single electron oxidation ofF’was accompanied by the reduction of protons.

    Fig.4. 1H NMR experiments between 1c and 4.

    In summary,we developed green and simple photocatalytic and photoinduced silyl radicals cascade cyclization protocols for the synthesis of silylated indolo[2,1-a]-isoquinoline-6(5H)-ones.The photocatalytic procedure was conducted in the presence of DCA as photocatalyst and 3-acetoxyquinuclidine as HAT catalyst.To implement the desired silylation,the reductive quenching of DCA?by HAT catalyst,the abstraction hydrogen using “aggressive” radical were necessary,and the polaritymatched effect was also the key factor in success.The simple photoinduced method achieved the straightforward preparation of tris(trimethylsilyl)silylated indolo[2,1-a]-isoquinoline-6(5H)-onesviaEDA complex.These two facile and greener procedures have the advantages including high atomic economy,H2as by-product,metal-free,oxidant-free,easy operation,and mild reaction conditions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research was supported by the Tianshan Talents Program for Leading Talents in Science and Technology Innovation (No.2022TSYCLJ0016),the National Natural Science Foundation of China(Nos.21961037 and 22201241),the Program for Tianshan Innovative Research Team of Xinjiang Uygur Autonomous Region (No.2021D14011),the Graduate Innovation Project of Xinjiang Uygur Autonomous Region (No.XJ2021G036),the Key Program of Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01D06),and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Nos.2021D01E10 and 2022E01042).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2023.108633.

    免费看十八禁软件| 色老头精品视频在线观看| 亚洲最大成人中文| 50天的宝宝边吃奶边哭怎么回事| 色综合欧美亚洲国产小说| 一级,二级,三级黄色视频| 一夜夜www| 久久久久久久久久久久大奶| 亚洲av第一区精品v没综合| 午夜a级毛片| 午夜视频精品福利| 999久久久精品免费观看国产| 国产亚洲av高清不卡| 免费看十八禁软件| 长腿黑丝高跟| 国产高清激情床上av| 日韩成人在线观看一区二区三区| 亚洲精品一区av在线观看| 亚洲精品中文字幕在线视频| 精品少妇一区二区三区视频日本电影| 国产精品乱码一区二三区的特点 | 黑人巨大精品欧美一区二区mp4| 欧美精品啪啪一区二区三区| 韩国av一区二区三区四区| 两个人看的免费小视频| 久久国产精品人妻蜜桃| 高清在线国产一区| 久久久国产成人精品二区| 国产区一区二久久| 日本一区二区免费在线视频| 午夜精品在线福利| av网站免费在线观看视频| 搡老妇女老女人老熟妇| 欧美黄色片欧美黄色片| 国产精品,欧美在线| 欧美黑人欧美精品刺激| 一级a爱片免费观看的视频| 一区二区日韩欧美中文字幕| 国产av一区二区精品久久| 欧美日本亚洲视频在线播放| 无遮挡黄片免费观看| 久久国产精品男人的天堂亚洲| av中文乱码字幕在线| 嫩草影视91久久| 91字幕亚洲| 欧美成人午夜精品| 手机成人av网站| 国产视频一区二区在线看| 黄色成人免费大全| 又紧又爽又黄一区二区| 女性被躁到高潮视频| 一边摸一边抽搐一进一出视频| 精品福利观看| 国产99白浆流出| 少妇粗大呻吟视频| 成人国产一区最新在线观看| 少妇粗大呻吟视频| 波多野结衣高清无吗| 神马国产精品三级电影在线观看 | 在线av久久热| 免费在线观看亚洲国产| 久久久久久亚洲精品国产蜜桃av| 桃色一区二区三区在线观看| 老司机午夜十八禁免费视频| 亚洲成a人片在线一区二区| 人妻久久中文字幕网| 午夜久久久在线观看| 精品第一国产精品| 午夜久久久久精精品| 中文字幕精品免费在线观看视频| 免费在线观看日本一区| 亚洲第一电影网av| 在线播放国产精品三级| 国产片内射在线| 两个人看的免费小视频| 久久国产亚洲av麻豆专区| 成人精品一区二区免费| 国产亚洲精品av在线| 老司机深夜福利视频在线观看| 中文字幕精品免费在线观看视频| 亚洲国产日韩欧美精品在线观看 | 亚洲精品久久国产高清桃花| av超薄肉色丝袜交足视频| 日韩av在线大香蕉| 两个人视频免费观看高清| 中国美女看黄片| 久久久久久久久久久久大奶| 久久久久久久久久久久大奶| 欧美日韩乱码在线| 免费女性裸体啪啪无遮挡网站| 日本a在线网址| 国产精品自产拍在线观看55亚洲| 91成年电影在线观看| 黑丝袜美女国产一区| 日本免费a在线| 18禁美女被吸乳视频| 免费人成视频x8x8入口观看| 中国美女看黄片| 一级作爱视频免费观看| 成熟少妇高潮喷水视频| 国产人伦9x9x在线观看| 级片在线观看| 欧美久久黑人一区二区| 国产在线精品亚洲第一网站| 久久人人爽av亚洲精品天堂| 老司机福利观看| 欧美中文综合在线视频| 给我免费播放毛片高清在线观看| 国产精品秋霞免费鲁丝片| 夜夜夜夜夜久久久久| 我的亚洲天堂| 超碰成人久久| 色哟哟哟哟哟哟| 精品国产一区二区三区四区第35| 国产午夜精品久久久久久| 18禁美女被吸乳视频| 亚洲国产欧美日韩在线播放| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品一区av在线观看| 两个人免费观看高清视频| 99在线人妻在线中文字幕| 在线天堂中文资源库| 国产成人精品久久二区二区91| 国产精品久久久久久人妻精品电影| 亚洲精华国产精华精| av网站免费在线观看视频| 一个人免费在线观看的高清视频| 两个人视频免费观看高清| 免费看十八禁软件| 99在线视频只有这里精品首页| 十分钟在线观看高清视频www| 国产成人啪精品午夜网站| 免费观看精品视频网站| 女人爽到高潮嗷嗷叫在线视频| 国产乱人伦免费视频| 日本黄色视频三级网站网址| 12—13女人毛片做爰片一| 国产精品1区2区在线观看.| 熟妇人妻久久中文字幕3abv| 亚洲色图综合在线观看| 啦啦啦韩国在线观看视频| 老司机深夜福利视频在线观看| 一区二区三区激情视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产毛片av蜜桃av| 婷婷六月久久综合丁香| 亚洲精品美女久久av网站| 制服丝袜大香蕉在线| 久久九九热精品免费| aaaaa片日本免费| 法律面前人人平等表现在哪些方面| 国内精品久久久久精免费| netflix在线观看网站| 亚洲人成网站在线播放欧美日韩| 不卡一级毛片| 亚洲美女黄片视频| 国产av一区二区精品久久| 国产亚洲欧美在线一区二区| 精品国产乱码久久久久久男人| 久久精品国产亚洲av高清一级| 1024视频免费在线观看| 别揉我奶头~嗯~啊~动态视频| 成人国语在线视频| 成人18禁高潮啪啪吃奶动态图| 韩国av一区二区三区四区| 亚洲专区国产一区二区| 悠悠久久av| 波多野结衣av一区二区av| 亚洲精品美女久久av网站| 亚洲av第一区精品v没综合| a在线观看视频网站| 久久久精品国产亚洲av高清涩受| 高清在线国产一区| 美国免费a级毛片| 身体一侧抽搐| 日韩 欧美 亚洲 中文字幕| 国产精品精品国产色婷婷| 十八禁人妻一区二区| 国产精品一区二区在线不卡| 色婷婷久久久亚洲欧美| 欧美日本亚洲视频在线播放| 精品人妻在线不人妻| 露出奶头的视频| 男女下面插进去视频免费观看| 日本vs欧美在线观看视频| 亚洲天堂国产精品一区在线| 欧美绝顶高潮抽搐喷水| 一进一出抽搐gif免费好疼| 日本欧美视频一区| 老汉色av国产亚洲站长工具| 亚洲五月天丁香| 欧美黄色淫秽网站| 九色国产91popny在线| netflix在线观看网站| 身体一侧抽搐| 亚洲视频免费观看视频| 免费看美女性在线毛片视频| 女警被强在线播放| 国产人伦9x9x在线观看| 亚洲专区字幕在线| 亚洲专区中文字幕在线| 免费在线观看完整版高清| 国产成人精品无人区| 99久久国产精品久久久| 久久久久精品国产欧美久久久| 色综合婷婷激情| 亚洲国产高清在线一区二区三 | 色婷婷久久久亚洲欧美| 一进一出抽搐gif免费好疼| 黄片小视频在线播放| 亚洲av第一区精品v没综合| 99香蕉大伊视频| 国产精品一区二区免费欧美| 亚洲精品一卡2卡三卡4卡5卡| 国产av在哪里看| 一二三四社区在线视频社区8| 亚洲国产欧美一区二区综合| 女人被狂操c到高潮| 男男h啪啪无遮挡| 亚洲成人免费电影在线观看| 国产野战对白在线观看| 岛国视频午夜一区免费看| 亚洲五月天丁香| 午夜久久久在线观看| 中文字幕精品免费在线观看视频| 少妇粗大呻吟视频| 亚洲,欧美精品.| 亚洲九九香蕉| 亚洲色图 男人天堂 中文字幕| 高清在线国产一区| 久久精品亚洲熟妇少妇任你| 日韩精品青青久久久久久| 亚洲第一青青草原| 老鸭窝网址在线观看| 两人在一起打扑克的视频| 亚洲精品av麻豆狂野| 国产一级毛片七仙女欲春2 | 免费少妇av软件| 国产一区二区三区在线臀色熟女| 亚洲成人免费电影在线观看| 精品国产一区二区三区四区第35| 亚洲精品国产精品久久久不卡| 制服诱惑二区| 制服人妻中文乱码| 国产精品一区二区精品视频观看| 免费少妇av软件| 日本免费a在线| 国产精品亚洲av一区麻豆| 99久久99久久久精品蜜桃| 日本免费一区二区三区高清不卡 | 国产精品一区二区在线不卡| 欧美精品啪啪一区二区三区| 精品久久久久久,| 1024香蕉在线观看| 国产成人精品在线电影| 久久性视频一级片| 女警被强在线播放| 91精品国产国语对白视频| ponron亚洲| 黄色视频不卡| 一进一出抽搐动态| 一级毛片高清免费大全| 日本免费一区二区三区高清不卡 | 成人精品一区二区免费| 亚洲伊人色综图| 搡老妇女老女人老熟妇| 老司机福利观看| 一二三四在线观看免费中文在| 婷婷六月久久综合丁香| 国产成人影院久久av| 91大片在线观看| 国产午夜福利久久久久久| 人人妻人人爽人人添夜夜欢视频| 在线观看免费日韩欧美大片| 欧美最黄视频在线播放免费| 日本免费一区二区三区高清不卡 | 99精品在免费线老司机午夜| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美在线一区二区| 国产麻豆成人av免费视频| 丁香六月欧美| 国产在线观看jvid| 搡老妇女老女人老熟妇| 国产高清videossex| 动漫黄色视频在线观看| 亚洲精品美女久久久久99蜜臀| 99香蕉大伊视频| 亚洲午夜理论影院| 欧美在线黄色| 男人的好看免费观看在线视频 | 欧美日韩亚洲综合一区二区三区_| 午夜福利成人在线免费观看| 欧美不卡视频在线免费观看 | 91精品国产国语对白视频| av天堂在线播放| 午夜亚洲福利在线播放| 精品欧美一区二区三区在线| 97人妻天天添夜夜摸| 久热这里只有精品99| 国产色视频综合| 99精品在免费线老司机午夜| ponron亚洲| 久久久精品欧美日韩精品| 欧美丝袜亚洲另类 | 久久影院123| 中文亚洲av片在线观看爽| 国产精品一区二区三区四区久久 | 黄色视频,在线免费观看| 老司机午夜福利在线观看视频| 午夜激情av网站| 日本精品一区二区三区蜜桃| 99久久国产精品久久久| 美国免费a级毛片| av欧美777| 久久九九热精品免费| 国产成人免费无遮挡视频| 一级a爱片免费观看的视频| 麻豆av在线久日| 国产成人av激情在线播放| 午夜福利高清视频| 精品免费久久久久久久清纯| 亚洲免费av在线视频| 精品国内亚洲2022精品成人| 999久久久国产精品视频| 国产成人精品在线电影| 欧美丝袜亚洲另类 | 欧美另类亚洲清纯唯美| 久久香蕉精品热| 久久精品影院6| 校园春色视频在线观看| 亚洲三区欧美一区| 琪琪午夜伦伦电影理论片6080| 亚洲人成伊人成综合网2020| 女性被躁到高潮视频| 国产精品免费一区二区三区在线| 国产精品美女特级片免费视频播放器 | av中文乱码字幕在线| www.www免费av| 欧美一级a爱片免费观看看 | 成人18禁高潮啪啪吃奶动态图| 纯流量卡能插随身wifi吗| 亚洲av第一区精品v没综合| 伦理电影免费视频| 12—13女人毛片做爰片一| 最近最新中文字幕大全免费视频| 国产在线精品亚洲第一网站| 亚洲美女黄片视频| 亚洲一码二码三码区别大吗| 天堂影院成人在线观看| 99久久久亚洲精品蜜臀av| 免费看美女性在线毛片视频| 99久久综合精品五月天人人| 亚洲中文字幕日韩| 真人一进一出gif抽搐免费| 99久久国产精品久久久| 免费在线观看视频国产中文字幕亚洲| 国产免费av片在线观看野外av| 午夜福利视频1000在线观看 | 欧美黄色片欧美黄色片| 18禁黄网站禁片午夜丰满| 九色亚洲精品在线播放| or卡值多少钱| 日韩欧美国产在线观看| 一区二区三区激情视频| 黄色视频,在线免费观看| 两个人看的免费小视频| 韩国精品一区二区三区| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人| av天堂在线播放| 1024视频免费在线观看| 真人做人爱边吃奶动态| 午夜a级毛片| 欧美日韩福利视频一区二区| 国产亚洲精品av在线| 国产av一区二区精品久久| 三级毛片av免费| 国产精品一区二区精品视频观看| 国产亚洲欧美在线一区二区| 午夜福利成人在线免费观看| 亚洲 欧美 日韩 在线 免费| 亚洲中文av在线| √禁漫天堂资源中文www| 午夜福利高清视频| 亚洲国产欧美一区二区综合| 国产激情欧美一区二区| 亚洲国产毛片av蜜桃av| 亚洲人成电影观看| 色综合婷婷激情| 久久精品aⅴ一区二区三区四区| 国产色视频综合| 韩国av一区二区三区四区| 婷婷六月久久综合丁香| 操出白浆在线播放| 欧美不卡视频在线免费观看 | 国产免费男女视频| 精品国产美女av久久久久小说| 热99re8久久精品国产| 色老头精品视频在线观看| 99国产精品免费福利视频| 欧美黄色淫秽网站| 亚洲熟女毛片儿| 中文字幕人妻丝袜一区二区| 精品久久蜜臀av无| 亚洲中文字幕日韩| 国产精品自产拍在线观看55亚洲| 国产aⅴ精品一区二区三区波| 韩国精品一区二区三区| 亚洲av第一区精品v没综合| 欧美另类亚洲清纯唯美| 999久久久国产精品视频| 免费高清在线观看日韩| 日韩欧美国产在线观看| 最好的美女福利视频网| 18美女黄网站色大片免费观看| 久久精品国产综合久久久| 亚洲,欧美精品.| 精品欧美一区二区三区在线| 老司机靠b影院| 国产精品久久久久久人妻精品电影| 色综合婷婷激情| 国产成年人精品一区二区| 久久精品国产99精品国产亚洲性色 | 又黄又爽又免费观看的视频| 国产一区二区三区综合在线观看| 亚洲欧美精品综合久久99| 午夜久久久在线观看| 亚洲av五月六月丁香网| 国产成人精品在线电影| xxx96com| 男人舔女人下体高潮全视频| 操出白浆在线播放| 麻豆成人av在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲情色 制服丝袜| 美女免费视频网站| 国产欧美日韩综合在线一区二区| 欧美不卡视频在线免费观看 | 在线观看免费视频日本深夜| 欧美激情高清一区二区三区| 国产精品一区二区免费欧美| 巨乳人妻的诱惑在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美日韩精品网址| 成在线人永久免费视频| 看免费av毛片| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 亚洲成人久久性| 大型av网站在线播放| 午夜日韩欧美国产| 岛国视频午夜一区免费看| 99久久综合精品五月天人人| 黑人巨大精品欧美一区二区蜜桃| 国产成人影院久久av| 757午夜福利合集在线观看| 精品久久久久久久毛片微露脸| 黄色a级毛片大全视频| 一区二区日韩欧美中文字幕| 欧美色欧美亚洲另类二区 | 在线观看午夜福利视频| 又黄又粗又硬又大视频| 女生性感内裤真人,穿戴方法视频| 在线播放国产精品三级| 国产在线观看jvid| 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 男人的好看免费观看在线视频 | a在线观看视频网站| 岛国在线观看网站| 亚洲人成77777在线视频| 欧美最黄视频在线播放免费| 久久天堂一区二区三区四区| 可以免费在线观看a视频的电影网站| 亚洲专区中文字幕在线| 成人手机av| 国产精品98久久久久久宅男小说| 免费观看人在逋| 热re99久久国产66热| www.999成人在线观看| 丰满人妻熟妇乱又伦精品不卡| 日本欧美视频一区| 久久这里只有精品19| 亚洲成人久久性| 99riav亚洲国产免费| 国产乱人伦免费视频| 性色av乱码一区二区三区2| 国产亚洲精品综合一区在线观看 | 国产又色又爽无遮挡免费看| 69精品国产乱码久久久| 日本黄色视频三级网站网址| 欧美在线一区亚洲| 熟妇人妻久久中文字幕3abv| 极品教师在线免费播放| 一区二区三区国产精品乱码| 亚洲久久久国产精品| 国产成人啪精品午夜网站| 午夜福利18| 精品一区二区三区四区五区乱码| 午夜视频精品福利| tocl精华| 精品国产亚洲在线| 久久久久久久久久久久大奶| 熟妇人妻久久中文字幕3abv| 久久久精品欧美日韩精品| 欧美最黄视频在线播放免费| 天堂动漫精品| 国产日韩一区二区三区精品不卡| 国产av一区二区精品久久| 免费久久久久久久精品成人欧美视频| 精品久久久久久,| e午夜精品久久久久久久| 久久欧美精品欧美久久欧美| 可以在线观看的亚洲视频| 亚洲成人久久性| 欧美色视频一区免费| 国产成人欧美| 男人操女人黄网站| 999久久久精品免费观看国产| 麻豆av在线久日| 一二三四在线观看免费中文在| av网站免费在线观看视频| 亚洲一区中文字幕在线| 高清黄色对白视频在线免费看| 中文字幕精品免费在线观看视频| 久久中文字幕一级| 老司机深夜福利视频在线观看| 免费观看人在逋| 欧美国产精品va在线观看不卡| 国产亚洲精品久久久久5区| 成人永久免费在线观看视频| 国产精品精品国产色婷婷| 91在线观看av| 久久久精品欧美日韩精品| 女人爽到高潮嗷嗷叫在线视频| 欧美激情高清一区二区三区| 欧美日本视频| 日韩视频一区二区在线观看| 亚洲午夜理论影院| 嫩草影院精品99| 午夜福利影视在线免费观看| 国内毛片毛片毛片毛片毛片| 午夜福利影视在线免费观看| 少妇裸体淫交视频免费看高清 | 亚洲第一青青草原| 久久久久久久久免费视频了| 人人妻人人爽人人添夜夜欢视频| 国产成人av激情在线播放| 长腿黑丝高跟| 精品久久久久久久人妻蜜臀av | 免费不卡黄色视频| 人人妻人人澡欧美一区二区 | 波多野结衣高清无吗| bbb黄色大片| 久久久久亚洲av毛片大全| 国产精品秋霞免费鲁丝片| 嫩草影视91久久| av片东京热男人的天堂| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 一a级毛片在线观看| 法律面前人人平等表现在哪些方面| 久热这里只有精品99| 正在播放国产对白刺激| 在线免费观看的www视频| 国产日韩一区二区三区精品不卡| 精品乱码久久久久久99久播| 人妻丰满熟妇av一区二区三区| 欧美激情极品国产一区二区三区| 一级毛片精品| 黄色视频,在线免费观看| 岛国在线观看网站| 午夜福利在线观看吧| 国产午夜福利久久久久久| 免费在线观看黄色视频的| 人人妻人人澡欧美一区二区 | 色在线成人网| 欧美日韩亚洲国产一区二区在线观看| 国产av一区二区精品久久| 欧美最黄视频在线播放免费| 国产精品自产拍在线观看55亚洲| 日韩国内少妇激情av| 亚洲精华国产精华精| 亚洲精品在线美女| 无人区码免费观看不卡| av中文乱码字幕在线| 亚洲第一欧美日韩一区二区三区| 精品人妻在线不人妻| 高潮久久久久久久久久久不卡| 亚洲av电影在线进入| 一本大道久久a久久精品| 老鸭窝网址在线观看| 国产午夜福利久久久久久| 在线观看日韩欧美| 91成人精品电影| 欧美中文综合在线视频| 深夜精品福利| 午夜日韩欧美国产| 日本免费a在线| 久热爱精品视频在线9| 麻豆国产av国片精品| 97碰自拍视频| 欧美成人免费av一区二区三区| 日韩欧美一区二区三区在线观看| 久久人人爽av亚洲精品天堂| 亚洲无线在线观看| 天天一区二区日本电影三级 | 亚洲专区国产一区二区| 午夜精品在线福利| 好男人电影高清在线观看| 欧美色欧美亚洲另类二区 | 欧美日韩亚洲国产一区二区在线观看| 在线永久观看黄色视频| 欧美久久黑人一区二区| videosex国产|