• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Will the Historic Southeasterly Wind over the Equatorial Pacific in March 2022 Trigger a Third-year La Ni?a Event?

    2023-02-08 08:16:24XianghuiFANGFeiZHENGKexinLIZengZhenHUHongliRENJieWUXingrongCHENWeirenLANYuanYUANLichengFENGQifaCAIandJiangZHU
    Advances in Atmospheric Sciences 2023年1期

    Xianghui FANG, Fei ZHENG, Kexin LI, Zeng-Zhen HU, Hongli REN, Jie WU, Xingrong CHEN,Weiren LAN, Yuan YUAN, Licheng FENG, Qifa CAI, and Jiang ZHU

    1Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences,Fudan University, Shanghai 200438, China

    2International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China

    3Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science & Technology, Nanjing 210044, China

    4Climate Prediction Center, NCEP/NWS/NOAA, College Park, MD 20740, USA

    5State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

    6National Climate Center, Beijing 100081, China

    7National Marine Environmental Forecasting Center, Beijing 100081, China

    8Mailbox 5111, Beijing 100094, China

    ABSTRACT Based on the updates of the Climate Prediction Center and International Research Institute for Climate and Society(CPC/IRI) and the China Multi-Model Ensemble (CMME) El Ni?o-Southern Oscillation (ENSO) Outlook issued in April 2022, La Ni?a is favored to continue through the boreal summer and fall, indicating a high possibility of a three-year La Ni?a (2020-23).It would be the first three-year La Ni?a since the 1998-2001 event, which is the only observed three-year La Ni?a event since 1980.By examining the status of air-sea fields over the tropical Pacific in March 2022, it can be seen that while the thermocline depths were near average, the southeasterly wind stress was at its strongest since 1980.Here,based on a quaternary linear regression model that includes various relevant air-sea variables over the equatorial Pacific in March, we argue that the historic southeasterly winds over the equatorial Pacific are favorable for the emergence of the third-year La Ni?a, and both the anomalous easterly and southerly wind stress components are important and contribute~50% of the third-year La Ni?a growth, respectively.Additionally, the possible global climate impacts of this event are discussed.

    Key words: El Ni?o-Southern Oscillation, three-year La Ni?a, strongest southeasterly wind, air-sea interaction

    El Ni?o-Southern Oscillation (ENSO) is the largest interannual climate variability in the tropics.Although its evolution takes place in the tropical Pacific region, it has far-reaching impacts on climate and society around the world (McPhaden et al., 2006).Meanwhile, ENSO signals also provide very important information for other short-term climate predictions.Therefore, a successful ENSO forecast is of great importance.In fact, both statistical and physical forecast models could successfully predict ENSO evolution with lead times of 6 to 12 months by the late 20th century (Latif et al., 1994).Despite this progress,the complexity of ENSO has always been an important obstacle restricting ENSO forecasting (Zheng et al., 2016; Timmermann et al., 2018; Fang and Xie, 2020; Chen et al., 2022).ENSO exhibits a high degree of complexity both spatially and temporally.For example, there are central Pacific (CP) and eastern Pacific (EP) types of El Ni?o (Ashok et al., 2007; Kao and Yu,2009), there are differences in amplitude and spatial asymmetry between El Ni?o and La Ni?a (An and Jin, 2004), and La Ni?a events can span two or three consecutive years (Hu et al., 2014; Zheng et al., 2015; DiNezio et al., 2017; Wu et al.,2021).These complexities undoubtedly bring significant challenges to simulating and predicting ENSO (DiNezio et al.,2017; Wu et al., 2021).

    By analyzing historical data, it has been noted that, compared with El Ni?o, the complexity of La Ni?a is more reflected in time than space.For example, of the 16 La Ni?as that have occurred from 1980 to the present, 13 have lasted for at least two years, and 1998-2001 was a three-year La Ni?a event.Recently, 2021-22 has been officially identified as a La Ni?a year, which makes 2020-22 a two-year La Ni?a event (Li et al., 2022).Furthermore, this La Ni?a did not quickly decay after its peak.Instead, it persisted as a moderate La Ni?a and even recently rebounded.According to the latest Climate Prediction Center and International Research Institute for Climate and Society (CPC/IRI) ENSO Outlook issued in April 2022 (Fig.1a; http://iri.columbia.edu/climate/ENSO/currentinfo/update.html), La Ni?a is favored to continue through boreal summer (59% chance during June-August 2022), with a 50%-55% chance of continuing through fall.

    A similar advisory can also be found in the China Multi-Model Ensemble (CMME; https://cmdp.ncc-cma.net/pred/cn_cmme.php?FromYear=2022&FromMonth=4&Search=%BF%AA%CA%BC%BC%EC%CB%F7&Elem=CMMEENSO&source_from=), i.e., a platform organized by the National Climate Center of China Meteorological Administration to release monthly forecasts from various ENSO forecast models in China since March 2020.The corresponding predictions for the same period are also shown in Fig.1b.It can be seen that there are large differences among the models in CMME, in which both the intermediate coupled models (ICMs) and statistical models (SAMs) call for a La Ni?a advisory, the coupled general circulation models (CGCMs) indicate a neutral state, and the hybrid dynamic and statistical models (HDSMs) predict an El Ni?o state.To sum up the predictions of the two platforms, it seems another three-year La Ni?a (2020-23) will emerge, being the first since 1998-2001.Based on an ENSO statistical forecast model, the possible reasons for this potential La Ni?a occurrence will be investigated.

    Another obstacle of ENSO prediction is the so-called spring predictability barrier (SPB), i.e., the prediction skill will drop significantly when it strides over the spring regardless of when a prediction is made (Webster and Yang, 1992; Mu et al., 2007; Zheng and Zhu, 2010; Fang et al., 2019; Hu et al., 2019).In addition, another important feature associated with ENSO seasonal variation is seasonal phase locking, i.e., ENSO events normally mature in winter and decay quickly in the following spring.Using the empirical orthogonal function analysis method to quantitatively analyze this characteristic from 1980 to 2018, Fang and Zheng (2021) pointed out that a typical ENSO evolution can explain 90% of the total variance.The corresponding principal component is nearly identical to the October-December (OND) mean Ni?o-3.4 (5°S-5°N, 170°-120°W) sea surface temperature (SST) index.Thus, an accurate prediction of ENSO evolution can potentially be provided if the OND mean Ni?o-3.4 index is well predicted (Fang and Mu, 2018; Fang and Zheng, 2021).Based on this hypothesis,Fang and Zheng (2021) explored the possibility of using March data to predict the subsequent ENSO evolution using a statistical model, which can also quantitatively reflect the relative contributions of the predictors.In the present study, their model will be utilized to explore the important contribution of the historic southeasterly winds over the equatorial Pacific in March 2022 to the possible third-year La Ni?a event.

    For this purpose, four physically oriented variables are used to establish the connection between the March air-sea fields and the subsequent ENSO evolution.They are the equatorial mean thermocline depth (TCD) anomalies (TCDa_M),the zonal wind stress anomaly in the western Pacific (Tauxa_W), the zonal gradient of the TCD anomalies in the equatorial Pacific (TCDa_G), and the mean meridional wind stress anomalies over the eastern equatorial Pacific (Tauya_E).The first two variables are associated with the recharge oscillator theory (Jin, 1997).TCDa_G reflects the see-saw oscillation of the thermocline between the western and eastern Pacific (e.g., Kumar and Hu, 2014) or the eastward propagation of Kelvin wave-like signals (Tseng et al., 2017).Tauya_E is linked to the meridional processes that have been emphasized in studying ENSO complexity (Hu and Fedorov, 2018; Xie et al., 2018).Specifically, the meridional processes in the eastern Pacific region, which were less often considered in classical ENSO theories, were verified to be important in depicting the following ENSO evolution from March (Hu and Fedorov, 2018; Xie et al., 2018).

    Based on the above physical parameter selection, a quaternary linear regression equation is used to study the relationship between the March air-sea fields and the OND mean ENSO property as follows:

    Figures 1c-d show the anomalous surface wind stress, SST, and TCD in March 2022.The equatorial central to eastern Pacific still maintains cold conditions, with a large area colder than -1°C.Correspondingly, the thermocline depth shows generally shallow anomalies in the east and deep anomalies in the west, a so-called tilt or dipole mode that is in phase with theENSO cycle (Kumar and Hu, 2014).Meanwhile, the southeasterly wind over the equatorial Pacific is appreciable.Such wind field distributions favor the induction of La Ni?a-like evolution through zonal Bjerknes feedback and meridional physical processes, such as the incursion of off-equatorial subsurface cold water (Zheng et al., 2015; Zhu et al., 2016).

    To quantify the contributions to the possible third-year La Ni?a, Figs.2a-d show the time series of TCDa_M, TCDa_G,Tauxa_W, and Tauya_E in March during 1980-2022, which are normalized by their standard deviations.For comparison,March 2000 (i.e., the last year of the latest three-year La Ni?a) is marked by blue dots, while March 2022 is marked by reddots.As seen, neither of the thermocline variables (TCDa_M and TCDa_G) are significantly abnormal this year, indicating a challenge in predicting the subsequent ENSO evolution from the ENSO recharge-discharge theory and other classical ENSO theories that emphasize the variations in thermocline depth, i.e., zonal oceanic dynamics.In contrast, the atmospheric variables exhibit appreciable anomalies, with the easterly wind stress being comparable to that of 2000 and the southerly wind stress reaching its largest amplitude since 1980.Except for the strong easterly wind, the air-sea fields from 2000 are quite different from those in 2022.Namely, the former exhibits a large negative TCDa_G (i.e., the TCD was deeper in the west and shallower in the east) and anomalous northerly wind stress.

    Fig.2.Normalized indices for (a) TCDa_M, (b) TCDa_G, (c) Tauxa_W, and (d) Tauya_E in March.In each panel, the blue and red dots represent 2000 and 2022, respectively.(e) The relationships between the reconstructed and observed OND mean Ni?o-3.4 index during 1980-2021.Their correlation coefficient (R)is 0.86.The reconstructed indices are obtained by Eq.(1) utilizing the TCDa_M, TCDa_G, Tauxa_W, and Tauya_E indices in March.The red, blue, and black dots represent El Ni?o, La Ni?a, and neutral years,respectively.(f) The coefficients (bars) and their 10% significance intervals by Student’s t test (error bars) of the four variables.They are calculated by the product of the regression coefficients and the corresponding standard deviations.

    To quantify the contributions of each variable to ENSO, Fig.2e presents the reconstructed OND mean Ni?o-3.4 index by utilizing the quaternary regression and the four variables from March in 1980-2021.The correlation coefficient between the reconstructed and observed indices is 0.86.Additionally, all La Ni?a events can be accurately captured (i.e., the blue dots are in the third quadrant).Moreover, the coefficients (Fig.2f) of the regression suggest that the TCDa_M and Tauxa_W indices play dominant roles in ENSO development.The negative coefficients of the other two variables (i.e.,TCDa_G and Tauya_E) indicate that the positive (negative) zonal gradient of the TCD or the northerly (southerly) wind stress in the eastern Pacific favors the warming (cooling) of the eastern equatorial Pacific, illustrating the phase transition and the importance of the meridional processes in the eastern Pacific region, respectively.The latter factor (Tauya_E) has received less attention than the zonal Bjerknes feedback in understanding its influence on ENSO evolution from March(Xie et al., 2018; Fang and Xie, 2020; Fang and Zheng, 2021).

    Based on this model, the relative contribution of each variable in March (i.e., TCDa_M, TCDa_G, Tauxa_W, and Tauya_E) to the OND mean Ni?o-3.4 index can be quantitatively estimated (Fig.3).It can be seen that for 2000, it is the strong easterly wind stress that overcame the opposite effects from all the other three variables.It suggests that although the oceanic dynamics (characterized by the thermocline depth distribution) does not support more cooling based on the recharge oscillator and other classical ENSO theories, the abnormally strong easterly wind in the western Pacific can lead to cooling through exciting the upwelling oceanic Kelvin waves and driving the anomalous westward surface currents.However, the situation is quite different in 2022.The anomalous easterly and southerly wind stresses are both important, and each may contribute ~50% toward the pending La Ni?a evolution, while the variables related to the TCD have little effect.The southerly wind is argued to be able to intensify the ocean upwelling south of the equator (Xie et al., 2018) and enhance the incursion of the subsurface cold water on the off-equator into the equatorial area (Zheng et al., 2015), thus acting as an extra cooling effect on the SST variations.Also, as suggested in Fang and Zheng (2021), the role played by the meridional wind on the equatorial eastern Pacific is more important on the following ENSO evolution after 2000 than during 1980-99,which further explains the large difference between these two events.

    The differences between March and April 2022 (Fig.4) clearly indicate the persistence of the current La Ni?a condition.More specifically, the TCD is getting shallower in the central to eastern Pacific, the southeasterly wind over the equatorialPacific is still strong and even enhanced over the central tropical Pacific, and the SST is getting colder in the entire basin.Therefore, based on the current air-sea status and the quaternary linear regression model, our perspective is that the historic southeasterly winds over the equatorial Pacific are propitious to the emergence of a third-year La Ni?a event in 2022/23.

    Fig.3.Contribution of each variable in March to the following OND mean Ni?o-3.4 index in 2000 (left) and 2022 (right).The blue, red, yellow, and purple bars represent the contribution percentages from TCDa_M, TCDa_G,Tauxa_W, and Tauya_E, respectively.The black bar is for the total (100%), i.e.,the combination of the four components.

    To investigate the potential impacts of the pending three-year La Ni?a on the climate in 2022, the summer(June-July-August, JJA) mean precipitation and winter (December-January-February, DJF) mean temperature anomalies in 1975 and 2000 are shown in Fig.5 because since 1950, three-year La Ni?a events only existed in 1973-76 and 1998-2001.In the summers of 1975 and 2000, obvious precipitation anomalies were exhibited in the tropical regions related to the westward extension of the cold tongue with similarities and differences.There was less rainfall in southern North America but more rainfall in the southern Maritime Continent regions.However, in the warm pool of the western Pacific, the precipitation is less than usual in JJA 1975 but more than usual in JJA 2000.In China, the summer rainfall was concentrated over Huanghe-Huaihe Plain, China in 2000 but in northern China in 1975, while reduced summer rainfall occurred in southern China in both years.In the winter, a wide range of cold anomalies emerged in Eurasia and North America.More frequent and powerful cold air activities may impact the mid-high latitudes of the Northern Hemisphere, and extreme cold may grip much of the Eurasian or North American continents.In China, cold anomalies and warm anomalies were located in the central-to-eastern and northeast parts, respectively, in 1975, while 2000 had contrary circumstances.The inconsistencies between 1975 and 2000 create much uncertainty in the climate prediction of 2022 in China, and we should pay attention to the abovementioned areas with obvious precipitation anomalies and temperature anomalies in both 1975 and 2000.For example, more potential floods are related to more precipitation in the northern part of China and more possibleheat waves and droughts in southern China in the summer.Meanwhile, in this winter, we need to be aware of the risks of intense cold surges in Eurasia, which could also produce more cold extremes either in eastern or northeastern China.

    Fig.4.Tendency of (a) surface wind stress, (b) SST (contour interval is 0.5°C), and (c) TCD(contour interval is 10 m) between April and March in 2022.

    Fig.5.Precipitation of (a) JJA 1975 and (c) JJA 2000 and surface temperature of (b) DJF 1975 and (d) DJF 2000.Color shadings show the anomaly relative to 1980-2001.Dots are shown where the anomalies are all positive or negative in the three datasets used (i.e., JRA-55, ERA 40, and NCEP/NCAR Reanalyses).

    Acknowledgements.This work is supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(CAS; Grant No.ZDBS-LY-DQC010), the National Natural Science Foundation of China (Grant Nos.41876012; 42175045), the Strategic Priority Research Program of CAS (Grant No.XDB42000000), and Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004).The reanalysis data were downloaded from the NOAA Physical Sciences Laboratory (https://www.esrl.noaa.gov/psd/data/gridded/data.godas.html).

    欧美成人午夜精品| 春色校园在线视频观看| 免费观看性生交大片5| 亚洲国产精品一区三区| 精品国产国语对白av| 老司机影院成人| 人妻系列 视频| 熟妇人妻不卡中文字幕| 最近的中文字幕免费完整| 精品一区在线观看国产| 午夜免费鲁丝| 中文乱码字字幕精品一区二区三区| 一级毛片我不卡| 人妻系列 视频| 国产日韩欧美亚洲二区| www.自偷自拍.com| av视频免费观看在线观看| 国产成人精品在线电影| freevideosex欧美| 男女边摸边吃奶| 久久狼人影院| 精品酒店卫生间| 欧美精品一区二区大全| freevideosex欧美| 成人国产av品久久久| 日韩av免费高清视频| 自拍欧美九色日韩亚洲蝌蚪91| 综合色丁香网| 精品少妇久久久久久888优播| 精品第一国产精品| 国产亚洲午夜精品一区二区久久| 一本色道久久久久久精品综合| 亚洲色图 男人天堂 中文字幕| 日韩av不卡免费在线播放| 免费在线观看黄色视频的| 成年女人毛片免费观看观看9 | 精品亚洲乱码少妇综合久久| 色播在线永久视频| 一本大道久久a久久精品| 亚洲精品久久午夜乱码| 色婷婷久久久亚洲欧美| 老熟女久久久| 久久精品国产亚洲av涩爱| 男女边摸边吃奶| 中文字幕色久视频| 日日爽夜夜爽网站| 少妇熟女欧美另类| 亚洲国产毛片av蜜桃av| 美女高潮到喷水免费观看| 十八禁网站网址无遮挡| 人体艺术视频欧美日本| av网站免费在线观看视频| 五月伊人婷婷丁香| 少妇人妻久久综合中文| 美女国产视频在线观看| 国产成人免费观看mmmm| 啦啦啦视频在线资源免费观看| 777久久人妻少妇嫩草av网站| 成人二区视频| 国产在线一区二区三区精| 丁香六月天网| 久久人人97超碰香蕉20202| 国产色婷婷99| 免费大片黄手机在线观看| 亚洲人成网站在线观看播放| 精品少妇黑人巨大在线播放| 寂寞人妻少妇视频99o| 成人手机av| 最新中文字幕久久久久| 欧美少妇被猛烈插入视频| 亚洲欧美清纯卡通| 欧美成人午夜精品| 亚洲国产精品国产精品| 国产欧美日韩一区二区三区在线| 亚洲国产欧美在线一区| 丝袜人妻中文字幕| 最黄视频免费看| 国产极品天堂在线| 丰满乱子伦码专区| 热99国产精品久久久久久7| 99久久人妻综合| www.av在线官网国产| 亚洲精品,欧美精品| 欧美中文综合在线视频| 国产免费一区二区三区四区乱码| 中文字幕制服av| 国产不卡av网站在线观看| 欧美激情高清一区二区三区 | 久久久久精品人妻al黑| 日韩,欧美,国产一区二区三区| 国产一区二区激情短视频 | 亚洲综合色网址| 97在线视频观看| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久久免| 国产淫语在线视频| 黄色配什么色好看| 香蕉丝袜av| 亚洲精品自拍成人| 久久精品久久久久久噜噜老黄| 色哟哟·www| 国产精品久久久久成人av| 涩涩av久久男人的天堂| 美女高潮到喷水免费观看| 国产精品一国产av| 国产亚洲欧美精品永久| 高清欧美精品videossex| 男人舔女人的私密视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲欧美成人综合另类久久久| 国产视频首页在线观看| a级毛片黄视频| 精品人妻一区二区三区麻豆| 日韩欧美一区视频在线观看| 老汉色av国产亚洲站长工具| 免费高清在线观看日韩| 午夜福利在线免费观看网站| 亚洲成人手机| 婷婷色av中文字幕| 日韩电影二区| 久久久国产精品麻豆| 在线天堂最新版资源| 日韩一本色道免费dvd| av片东京热男人的天堂| 免费av中文字幕在线| 一本—道久久a久久精品蜜桃钙片| 午夜免费男女啪啪视频观看| 国产成人精品在线电影| 国产极品天堂在线| 中国三级夫妇交换| 天堂8中文在线网| 亚洲精品成人av观看孕妇| 老女人水多毛片| 国产白丝娇喘喷水9色精品| freevideosex欧美| 一本—道久久a久久精品蜜桃钙片| 最近中文字幕高清免费大全6| 久久久久国产一级毛片高清牌| 中文字幕另类日韩欧美亚洲嫩草| 成人黄色视频免费在线看| 两个人看的免费小视频| 我要看黄色一级片免费的| 婷婷成人精品国产| 一级爰片在线观看| 肉色欧美久久久久久久蜜桃| 女人精品久久久久毛片| 91精品国产国语对白视频| 国产精品国产三级国产专区5o| 亚洲欧美色中文字幕在线| 精品国产乱码久久久久久男人| 如日韩欧美国产精品一区二区三区| 99久久中文字幕三级久久日本| 亚洲综合色网址| 成人漫画全彩无遮挡| 精品少妇久久久久久888优播| 久久精品夜色国产| 国产又爽黄色视频| 久久国产精品大桥未久av| 亚洲天堂av无毛| 亚洲精品久久午夜乱码| 精品少妇一区二区三区视频日本电影 | 曰老女人黄片| 少妇熟女欧美另类| 日韩一区二区三区影片| av女优亚洲男人天堂| 久久久国产欧美日韩av| 中文字幕人妻丝袜一区二区 | 精品福利永久在线观看| 精品一区在线观看国产| 建设人人有责人人尽责人人享有的| 十八禁网站网址无遮挡| 欧美人与性动交α欧美精品济南到 | 欧美少妇被猛烈插入视频| 久久午夜福利片| 国产爽快片一区二区三区| 色94色欧美一区二区| 中文字幕人妻熟女乱码| 精品少妇内射三级| 乱人伦中国视频| 国产白丝娇喘喷水9色精品| 成人黄色视频免费在线看| 啦啦啦在线免费观看视频4| 免费看av在线观看网站| 亚洲精品美女久久久久99蜜臀 | 久久久久久久大尺度免费视频| av线在线观看网站| 91久久精品国产一区二区三区| 大片电影免费在线观看免费| 午夜福利视频精品| av女优亚洲男人天堂| 十八禁高潮呻吟视频| 欧美人与善性xxx| 欧美激情高清一区二区三区 | 精品一区二区三卡| 99re6热这里在线精品视频| 日本色播在线视频| 日韩成人av中文字幕在线观看| 久久久久国产精品人妻一区二区| 久久久久久久亚洲中文字幕| 午夜福利在线观看免费完整高清在| 一本色道久久久久久精品综合| 综合色丁香网| 国产一级毛片在线| 热99国产精品久久久久久7| 91精品伊人久久大香线蕉| 最近的中文字幕免费完整| 日韩在线高清观看一区二区三区| 久久久久久久久久久久大奶| 色哟哟·www| 精品卡一卡二卡四卡免费| 亚洲国产毛片av蜜桃av| 视频在线观看一区二区三区| 国产成人av激情在线播放| 高清在线视频一区二区三区| 满18在线观看网站| 欧美国产精品一级二级三级| 亚洲五月色婷婷综合| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 菩萨蛮人人尽说江南好唐韦庄| 欧美 亚洲 国产 日韩一| 美女视频免费永久观看网站| 91精品国产国语对白视频| 国产av国产精品国产| 久久久精品区二区三区| 久久av网站| 精品一区二区三卡| 国产黄色视频一区二区在线观看| 我的亚洲天堂| 亚洲五月色婷婷综合| 熟女av电影| 五月伊人婷婷丁香| 热re99久久国产66热| 99久久人妻综合| 国产精品.久久久| 久久99精品国语久久久| 国产一区二区 视频在线| 建设人人有责人人尽责人人享有的| 少妇被粗大的猛进出69影院| 黄频高清免费视频| 极品人妻少妇av视频| 日本欧美国产在线视频| 国产又色又爽无遮挡免| av福利片在线| 成年人午夜在线观看视频| 一区二区日韩欧美中文字幕| 精品国产乱码久久久久久男人| 国产亚洲午夜精品一区二区久久| 久久久久久免费高清国产稀缺| 90打野战视频偷拍视频| 欧美精品国产亚洲| 亚洲国产精品成人久久小说| 欧美老熟妇乱子伦牲交| 日本午夜av视频| 国产精品熟女久久久久浪| 尾随美女入室| 少妇人妻久久综合中文| 777久久人妻少妇嫩草av网站| 日韩在线高清观看一区二区三区| freevideosex欧美| 久久人人爽av亚洲精品天堂| 超碰97精品在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲成人手机| 九九爱精品视频在线观看| 国产成人精品久久二区二区91 | 男人添女人高潮全过程视频| 国产精品偷伦视频观看了| 久久精品国产综合久久久| 女人高潮潮喷娇喘18禁视频| 黄频高清免费视频| 欧美国产精品一级二级三级| 亚洲一区中文字幕在线| 久久精品aⅴ一区二区三区四区 | 人人妻人人添人人爽欧美一区卜| 女人高潮潮喷娇喘18禁视频| 一级片免费观看大全| 精品一区在线观看国产| 九九爱精品视频在线观看| 日韩人妻精品一区2区三区| 久久青草综合色| 亚洲图色成人| 大话2 男鬼变身卡| 国产亚洲最大av| 一区二区三区激情视频| 你懂的网址亚洲精品在线观看| 国产精品女同一区二区软件| 男女午夜视频在线观看| 18在线观看网站| 嫩草影院入口| 亚洲精品久久成人aⅴ小说| 亚洲精品日韩在线中文字幕| 9色porny在线观看| 伊人久久大香线蕉亚洲五| 老司机影院毛片| 女人久久www免费人成看片| 国产淫语在线视频| 边亲边吃奶的免费视频| 免费观看无遮挡的男女| 日本91视频免费播放| 国产av精品麻豆| www.精华液| 18禁动态无遮挡网站| 欧美精品一区二区大全| 亚洲 欧美一区二区三区| 亚洲精品在线美女| 久久久欧美国产精品| 一级片免费观看大全| 亚洲精品国产一区二区精华液| 精品国产超薄肉色丝袜足j| 最近中文字幕2019免费版| 一边亲一边摸免费视频| 青春草国产在线视频| 亚洲精品美女久久久久99蜜臀 | 日韩熟女老妇一区二区性免费视频| 国产精品一国产av| 啦啦啦在线免费观看视频4| videos熟女内射| 满18在线观看网站| 久久影院123| 麻豆精品久久久久久蜜桃| videosex国产| 日韩伦理黄色片| 国产熟女午夜一区二区三区| 午夜91福利影院| 一级爰片在线观看| 在线天堂最新版资源| 亚洲欧美成人综合另类久久久| 久久ye,这里只有精品| 99久国产av精品国产电影| 性色avwww在线观看| 国产在线一区二区三区精| 男女边摸边吃奶| av电影中文网址| av视频免费观看在线观看| 欧美日韩精品成人综合77777| 9191精品国产免费久久| a级片在线免费高清观看视频| 精品一区二区免费观看| 青春草国产在线视频| 国产高清不卡午夜福利| 各种免费的搞黄视频| 国产精品久久久久久精品古装| 男女下面插进去视频免费观看| 啦啦啦视频在线资源免费观看| 午夜福利一区二区在线看| 久久精品久久久久久噜噜老黄| 国产成人aa在线观看| 看免费成人av毛片| 18禁裸乳无遮挡动漫免费视频| 国产成人免费观看mmmm| 日本vs欧美在线观看视频| 男人爽女人下面视频在线观看| 深夜精品福利| 亚洲一级一片aⅴ在线观看| 97精品久久久久久久久久精品| 精品酒店卫生间| 精品国产国语对白av| 国产色婷婷99| 久久99精品国语久久久| 精品久久久精品久久久| 99国产精品免费福利视频| av福利片在线| 国产精品欧美亚洲77777| 国产精品一区二区在线不卡| 免费黄网站久久成人精品| 精品酒店卫生间| 性高湖久久久久久久久免费观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品免费大片| 久久久a久久爽久久v久久| av福利片在线| 性色av一级| 美女大奶头黄色视频| 2021少妇久久久久久久久久久| 欧美激情极品国产一区二区三区| √禁漫天堂资源中文www| 自线自在国产av| 日韩人妻精品一区2区三区| 亚洲成人手机| 久久久久精品人妻al黑| 国产精品一区二区在线不卡| h视频一区二区三区| 亚洲av.av天堂| 婷婷色av中文字幕| 一级毛片黄色毛片免费观看视频| 色视频在线一区二区三区| 午夜福利视频在线观看免费| 久久国产精品大桥未久av| 99re6热这里在线精品视频| 黄频高清免费视频| 免费观看性生交大片5| 亚洲第一av免费看| 久久精品亚洲av国产电影网| 丰满少妇做爰视频| 99re6热这里在线精品视频| 国产人伦9x9x在线观看 | 亚洲欧美精品自产自拍| 国产男女内射视频| 亚洲美女搞黄在线观看| 亚洲精品aⅴ在线观看| 亚洲国产欧美网| 久久久久精品人妻al黑| 男女国产视频网站| 纯流量卡能插随身wifi吗| 香蕉国产在线看| 最近的中文字幕免费完整| 国产成人精品久久久久久| 91精品国产国语对白视频| 亚洲在久久综合| 一级片'在线观看视频| av线在线观看网站| 亚洲精品视频女| 国产精品久久久久成人av| 亚洲人成77777在线视频| 亚洲 欧美一区二区三区| 国产毛片在线视频| 亚洲综合色网址| 国产乱人偷精品视频| 亚洲av国产av综合av卡| 最近手机中文字幕大全| 久久亚洲国产成人精品v| 久久久久视频综合| 婷婷成人精品国产| 美女大奶头黄色视频| 午夜日韩欧美国产| 国产精品二区激情视频| 伦理电影免费视频| 国产一区有黄有色的免费视频| 搡女人真爽免费视频火全软件| 国产精品久久久久久精品古装| 丝袜人妻中文字幕| 国产老妇伦熟女老妇高清| 2021少妇久久久久久久久久久| 欧美亚洲日本最大视频资源| 美女大奶头黄色视频| 欧美国产精品va在线观看不卡| 亚洲成人av在线免费| 亚洲国产精品一区三区| 97在线人人人人妻| 一区二区三区精品91| 少妇熟女欧美另类| av在线观看视频网站免费| 亚洲精品成人av观看孕妇| 2022亚洲国产成人精品| 日韩 亚洲 欧美在线| 纵有疾风起免费观看全集完整版| 女性被躁到高潮视频| 在线看a的网站| 一个人免费看片子| 男的添女的下面高潮视频| 午夜91福利影院| 午夜福利,免费看| 亚洲国产av新网站| 亚洲欧美日韩另类电影网站| 色网站视频免费| 一区二区三区四区激情视频| 国产精品不卡视频一区二区| 色哟哟·www| 久久精品aⅴ一区二区三区四区 | 亚洲av电影在线观看一区二区三区| 欧美精品高潮呻吟av久久| 国产成人精品婷婷| 高清视频免费观看一区二区| 毛片一级片免费看久久久久| 国产女主播在线喷水免费视频网站| 人妻系列 视频| 看非洲黑人一级黄片| 国产亚洲av片在线观看秒播厂| 男女边吃奶边做爰视频| 亚洲精品美女久久av网站| 人妻人人澡人人爽人人| 亚洲精品视频女| 亚洲国产成人一精品久久久| 大码成人一级视频| 欧美老熟妇乱子伦牲交| 精品卡一卡二卡四卡免费| 满18在线观看网站| 另类精品久久| 国产成人91sexporn| 成年动漫av网址| 黄片播放在线免费| 精品国产一区二区三区久久久樱花| 亚洲一区中文字幕在线| 亚洲熟女精品中文字幕| 波多野结衣av一区二区av| 欧美少妇被猛烈插入视频| 久久鲁丝午夜福利片| 精品久久久精品久久久| 婷婷色麻豆天堂久久| 欧美日韩亚洲高清精品| 国产成人91sexporn| 精品亚洲成a人片在线观看| 亚洲av男天堂| 涩涩av久久男人的天堂| 亚洲av.av天堂| 国产亚洲av片在线观看秒播厂| 女人精品久久久久毛片| 精品亚洲成国产av| 少妇被粗大猛烈的视频| 国产精品熟女久久久久浪| 一级a爱视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 久久97久久精品| 久久久久国产网址| 日日爽夜夜爽网站| 国产在线免费精品| 午夜福利视频精品| 九草在线视频观看| 美女福利国产在线| 看免费成人av毛片| 成人漫画全彩无遮挡| 精品人妻在线不人妻| 欧美少妇被猛烈插入视频| 欧美黄色片欧美黄色片| 一区二区三区四区激情视频| 免费高清在线观看日韩| 国语对白做爰xxxⅹ性视频网站| 久久99一区二区三区| 狂野欧美激情性bbbbbb| 男女啪啪激烈高潮av片| 少妇人妻精品综合一区二区| 亚洲一区二区三区欧美精品| 99热全是精品| 亚洲av国产av综合av卡| 国产精品嫩草影院av在线观看| 亚洲一码二码三码区别大吗| 9热在线视频观看99| 日产精品乱码卡一卡2卡三| 国产精品免费视频内射| 91国产中文字幕| 国产成人欧美| 国产女主播在线喷水免费视频网站| av电影中文网址| 成人亚洲欧美一区二区av| 日日爽夜夜爽网站| 国产精品二区激情视频| 我的亚洲天堂| 国产成人一区二区在线| 激情五月婷婷亚洲| 精品人妻在线不人妻| 久久青草综合色| 高清黄色对白视频在线免费看| 欧美成人精品欧美一级黄| av又黄又爽大尺度在线免费看| 亚洲精品美女久久久久99蜜臀 | 免费久久久久久久精品成人欧美视频| 九草在线视频观看| 国产精品久久久久久精品电影小说| av福利片在线| 人妻 亚洲 视频| 亚洲成人手机| 免费高清在线观看视频在线观看| 91成人精品电影| 黄片播放在线免费| 亚洲av日韩在线播放| 国产精品蜜桃在线观看| 一级片'在线观看视频| 精品酒店卫生间| 一级a爱视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| a级片在线免费高清观看视频| 亚洲欧美清纯卡通| 一区在线观看完整版| 欧美在线黄色| 久久 成人 亚洲| 亚洲精品自拍成人| 在线观看人妻少妇| 校园人妻丝袜中文字幕| 精品福利永久在线观看| 亚洲精品一区蜜桃| 久久人人爽av亚洲精品天堂| 亚洲av日韩在线播放| 国产爽快片一区二区三区| 亚洲精品国产色婷婷电影| 在线天堂最新版资源| 999精品在线视频| 国产激情久久老熟女| 午夜福利在线免费观看网站| 丰满饥渴人妻一区二区三| 18禁裸乳无遮挡动漫免费视频| 日本黄色日本黄色录像| 亚洲精品国产av成人精品| 亚洲精品aⅴ在线观看| 国产日韩欧美视频二区| 欧美人与性动交α欧美精品济南到 | 国产精品熟女久久久久浪| a级毛片黄视频| 边亲边吃奶的免费视频| 韩国av在线不卡| 亚洲熟女精品中文字幕| 久久精品国产a三级三级三级| 一本—道久久a久久精品蜜桃钙片| 午夜福利一区二区在线看| 一区二区三区四区激情视频| 制服丝袜香蕉在线| 久久人人爽人人片av| 最黄视频免费看| 老女人水多毛片| 国产精品三级大全| a级片在线免费高清观看视频| 精品少妇内射三级| 一级片免费观看大全| 欧美日韩亚洲高清精品| 一本—道久久a久久精品蜜桃钙片| 少妇被粗大的猛进出69影院| 国产精品久久久久久av不卡| 男的添女的下面高潮视频| 纯流量卡能插随身wifi吗| 国产亚洲欧美精品永久| 欧美日本中文国产一区发布| 春色校园在线视频观看| 2022亚洲国产成人精品| 亚洲av在线观看美女高潮| 男女边吃奶边做爰视频| 亚洲精品美女久久av网站|