• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding the Development of the 2018/19 Central Pacific El Ni?o

    2023-02-08 08:16:46ChengyangGUANXinWANGandHaijunYANG
    Advances in Atmospheric Sciences 2023年1期

    Chengyang GUAN, Xin WANG, and Haijun YANG

    1College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

    2State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology,Chinese Academy of Sciences, Guangzhou 510301, China

    3Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China

    4Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences, Guangzhou 510301, China

    5Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai 200438, China

    ABSTRACT A central Pacific (CP) El Ni?o event occurred in 2018/19.Previous studies have shown that different mechanisms are responsible for different subtypes of CP El Ni?o events (CP-I El Ni?o and CP-II El Ni?o).By comparing the evolutions of surface winds, ocean temperatures, and heat budgets of the CP-I El Ni?o, CP-II El Ni?o, and 2018/19 El Ni?o, it is illustrated that the subtropical westerly anomalies in the North Pacific, which led to anomalous convergence of Ekman flow and surface warming in the central equatorial Pacific, played an important role in the 2018/19 El Ni?o event as well as in the CP-II El Ni?o.Although the off-equatorial forcing played a vital role, it is found that the equatorial forcing acted as a driving (damping) term in boreal spring (summer) of the 2018/19 El Ni?o.The 2018/19 El Ni?o provides a timely and vivid example that helps illustrate the proposed mechanism of the CP El Ni?o, which could be leveraged to improve El Ni?o predictability.

    Key words: El Ni?o, subtropical Pacific, westerly anomalies, Ekman transport

    1.Introduction

    El Ni?o Southern Oscillation (ENSO) is the dominant interannual variation of sea surface temperature (SST) in the tropical Pacific region.The event-to-event diversity of individual ENSO events can lead to different climate impacts(Ashok et al., 2007; Wang and Wang, 2013, 2014; Capotondi et al., 2015; Yu et al., 2017).El Ni?o events are often classified as Eastern Pacific (EP) or Central Pacific (CP) El Ni?o events (Yu and Kao, 2007; Kao and Yu, 2009; Yu and Kim,2011).An EP El Ni?o first exhibits surface warming in the cold-tongue region in the eastern Pacific, while a CP El Ni?o first exhibits surface warming in the central tropical Pacific.The latter is also referred to as an El Ni?o Modoki(Ashok et al., 2007) or a dateline El Ni?o (Larkin and Harrison, 2005).

    Recent studies have revealed that different types of El Ni?o events are dominated by different physical processes(Kug et al., 2009; Yu et al., 2010; Chen et al., 2015; Lai et al., 2015; Wang et al., 2019b).Kug et al.(2009) demonstrated that a CP El Ni?o arises mainly from zonal advective feedback, while warming in the eastern tropical Pacific is suppressed by enhanced upwelling and evaporation caused by equatorial easterly anomalies.Yu et al.(2010) pointed out that during the development of a CP El Ni?o, SST anomalies first appear in the northeastern subtropical Pacific andextrend towards the central equatorial Pacific through wind-evaporation-SST (WES) feedback (Xie and Philander,1994).There are also studies suggesting that the forcings from the northern subtropical Pacific could trigger the development of a CP El Ni?o via the seasonal footprinting mechanism (Vimont et al., 2001; Yeh et al., 2015; Yu and Fang,2018; Fang and Yu, 2020).Chen et al.(2015) and Lai et al.(2015) emphasized that the diversity of El Ni?o events is a combined effect of both zonal wind anomalies and subsurface temperature anomalies in the equatorial Pacific.

    Wang and Wang (2013) investigated the diversity in SST evolution and climate impact of CP El Ni?o events and further classified them into two subtypes, Modoki-I and Modoki-II (referred to as CP-I and CP-II hereafter).Despite the similarity of both CP types warming in the central tropical Pacific, they have distinctly different spatial patterns and regional climatic effects (Liu et al., 2014; Wang and Wang,2014; Tan et al., 2016; Liu et al., 2017; Chen et al., 2019;Wang et al., 2020b; Kim et al., 2021).A CP-I (CP-II) El Ni?o tends to induce positive (negative) SST anomalies in the South China Sea during developing autumn, mainly by affecting the latent heat flux (Tan et al., 2016).Associated with a weaker Walker circulation in the Indo-Pacific region,a CP-I (CP-II) El Ni?o favors a positive (negative) Indian Ocean Dipole via the Bjerknes feedback (Wang and Wang,2014).As for the western Pacific subtropical high during the decaying summer, a CP-I (CP-II) El Ni?o imposes little(strong positive) impact (Chen et al., 2019, 2021a).Wang et al.(2018) came up with an index to identify the two subtypes of CP El Ni?o events and showed that CP-II events occurred the most often after 1990.Wang et al.(2019c) investigated CP El Ni?o events occurring from 1900 to 2010 by analyzing the heat budget of the mixed layer water in the Ni?o-4 region (5°S-5°N, 160°E-150°W) and discovered that zonal advective (Ekman pumping) feedback is the leading contributor to CP-I (CP-II) El Ni?o events.Chen (2021b) concluded that a CP-I El Ni?o is triggered by the weakening of the Australian winter monsoon, while a CP-II El Ni?o is mainly forced by the Pacific Meridional Mode (PMM) via WES feedback.

    In 2018/19, an El Ni?o event occurred, with the warming center located at the Date Line.The SST anomalies first appeared in the northern subtropical Pacific and then extended towards the central tropical Pacific.The surface warming was stronger in the Ni?o-4 region (5°S-5°N,160°E-150°W) than in the Ni?o-3 region (5°S-5°N, 150°-90°W; Fig.1).Based on observations and model forecasts,Liu et al.(2020) argued that the central tropical Pacific warming in the 2018/19 El Ni?o, along with tropical Atlantic warming and interdecadal variation, is one of the major factors leading to the extremely wet winter of 2018/19 in the lower reach of the Yangtze River.Wang et al.(2020a) suggested that the 2018/19 El Ni?o induced a remote teleconnection pattern with pronounced low-level southerly anomalies over East China, which transported moisture from oceans to the continent and caused persistent rainy days in the 2018/19 winter in Shanghai, China.

    The 2018/19 El Ni?o event presents an opportunity to examine the genesis mechanisms of a CP El Ni?o.In this work, the physical processes associated with the 2018/19 El Ni?o are analyzed.It is demonstrated that the off-equatorial forcings in the northern subtropical Pacific are the primary cause of the 2018/19 El Ni?o.The contributions of the equatorial forcings, however, can be opposing during different stages.

    2.Data and method

    Monthly SSTs from the Extended Reconstructed Sea Surface Temperature, version 5 (ERSST v5) dataset with aresolution of 2.0° × 2.0° (Huang et al., 2017), monthly sea level pressures, surface winds and heat fluxes from the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) Reanalysis 1 with a resolution of 2.5° × 2.5° (Kalnay et al., 1996), and monthly wind stress, ocean current, and temperature data from the Global Ocean Data Assimilation System (GODAS)(Behringer and Xue, 2004) with a horizontal resolution of 0.333° latitude × 1.0° longitude are used to analyze the evolution of the 2018/19 El Ni?o.Ocean current and temperature data at 40 vertical levels from GODAS are used.These monthly variables cover the period from 1950 to January 2019.Monthly oceanic current and temperature data from the Simple Ocean Data Assimilation (SODA) 2.2.4 (Carton and Giese, 2008; Giese and Ray, 2011) and monthly sea surface wind data from the Twentieth Century Global Reanalysis Version 2 (20CR v2) (Compo et al., 2011), with a longer time span covering 1900-2010, are used for the composite analyses of CP-I and CP-II El Ni?o events.The 20CR v2 data are on a global T62 Gaussian grid.Pentad wind stress data from GODAS are also analyzed for the development of the 2018/19 El Ni?o.The precipitation rate data is from the Global Precipitation Climatology Centre (GPCC) Monitoring Product Version 6 (2014-present; Schneider et al., 2011)and Version 7 (1901-2013; Schneider et al., 2016), with a resolution of 1.0° × 1.0°.

    Fig.1.Evolution of SST (shading, °C) and wind stress (vector,Nm-2) anomalies in the tropical Pacific during the development of the 2018/19 El Ni?o.(a) MAM, (b) JJA, and(c) SON indicate the periods of March-April-May,June-July-August, and September-October-November in 2018, respectively.(d) DJF indicates the period from December 2018 to February 2019.Black vectors indicate wind stress anomalies exceeding ±1.5 standard deviations.The dotted area indicates where SST anomalies exceed ±1.5 standard deviations.

    The classification of EP or CP El Ni?o is based on the El Ni?o Modoki index (EMI) proposed by Ashok et al.(2007):

    where the subscripts C, W, and E indicate the SST anomalies averaged in the central (165°E-140°W, 10°S-10°N), western(125°-145°E, 10°S-20°N), and eastern (110°-70°W,15°S-5°N) Pacific, respectively.The El Ni?o event is considered a “typical” CP event when the EMI is equal to or greater than 0.7σ, where σ is the climatological standard deviation.

    CP El Ni?o events, as mentioned above, can be further classified as CP-I or CP-II El Ni?o events, with reference to their opposite influences on the precipitation in southern China (Wang and Wang, 2013).Additionally, Wang et al.(2018) developed a new index (CP-II index in this paper) to identify the subtypes of CP El Ni?o events.The CP-II index is defined as the leading principal component of multivariate empirical orthogonal function analysis of the normalized EMI, Ni?o-4 index, and 850-hPa relative vorticity anomalies averaged near the Philippine Sea (115°-145°E, 10°-25°N)during boreal autumn.CP El Ni?o events with a CP-II index larger than one standard deviation are designated as a CP-II El Ni?o.

    Following Wang and Wang (2013), seven CP-I El Ni?o events (1914/15, 1940/41, 1941/42, 1963/64, 1987/88,1990/91, and 2002/03) and six CP-II El Ni?o events (1968/69, 1979/80, 1991/92, 1992/93, 2004/05, and 2009/10) are selected as the historical collections.Monthly data are utilized to conduct the heat budget analysis of the ocean mixedlayer temperature based on the equation from Huang et al.(2010):

    where the primes indicate temporal anomalies.Ttrepresents the temperature tendency.Qu, Qv, and Qwrepresent the zonal, meridional, and vertical advective feedback.Qqrepresents the net surface flux.R represents the residuals.The ocean mixed-layer depths, defined as the depth where the buoyancy difference with respect to the surface level is equal to 0.03 cm s-2, are from the GODAS dataset.

    The advection terms on the right side of Eq.(2) are further decomposed as

    where T is the ocean mixed-layer temperature.u, v, and w represent the zonal, meridional, and vertical current, respectively.ρis the seawater density.cpis the specific heat capacity of seawater under constant pressure.h is the depth of the mixed layer.The overbars indicate temporal average.

    3.Results

    3.1.Classification of the 2018/19 El Ni?o

    Firstly, the EMI in 2018 is calculated, which exceeds 0.7σ from June to November [Fig.S1 in the electronic supplementary material (ESM)].Thus, the 2018/19 El Ni?o is identified as a CP El Ni?o.Secondly, there are two ways to separate CP-I and CP-II El Ni?o events.The southern China rainfall during the boreal autumn of 2018 was significantly positive,the same as that of a CP-I El Ni?o (Fig.S2 in the ESM).The CP-II index of 2018 is 0.87σ (less than one standard deviation).So, the 2018/19 El Ni?o should be categorized as a CP-I El Ni?o event under either classification approach.The 2018/19 El Ni?o exhibited equatorial westerly anomalies during the developing February and March (Fig.2c).The equatorial westerly anomalies generated downwelling Kelvin waves that propagated eastward and caused positive zonal advective feedback (Fig.3b), leading to positive ocean heat content (OHC) anomalies in the central Pacific during the developing February to March (Fig.2c).All of thesefeatures are the precursors of a CP-I El Ni?o, and the zonal advective feedback is supposed to support the warming in the central equatorial Pacific until the peak.The subsequent development process, however, tells a different story.

    Fig.2.Evolutions of ocean heat content (OHC) anomalies in the top 300 m (shading; units: 1 0 9Jm-2) and surface zonal wind anomalies (vector; units: m s-1) in the equatorial Pacific (averaged between 5°S-5°N) during the (a) CP-I El Ni?o, (b) CP-II El Ni?o, and (c) 2018/19 El Ni?o.In (a) and (b), (0) and (+1) on the y-axis indicate the developing and decaying year,respectively.Black dots in (a) and (b) denote areas exceeding the 90% confidence level.Black dots in (c) denote areas exceeding ±1 standard deviation.

    3.2.Developing processes

    Easterly anomalies spread across the equatorial Pacific in late boreal spring and summer (April to August), induced negative zonal advective feedback (Fig.3b), and suppressed the increase of oceanic subsurface temperature in the central equatorial Pacific.Yet, the oceanic subsurface temperature in the central equatorial Pacific still increased notably in late boreal summer without significant westerly anomalies in the western equatorial Pacific (Figs.2b, c).It will be demonstrated below that this notable warming in the central equatorial Pacific is mainly ascribed to the Ekman feedback induced by the subtropical westerly anomalies.

    During the spring of 2018, westerly anomalies were mainly located in the central subtropical Pacific (5°-10°N,170°E-130°W), and positive SST anomalies (exceeding 1°C)were in the northeastern subtropical Pacific (Fig.1a).Under the influence of WES feedback, the surface warming extended from the northeastern Pacific to the central equatorial Pacific.When the central Pacific SST anomalies were adequately positive, westerly anomalies arose in the western equatorial Pacific (Fig.1c).The westerly anomalies and the surface warming in the central Pacific enhanced themselves through Bjerknes feedback (Bjerknes, 1969) and peaked in the boreal winter of 2018/19.Particularly, the developing patterns of SST anomalies and wind anomalies resembled those of a CP-II El Ni?o (Figs.S3e-h in the ESM).

    Evolutions of composite OHC anomalies in the top 300 m and surface zonal wind anomalies in the equatorial Pacific during CP-I and CP-II El Ni?o events are illustrated in Fig.2a and Fig.2b, respectively.For the CP-I El Ni?o events, the significantly positive OHC anomalies in the eastern-central Pacific and westerly anomalies in the western-central equatorial Pacific persist during the whole developing year, indicating that the equatorial ocean and the atmosphere are well coupled.For the CP-II El Ni?o events, OHC anomalies in the central equatorial Pacific begin to increase remarkably in developing summer, even though strong westerly anomalies have not taken place in the equatorial Pacific yet.According to Wang et al.(2019c), the warming in the central Pacific is mainly caused by the westerly anomalies in the northern subtropical Pacific via Ekman feedback.As a critical feature of a CP-II El Ni?o, this process recurred in 2018.During the summer (June-August) of 2018, while strong westerly anomalies were still absent in the western-central equatorial Pacific, the OHC anomalies increased sharply (Fig.2c).After the increase of OHC in the central equatorial Pacific,westerly anomalies prevailed in the western equatorial Pacific until the spring of 2019 (Fig.2c).

    Characteristic features of the CP-I, CP-II, and 2018/19 El Ni?o mentioned above include the evolutions of equatorial SST anomalies (Fig.S4 in the ESM) and thermocline anomalies (Fig.S5 in the ESM).In particular, the multi-occurrence of downwelling Kelvin waves, which is attributed to the evolution characteristics of the wind anomalies, during the boreal spring, autumn, and winter of 2018 is clearly illustrated in Fig.S1c and Fig.S4c.

    3.3.Mixed-layer heat budget analysis

    To isolate the warming mechanism, the ocean mixedlayer heat budget for the Ni?o-4 region is analyzed for the CP-I, CP-II, and 2018/19 El Ni?o.For the CP-I El Ni?o, the leading contributors to the mixed-layer temperature warming are the zonal and meridional advective feedbacks (Fig.S6a in the ESM).During the whole developing phase of the CPI El Ni?o, the contribution from vertical advective feedback remains small.In comparison, vertical advective feedback is the leading accumulative contributor in boreal spring and sum-mer during the CP-II El Ni?o (Fig.S6c).Due to the absence of significant surface zonal wind anomalies in the western equatorial Pacific (Fig.2b), the contributions of zonal advective feedback and meridional advective feedback are rather weak in boreal spring (Fig.S6d).

    Fig.3.(a) Ocean mixed-layer heat budget analysis of the Ni?o-4 region during 2018 and (b) accumulative contributions of each term.Anomalies of horizontal current (vector) in the upper 150 m and its divergence (shading)in (c) January-February-March (JFM) and (d) June-July-August (JJA) 2018.In (a) and (b), Tt represents the temperature trend anomaly.uT, vT and wT represent anomalies of zonal, meridional and vertical advection,respectively.Qnet represents the anomaly of the net surface heat flux.R represents the residuals.Black dots in (c)and (d) denote areas exceeding ±1.5 standard deviations.

    It is evident that vertical advective feedback plays the leading role in the development of the 2018/19 El Ni?o, especially in boreal spring and autumn (Figs.3a, b).Thus, the positive ocean temperature anomalies in the central equatorial Pacific during the CP-II and 2018/19 El Ni?o can reach a deeper depth than those during the CP-I El Ni?o (Fig.S7 in the ESM).The only characteristic in line with the CP-I El Ni?o is the early boost of the zonal advective feedback.The contribution from zonal advective feedback reached its peak before April of 2018 (Fig.3b), when westerly anomalies prevailed in the western equatorial Pacific and generated downwelling Kelvin waves that propagated eastward to the central Pacific (Fig.2c).Associated with eastward current anomalies in the upper equatorial Pacific (Fig.3c), the resultant positive zonal advective feedback made a considerable contribution to the warming of the central Pacific.Thus, the upper-ocean temperature warms much earlier in the 2018/19 El Ni?o than it does in the CP-II El Ni?o (Fig.S7i), consistent with the results of the OHC evolution (Fig.2c).In July, easterly anomalies took the place of the westerly anomalies in the western Pacific (Fig.2c), generating upwelling Kelvin waves, and the equatorial current anomalies turned to be westward (Fig.3d).Thus, the zonal advective feedback reversed to be negative, and the Ni?o-4 temperature trend anomaly dropped sharply.While the zonal current anomalies changed their direction, the central equatorial Pacific (Ni?o-4 region) maintained anomalous convergence in the upper ocean the entire time (Figs.3c, d).In this way, the climatological upwelling in the central equatorial Pacific was hindered,and the Ekman feedback kept the Ni?o-4 temperature anomalies increasing.

    The upper-layer divergence in the central equatorial Pacific during 2018 summer is further decomposed into two parts (Fig.4).One part is led by the zonal current anomalies,and the other is led by the meridional current anomalies.While the zonal-led divergence anomalies (du'/dx) are mainly positive in the Ni?o-4 region (averaged 1.87 × 10-8s-1;Fig.4b), the meridional-led divergence anomalies (dv'/dy)are mostly negative (averaged -2.31 × 10-8s-1; Fig.4d).Therefore, the total divergence in the Ni?o-4 region adds up to be negative (i.e., an anomalous convergence) and is dominated by the meridional-led part.

    3.4.Influence of the subtropical westerly wind forcing

    In order to understand the influence of subtropical westerly wind forcing on the anomalous convergence through Ekman transport, the meridional Ekman flow is calculated by:

    where VEis the meridional Ekman current (positive for northward flow, negative for southward flow),τxis the zonal wind stress,ρis the seawater density (1025 kg m-3), and f is the Coriolis parameter (f = 2Ωsinθ, with Ω andθequal to Earth’s angular velocity and latitude, respectively).Zonal wind stress averaged within (6°-10°N, 160°E-150°W) is used to represent the westerly wind forcing in the subtropical North Pacific.The resultant VEanomaly in 2018 summer is-0.94 m s-1(see Fig.S8 in the ESM for details), while the anomaly of the mean meridional current in the mixed layer across the section (5°N, 160°E-150°W) is -0.32 m s-1.This demonstrates the vital role of the subtropical westerly wind forcing on the central equatorial Pacific.

    To sum up, the anomalous convergence in the central equatorial Pacific was induced by the off-equatorial westerly anomalies (Figs.1a, b).It favored the warming in the centralequatorial Pacific by suppressing the climatological upwelling and inducing positive vertical advective feedback(Wang et al., 2019c).When the Ni?o-4 region got warm enough in autumn, the Bjerknes feedback became effective,bringing about westerly anomalies and downwelling Kelvin waves again in the equatorial Pacific.As a result, the zonal advective feedback became positive and dominant.In the wake of the propagation of downwelling Kelvin waves, the whole equatorial Pacific warmed up and the El Ni?o conditions formed.

    Fig.4.(a) The oceanic convergence in the upper 150 m solely led by the zonal current anomalies (d u′/dx) in June-July-August (JJA) 2018.(b) The oceanic convergence in (a) averaged between 5°S and 5°N (units: 10-8 s-1).(c)and′ (d) are the same as (a) and (b), except that the convergence is solely led by the meridional current anomalies(d v/dy).Dashed lines in (b) and (d) indicate the zonal boundaries of the Ni?o-4 region.

    4.Conclusion and discussion

    In this work, the evolution of the 2018/19 El Ni?o was investigated.The 2018/19 El Ni?o is classified as a CP-I El Ni?o according to existing classification methods.However,heat budget analysis demonstrated that the development of the 2018/19 El Ni?o is mainly attributed to subtropical processes, which is the key feature of a CP-II El Ni?o.This apparent paradox results from the tortuous developing process of the 2018/19 El Ni?o, since both equatorial and offequatorial forcings were extensively involved.In early 2018,both the equatorial and subtropical conditions were favorable for the development of an El Ni?o event.While the favorable equatorial conditions faded and even reversed in boreal summer, the positive Ekman feedback caused by subtropical westerly anomalies kept the western-central Pacific SST increasing.Consequently, the subtropical factor took control of the development process and finally materialized a CP-II El Ni?o.It is illustrated that forcing factors from the equatorial and subtropical Pacific have the potential to promote an El Ni?o together, like the widely discussed 2015/16 El Ni?o(Huo and Xiao, 2016; Palmeiro et al., 2017).Although the influences of equatorial and off-equatorial forcing elements on the development of El Ni?o events have been discussed in previous studies (Yu et al., 2010; Chen et al., 2018; Yeh et al., 2018), their joint effect is seldom addressed.The findings of this study demonstrate that various driving forces may coexist in a particular El Ni?o event and play different roles in different stages.This is the reason for the inconsistency between the classification result and the evolution features of the 2018/19 El Ni?o.Such a hybrid situation is not considered in the existing classification approaches.To improve the classification, a more sophisticated method is needed.Perhaps the components of the CP-II index can be subdivided.Or in a more direct and mechanistic way, the contributions of the zonal and vertical advective feedbacks could be used; an understanding of their combined effect will help us better understand the complexity of ENSO diversity and improve ENSO prediction skill.

    The importance of wind anomalies in the northern subtropical Pacific is revealed in this work.Yet the source of these wind anomalies has not been clear.Previous studies have suggested that the North Pacific Oscillation (NPO,Rogers, 1981) and Pacific Meridional mode (PMM, Chiang et al., 2004) in the subtropical North Pacific play an important role in the onset of the CP El Ni?o (Yu and Kim, 2011; Yeh et al., 2015; Wang et al., 2019b).The westerly anomalies in the subtropical northern Pacific, which are demonstrated to be a crucial forcing for the 2018/19 El Ni?o in this study,are closely related to both the NPO and PMM.The impacts of the NPO and PMM on the generations of other CP El Ni?o events will be explored in a follow-up study.Another crucial element that affected the development of the 2018/19 El Ni?o is the reversal of the central equatorial wind anomalies from westerly to easterly in the boreal summer of 2018.This equatorial forcing element is likely to be a result of the large zonal SST anomaly (SSTA) gradient in the equatorial Pacific, which is associated with positive (negative)SSTA in the western (eastern) Pacific (Fig.S4, January-June).It is also suggested that the mean state of the Pacific(negative phase of the Pacific Decadal Oscillation /Interdecadal Pacific Oscillation) is favorable for the formation of the easterly anomalies in the tropical Pacific (Min et al.,2015; Hu and Fedorov, 2016).The interrelationship between these intraseasonal and decadal stimuli deserve further analysis.In addition, a coupled model will be needed to further quantify the effects of equatorial and off-equatorial forcings.

    Acknowledgements.This work is supported by the National Natural Science Foundation of China (Grant Nos.41925024 and 41876021), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB42000000), Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)(GML2019ZD0306), Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences(ISEE2021ZD01), and Natural Science Foundation of Shandong Province, China (Grant No.ZR2020QD065).

    Electronic supplementary material:Supplementary material is available in the online version of this article at https://doi.org/10.1007/s00376-022-1410-1.

    国产高潮美女av| 俺也久久电影网| 久久久精品大字幕| 久久久国产成人精品二区| 久久久国产成人免费| 久久综合国产亚洲精品| 免费黄网站久久成人精品| 九九热线精品视视频播放| 男女之事视频高清在线观看| 免费高清视频大片| 国产精品国产三级国产av玫瑰| АⅤ资源中文在线天堂| 天堂√8在线中文| 欧美性猛交╳xxx乱大交人| 欧美一区二区亚洲| 97在线视频观看| 日韩欧美免费精品| 亚洲精品在线观看二区| 女人十人毛片免费观看3o分钟| 男女之事视频高清在线观看| 亚洲成人久久性| 成年av动漫网址| 日韩欧美免费精品| avwww免费| 少妇熟女aⅴ在线视频| 日韩欧美精品免费久久| 日本精品一区二区三区蜜桃| 午夜福利在线在线| 人人妻人人看人人澡| 亚洲一区高清亚洲精品| 久久午夜福利片| 丰满的人妻完整版| 亚洲激情五月婷婷啪啪| 少妇熟女aⅴ在线视频| 黄色欧美视频在线观看| 亚洲七黄色美女视频| 1000部很黄的大片| 特级一级黄色大片| 能在线免费观看的黄片| 亚洲性夜色夜夜综合| 黄片wwwwww| eeuss影院久久| 午夜福利在线观看免费完整高清在 | 久久综合国产亚洲精品| 美女免费视频网站| 亚洲人成网站在线播放欧美日韩| 中文在线观看免费www的网站| 色综合站精品国产| 久久精品夜夜夜夜夜久久蜜豆| 波多野结衣高清无吗| 欧美绝顶高潮抽搐喷水| 午夜久久久久精精品| 麻豆成人午夜福利视频| 校园人妻丝袜中文字幕| 国产欧美日韩精品亚洲av| 蜜臀久久99精品久久宅男| 欧美激情久久久久久爽电影| av在线老鸭窝| 国产精品美女特级片免费视频播放器| 日本爱情动作片www.在线观看 | 51国产日韩欧美| 天天躁日日操中文字幕| 亚洲av成人av| 97人妻精品一区二区三区麻豆| 亚洲人成网站在线播放欧美日韩| 日韩在线高清观看一区二区三区| 欧美国产日韩亚洲一区| 51国产日韩欧美| 一边摸一边抽搐一进一小说| 变态另类丝袜制服| 草草在线视频免费看| 人妻丰满熟妇av一区二区三区| 国产亚洲精品久久久com| 免费高清视频大片| 国产爱豆传媒在线观看| 亚洲av五月六月丁香网| 国产精品电影一区二区三区| 午夜视频国产福利| 国产高清三级在线| 天堂影院成人在线观看| 国产v大片淫在线免费观看| 在线免费观看不下载黄p国产| 狂野欧美白嫩少妇大欣赏| 国产精品日韩av在线免费观看| 亚洲成人中文字幕在线播放| 亚洲精品日韩在线中文字幕 | 人妻久久中文字幕网| 三级毛片av免费| 乱系列少妇在线播放| 熟女人妻精品中文字幕| 91久久精品国产一区二区成人| av卡一久久| 欧美成人一区二区免费高清观看| 免费观看人在逋| 男女做爰动态图高潮gif福利片| 国产精品国产高清国产av| 成人欧美大片| 又黄又爽又刺激的免费视频.| av黄色大香蕉| 美女高潮的动态| 成人性生交大片免费视频hd| 一边摸一边抽搐一进一小说| 综合色丁香网| 丰满乱子伦码专区| 久久精品夜夜夜夜夜久久蜜豆| 99国产极品粉嫩在线观看| 久久精品91蜜桃| 亚洲色图av天堂| 久久久久久久久久成人| 亚洲丝袜综合中文字幕| 亚洲不卡免费看| 久久99热6这里只有精品| 1024手机看黄色片| 1024手机看黄色片| а√天堂www在线а√下载| 亚洲精品国产成人久久av| 国产成人福利小说| 久久久精品欧美日韩精品| 亚洲精品色激情综合| 亚洲精品在线观看二区| 国产免费一级a男人的天堂| 国产精品1区2区在线观看.| 欧美人与善性xxx| 看片在线看免费视频| 成人一区二区视频在线观看| 十八禁国产超污无遮挡网站| 久久精品国产鲁丝片午夜精品| 美女高潮的动态| 久久韩国三级中文字幕| 女人十人毛片免费观看3o分钟| 男女视频在线观看网站免费| 亚洲国产欧美人成| 国产av不卡久久| avwww免费| 亚洲成人久久性| 国内少妇人妻偷人精品xxx网站| 99国产极品粉嫩在线观看| 国产女主播在线喷水免费视频网站 | 国产精品,欧美在线| 少妇人妻一区二区三区视频| 欧美又色又爽又黄视频| 99久久久亚洲精品蜜臀av| 免费观看在线日韩| 在线a可以看的网站| h日本视频在线播放| 看免费成人av毛片| 天天一区二区日本电影三级| 日日摸夜夜添夜夜添av毛片| a级一级毛片免费在线观看| 免费观看精品视频网站| 日韩大尺度精品在线看网址| 乱码一卡2卡4卡精品| av黄色大香蕉| 乱码一卡2卡4卡精品| 国产综合懂色| 成人永久免费在线观看视频| 成人精品一区二区免费| 男人和女人高潮做爰伦理| 好男人在线观看高清免费视频| 久久韩国三级中文字幕| 国产高清有码在线观看视频| 综合色丁香网| 成人午夜高清在线视频| 一个人观看的视频www高清免费观看| 一区二区三区四区激情视频 | 午夜亚洲福利在线播放| 欧美成人一区二区免费高清观看| 听说在线观看完整版免费高清| 日本爱情动作片www.在线观看 | 天天一区二区日本电影三级| 国产精品人妻久久久久久| 国产免费男女视频| 日本三级黄在线观看| 亚洲最大成人手机在线| 久99久视频精品免费| 综合色丁香网| 亚洲熟妇熟女久久| 一级a爱片免费观看的视频| 日本 av在线| 国产精品av视频在线免费观看| 久久亚洲精品不卡| 国内揄拍国产精品人妻在线| 看非洲黑人一级黄片| 少妇丰满av| 菩萨蛮人人尽说江南好唐韦庄 | 国产欧美日韩精品亚洲av| 国产伦精品一区二区三区视频9| 深夜精品福利| 精品免费久久久久久久清纯| 99九九线精品视频在线观看视频| 精品久久久久久久久av| 国产精品一区二区三区四区久久| 波多野结衣高清作品| 国产亚洲91精品色在线| 国产精品爽爽va在线观看网站| 最后的刺客免费高清国语| 成年免费大片在线观看| 大又大粗又爽又黄少妇毛片口| 中文字幕av在线有码专区| 色5月婷婷丁香| av福利片在线观看| 国内少妇人妻偷人精品xxx网站| av国产免费在线观看| 午夜福利18| 五月伊人婷婷丁香| 国产精品一区二区三区四区久久| 乱人视频在线观看| av在线播放精品| 亚洲欧美日韩卡通动漫| 国产成人影院久久av| 成人性生交大片免费视频hd| 少妇熟女欧美另类| 国产精品永久免费网站| 免费av观看视频| 国产又黄又爽又无遮挡在线| 亚洲av成人精品一区久久| 精品久久久久久久人妻蜜臀av| 国产成人一区二区在线| 人妻制服诱惑在线中文字幕| 国产精品1区2区在线观看.| 精品熟女少妇av免费看| 精品一区二区三区人妻视频| 国产免费一级a男人的天堂| 91午夜精品亚洲一区二区三区| 亚洲欧美日韩无卡精品| 99热网站在线观看| 久久人人爽人人爽人人片va| 嫩草影院精品99| 狠狠狠狠99中文字幕| 97热精品久久久久久| 精品人妻熟女av久视频| 性欧美人与动物交配| 欧美国产日韩亚洲一区| 免费观看精品视频网站| av在线亚洲专区| 国产高清不卡午夜福利| 日韩精品青青久久久久久| 美女大奶头视频| 国产精品一及| 亚洲性夜色夜夜综合| 午夜免费激情av| 午夜精品国产一区二区电影 | 成人综合一区亚洲| 中国美白少妇内射xxxbb| 亚洲成人av在线免费| 国产精品久久久久久亚洲av鲁大| 久久人人精品亚洲av| 国产精品国产三级国产av玫瑰| 欧美性猛交╳xxx乱大交人| 亚洲精品久久国产高清桃花| 久久99热6这里只有精品| 国产大屁股一区二区在线视频| 亚洲精华国产精华液的使用体验 | 亚洲成av人片在线播放无| 国产精品亚洲美女久久久| 国产高清不卡午夜福利| 精品人妻偷拍中文字幕| 日韩中字成人| 免费av毛片视频| 综合色丁香网| a级毛色黄片| 99热这里只有精品一区| 久久久a久久爽久久v久久| 午夜日韩欧美国产| 亚洲欧美日韩东京热| 国产极品精品免费视频能看的| 日产精品乱码卡一卡2卡三| 久久精品国产清高在天天线| 激情 狠狠 欧美| 成人无遮挡网站| aaaaa片日本免费| 最近最新中文字幕大全电影3| 欧美高清成人免费视频www| 亚洲精品一卡2卡三卡4卡5卡| 国产三级中文精品| 男女做爰动态图高潮gif福利片| 波多野结衣高清作品| 国产高清有码在线观看视频| 国产真实乱freesex| 蜜桃久久精品国产亚洲av| 久久久久久久久中文| 国产亚洲精品久久久久久毛片| 亚洲精品亚洲一区二区| 日韩欧美一区二区三区在线观看| 国产一区二区三区在线臀色熟女| 亚洲va在线va天堂va国产| 免费看日本二区| 99久久精品一区二区三区| 精品福利观看| 大型黄色视频在线免费观看| 天堂动漫精品| av卡一久久| 国产69精品久久久久777片| 日韩成人伦理影院| 伦理电影大哥的女人| 日韩一本色道免费dvd| 色噜噜av男人的天堂激情| АⅤ资源中文在线天堂| 岛国在线免费视频观看| 久久九九热精品免费| 欧美另类亚洲清纯唯美| 欧美日本视频| 欧美bdsm另类| 嫩草影院入口| 美女高潮的动态| 中文字幕久久专区| 三级男女做爰猛烈吃奶摸视频| 亚洲成人中文字幕在线播放| 噜噜噜噜噜久久久久久91| 国产精品一区www在线观看| 可以在线观看的亚洲视频| 国产成人a区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品夜夜夜夜夜久久蜜豆| 嫩草影院精品99| 久久久久国内视频| 成熟少妇高潮喷水视频| a级一级毛片免费在线观看| 在线a可以看的网站| 精品人妻视频免费看| 露出奶头的视频| 国产黄色视频一区二区在线观看 | 日本黄色视频三级网站网址| 日韩欧美精品v在线| 97在线视频观看| 99久国产av精品国产电影| 一卡2卡三卡四卡精品乱码亚洲| 看黄色毛片网站| 你懂的网址亚洲精品在线观看 | 毛片女人毛片| 内地一区二区视频在线| 不卡视频在线观看欧美| 自拍偷自拍亚洲精品老妇| 麻豆国产97在线/欧美| 久久九九热精品免费| 天堂影院成人在线观看| 人人妻人人澡人人爽人人夜夜 | 国产探花在线观看一区二区| 在线a可以看的网站| 日韩精品有码人妻一区| 69av精品久久久久久| 女的被弄到高潮叫床怎么办| 亚洲国产日韩欧美精品在线观看| 亚洲中文字幕一区二区三区有码在线看| 九九久久精品国产亚洲av麻豆| 成人午夜高清在线视频| 成人二区视频| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩在线观看h| 我要搜黄色片| 成年女人毛片免费观看观看9| 内射极品少妇av片p| 亚洲精品成人久久久久久| 欧美性猛交黑人性爽| 在线观看午夜福利视频| 久久久久久久亚洲中文字幕| 国产极品精品免费视频能看的| 欧美精品国产亚洲| 午夜精品在线福利| 成人综合一区亚洲| 精品人妻偷拍中文字幕| or卡值多少钱| 韩国av在线不卡| 99精品在免费线老司机午夜| 91午夜精品亚洲一区二区三区| 欧美性猛交╳xxx乱大交人| 国产精品久久久久久久久免| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 丰满乱子伦码专区| 国产精品美女特级片免费视频播放器| 一本精品99久久精品77| 国产视频一区二区在线看| 精品乱码久久久久久99久播| 国产精品久久视频播放| 亚洲专区国产一区二区| 欧美日韩精品成人综合77777| 欧美日韩乱码在线| 中出人妻视频一区二区| 国产成人freesex在线 | 六月丁香七月| 在线播放国产精品三级| 99视频精品全部免费 在线| 日韩精品青青久久久久久| 亚洲欧美成人综合另类久久久 | 露出奶头的视频| 99国产精品一区二区蜜桃av| 免费观看的影片在线观看| 99热这里只有是精品在线观看| 国产乱人偷精品视频| 国产精品电影一区二区三区| 九九在线视频观看精品| 草草在线视频免费看| 俺也久久电影网| 黄色欧美视频在线观看| 免费av不卡在线播放| 久久久久久伊人网av| 午夜免费激情av| 淫妇啪啪啪对白视频| 寂寞人妻少妇视频99o| 日韩三级伦理在线观看| 男插女下体视频免费在线播放| 午夜精品一区二区三区免费看| 国产女主播在线喷水免费视频网站 | 黄片wwwwww| 国产成人a∨麻豆精品| 色综合亚洲欧美另类图片| av在线播放精品| 别揉我奶头 嗯啊视频| 国产黄片美女视频| 国产精品,欧美在线| 日本黄色片子视频| 欧美日韩一区二区视频在线观看视频在线 | 国产高清视频在线播放一区| 激情 狠狠 欧美| 久久人人爽人人片av| 搞女人的毛片| avwww免费| 国产成人影院久久av| 久久久精品大字幕| 在线观看av片永久免费下载| 中国国产av一级| 一级av片app| 国产精品1区2区在线观看.| 亚洲一级一片aⅴ在线观看| 99在线视频只有这里精品首页| 亚洲av中文字字幕乱码综合| 亚洲真实伦在线观看| 岛国在线免费视频观看| 尤物成人国产欧美一区二区三区| 日本黄色视频三级网站网址| 少妇的逼好多水| 亚洲国产色片| 91在线观看av| 一a级毛片在线观看| 午夜免费激情av| 亚洲av中文字字幕乱码综合| 无遮挡黄片免费观看| 天天躁日日操中文字幕| 久久久久久久亚洲中文字幕| 欧美一级a爱片免费观看看| 中文亚洲av片在线观看爽| 国产黄a三级三级三级人| 高清毛片免费看| 99热6这里只有精品| 成人亚洲欧美一区二区av| 女人十人毛片免费观看3o分钟| 淫妇啪啪啪对白视频| 国产精品无大码| 亚洲精品久久国产高清桃花| 亚洲中文日韩欧美视频| 国产伦精品一区二区三区视频9| 精品人妻熟女av久视频| 免费无遮挡裸体视频| 国产黄a三级三级三级人| 女的被弄到高潮叫床怎么办| 亚洲一区二区三区色噜噜| 国产一区二区激情短视频| 欧美成人精品欧美一级黄| 三级国产精品欧美在线观看| 一个人免费在线观看电影| 丝袜喷水一区| 村上凉子中文字幕在线| 欧美成人一区二区免费高清观看| 可以在线观看毛片的网站| 国产真实伦视频高清在线观看| 国产黄色视频一区二区在线观看 | 插阴视频在线观看视频| 国产欧美日韩精品一区二区| 亚洲成人中文字幕在线播放| 国产亚洲av嫩草精品影院| 国产精品不卡视频一区二区| 精品国产三级普通话版| 乱系列少妇在线播放| 国产精品一区二区三区四区免费观看 | 国产一区二区在线av高清观看| 91精品国产九色| 不卡一级毛片| 我要搜黄色片| 日本一本二区三区精品| 亚洲乱码一区二区免费版| 午夜免费激情av| 欧美日韩国产亚洲二区| 久久久久久伊人网av| 一级黄片播放器| 在线观看免费视频日本深夜| 久久久精品欧美日韩精品| 又爽又黄a免费视频| 人人妻,人人澡人人爽秒播| 国产精品久久视频播放| 18+在线观看网站| 99热网站在线观看| 国产亚洲欧美98| 国产亚洲精品久久久久久毛片| 成人漫画全彩无遮挡| 国产色爽女视频免费观看| 午夜福利18| 亚洲人与动物交配视频| 国产亚洲精品久久久久久毛片| 噜噜噜噜噜久久久久久91| 精品一区二区三区av网在线观看| 色噜噜av男人的天堂激情| 老司机午夜福利在线观看视频| 免费在线观看影片大全网站| 午夜福利在线观看吧| 国产精品不卡视频一区二区| 亚洲三级黄色毛片| 在线观看一区二区三区| 在线免费观看不下载黄p国产| 插逼视频在线观看| 两个人视频免费观看高清| 国产激情偷乱视频一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 色av中文字幕| 成人av一区二区三区在线看| 18禁在线无遮挡免费观看视频 | 波多野结衣高清作品| 人妻久久中文字幕网| 91午夜精品亚洲一区二区三区| 天天躁日日操中文字幕| 国产伦一二天堂av在线观看| 亚洲欧美成人综合另类久久久 | 成人三级黄色视频| 老司机福利观看| 国产一区二区在线观看日韩| 国产精品久久电影中文字幕| 国产乱人视频| 国产av不卡久久| 日韩欧美国产在线观看| 亚洲在线观看片| 久久精品久久久久久噜噜老黄 | 全区人妻精品视频| 一区二区三区四区激情视频 | 国产欧美日韩精品一区二区| 一区二区三区高清视频在线| 日韩强制内射视频| 欧美极品一区二区三区四区| 欧美又色又爽又黄视频| 亚洲av免费高清在线观看| 在线a可以看的网站| av视频在线观看入口| 欧美人与善性xxx| 嫩草影院精品99| 亚洲中文日韩欧美视频| АⅤ资源中文在线天堂| 十八禁国产超污无遮挡网站| 久久久成人免费电影| 人妻久久中文字幕网| 2021天堂中文幕一二区在线观| 简卡轻食公司| 国内精品美女久久久久久| 99riav亚洲国产免费| 欧美最新免费一区二区三区| 亚洲av熟女| 亚洲欧美日韩东京热| 久久综合国产亚洲精品| 亚洲丝袜综合中文字幕| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 免费看a级黄色片| 少妇人妻精品综合一区二区 | 色尼玛亚洲综合影院| 精品久久久久久久久亚洲| 麻豆av噜噜一区二区三区| 嫩草影视91久久| 在现免费观看毛片| 永久网站在线| 国产成人影院久久av| 99视频精品全部免费 在线| 一边摸一边抽搐一进一小说| 亚洲色图av天堂| 一区二区三区四区激情视频 | 99精品在免费线老司机午夜| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩高清在线视频| 一进一出好大好爽视频| 日本三级黄在线观看| 婷婷六月久久综合丁香| 日本在线视频免费播放| 成人国产麻豆网| 午夜精品国产一区二区电影 | videossex国产| 网址你懂的国产日韩在线| 丝袜美腿在线中文| 大香蕉久久网| 久久6这里有精品| 少妇高潮的动态图| 欧美zozozo另类| 免费无遮挡裸体视频| 夜夜爽天天搞| 婷婷精品国产亚洲av| 亚洲高清免费不卡视频| 网址你懂的国产日韩在线| 99久久无色码亚洲精品果冻| 搞女人的毛片| 国产高清有码在线观看视频| 国产探花在线观看一区二区| 日韩精品青青久久久久久| 亚洲精品国产av成人精品 | 99国产极品粉嫩在线观看| 亚洲av免费高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 99热只有精品国产| 男人狂女人下面高潮的视频| 欧美日韩一区二区视频在线观看视频在线 | 校园人妻丝袜中文字幕| 联通29元200g的流量卡| 美女大奶头视频| 国产美女午夜福利| 你懂的网址亚洲精品在线观看 | 国产精品久久视频播放| av在线亚洲专区| 久久人人爽人人爽人人片va|