• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    配位競爭策略制備的兩個鎂基金屬有機骨架及其選擇性CO2捕集

    2023-02-03 10:23:22董雨奧朱敦如
    無機化學(xué)學(xué)報 2023年1期
    關(guān)鍵詞:化工學(xué)院南京大學(xué)配位

    董雨奧 馮 哲 朱敦如*,,2

    (1南京工業(yè)大學(xué)化工學(xué)院,材料化學(xué)工程國家重點實驗室,南京 211816)

    (2南京大學(xué)配位化學(xué)國家重點實驗室,南京 210023)

    Recently, porous metal?organic frameworks(MOFs)have attracted much attention in recent two decades because of their potential applications in many areas including gas separation,catalysis,and proton conduction[1?4].In particular,the potential utility of MOFs in gas storage and gas separation of important industrial gases such as CO2/CH4,C2,and C3hydrocar?bons has been demonstrated[5?8].This is because of the designability and tunability of functional sites and the pore size/shape of MOF materials[9].To efficiently con?struct MOFs for gas storage and related applications,a better understanding of the function and connectivity of the ligands is important.For instance,Kitagawa et al.developed a solid solution strategy via a fine ligand matrix for gate opening of the flexible MOFs[10?11].Bai and co?workers reported a series of highly porous MOFs based on the ligands with inserting amide group for selective CO2capture[12?13].Notably,some workers prefer to adopt two or more ligands for preparing 3D porous MOFs[14].However,understanding the coordina?tion competition between these ligands,particularly for the matrix with sharply different sizes,remains a diffi?culty since the complex reactions and self?assembly of building blocks occur almost simultaneously.

    To study the coordination competition,the selec?tion of suitable solvents is important as they act as the media to dissolve the ligands and metal salts or as the templates to induce the self?assembly of the metal salts and ligands[15].In addition,solvents may also work as a co ?ligand to take part in coordination[16?17].However,some solvents may be subjected to decompose under hydrothermal conditions[3].For example,N,N?dimethyl?formamide(DMF),a commonly used solvent for hydro?thermal reactions,often decomposes to the dimethyl?amine cation and formate anion under solvothermal conditions.It is worthwhile to note that the dimethyl?amine cation can be used for the charge balance of the negative MOF network[4,18],while the small HCO2-anion can be applied as the ligand for thein?situsyn?thesis of MOFs.Inspired by these observations,herein we report two Mg?MOFs via coordination competitive strategy(Scheme 1).The HCO2-anions generated from DMF decomposition reacted directly with Mg2+to form a 3Ddiatopological MOF,[Mg3(HCO2)6]·DMF(1).However,under the same conditions but with a compet?ing ligand H4L(1,1′∶3′,1″?terphenyl?3,3″,5,5″?tetracar?boxylic acid),a new 3Dsratopological Mg?MOF,[Mg2(L)(H2O)3]·2H2O·2CH3CN·DMF(2),was obtained.This result indicates that the short formic acid cannot meet the coordination requirement of Mg2+when a large?sized ligand H4L is involved.Gas adsorption stud?ies reveal that 1 has a good ability for selective CO2capture from CH4contained mixture.

    Scheme 1 Syntheses of two Mg?MOFs based on coordination competitive strategy

    1 Experimental

    1.1 Materials and methods

    All commercially available chemicals were of ana?lytical grade and used without further purification.H4L was purchased from Shanghai Kaiyulin Pharmaceutical Co.,Ltd.The C,H,and N elemental analyses were per?formed on a PerkinElmer 240 micro analyzer.The FT?IR spectra were performed on a Nicolet 380 FT?IR spectrometer with KBr pellets.Powder X?ray diffrac?tion(PXRD)data were collected on a Bruker D8 Advance diffractometer under CuKαradiation(λ=0.154 06 nm)at 40 kV and 30 mA in a range of 5°?40°.Thermogravimetric analysis(TGA)was carried out on a NETZSCH STA 449C thermal analyzer under an N2atmosphere with a heating rate of 10℃·min-1.

    1.2 Synthesis of MOF 1

    Mg(NO3)2·6H2O(1.08 g,4.21 mmol)and HNO3(0.25 mL)were added into a mixed solution(7 mL)of DMF and CH3CN(5∶1,V/V)and stirred forca.10 min at room temperature(RT).The solution was transferred and sealed in a 20 mL Teflon?lined autoclave,and then heated at 110℃for 48 h.After cooling to RT,colorless crystals of 1 were isolated by filtration,washed with ethanol,and dried in air.Yield:39.2% (based on Mg2+).Anal.Calcd.for C9H13Mg3NO13(% ):C,25.98;H,3.15;N,3.37.Found(% ):C,25.81;H,3.01;N,3.25.FT?IR(KBr discs,cm-1):1 674(s),1 609(vs),1 353(s),1 096(w),709(m).

    1.3 Synthesis of MOF 2

    Mg(NO3)2·6H2O(10.8 mg,0.042 mmol),H4L(8.5 mg,0.021 mmol),and HNO3(10 μL)were added into a mixed solution(1.5 mL)of DMF and CH3CN(5∶1,V/V)and stirred forca.10 min at RT.The solution was transferred and sealed in a 10 mL Teflon?lined auto?clave,and then heated at 110℃for 48 h.After cooling to RT,colorless crystals of 2 were isolated by filtration,washed with DMF,and dried in air.Yield:15.3% (based on H4L).Anal.Calcd.for C29H33Mg2N3O14(% ):C,50.03;H,4.78;N,6.36.Found(% ):C,50.25;H,4.61;N,6.22.FT?IR(KBr discs,cm-1):3 443(w),2 931(w),1 663(s),1 506(w),1 398(s),1 252(w),1 100(m),1 021(m),952(w),862(w),770(m),732(s).

    1.4 Crystal structure determination

    The crystal data of the MOFs were measured on a Bruker Smart Apex Ⅱ CCD diffractometer at 298 K using graphite monochromated MoKαradiation(λ=0.071 073 nm).Data reduction was made with the Bruker Saint program.The structure was solved by direct methods and refined with the full?matrix least squares technique using the SHELXTL package[19].The coordinates of the non?hydrogen atoms were refined anisotropically,and all the hydrogen atoms were put in calculated positions or located from the Fourier maps.DMF molecule was disordered over two sites and refined with an occupancy of 0.685(17)for C7?C9,N1,O13 and 0.315(17)for C7A?C9A,N1A,and O13A.The crystallographic data are listed in Table 1,and selected bond lengths are given in Table 2.

    Table 1 Crystal data and structure refinements for MOFs 1 and 2

    Continued Table 1

    Table 2 Selected bond distances(nm)for MOFs 1 and 2

    CCDC:2194650,1;2202252,2.

    1.5 Sample activation

    The ethanol?exchanged samples were prepared by immersing as?synthesized crystals in ethanol for 3 d to remove the DMF solvent,and the extract was decanted every 8 h and fresh ethanol was replaced.The com?pletely activated sample was obtained by heating the ethanol?exchanged sample at 120 ℃ for 24 h under a dynamic high vacuum.

    1.6 Gas adsorption experiments

    In the gas sorption measurements,ultra?high?purity grade N2,CH4(>99.999% ),and CO2gases(99.995% )were used throughout the adsorption experiments.Low?pressure N2,CO2,and CH4adsorption measurements were performed on Micromeritics ASAP 2020 M+C sur?face area analyzer.Helium was used for the estimation of the dead volume,assuming that it is not adsorbed at any of the studied temperatures.The pore size distribu?tion was obtained from the DFT method in the Micromeritics ASAP2020 software package based on the N2sorption at 77 K.

    1.7 High?pressure gravimetric gas sorption measurements

    High?pressure adsorption of CO2and CH4was measured using an IGA?003 gravimetric adsorption instrument(Hiden?Isochema,UK)over a pressure range of 0?2 000 kPa at 273 and 298 K,respectively.Before measurements,about 120 mg ethanol?exchanged samples were loaded into the sample basket within the adsorption instrument and then degassed under high vacuum at 130℃for 20 h to obtain about 65 mg fully desolvated samples.At each pressure,the sample mass was monitored until equilibrium was reached(within 25 min).

    1.8 Gas selectivity

    Ideal adsorption solution theory(IAST)was used to predict binary mixture adsorption from the experi?mental pure?gas isotherms[20?21].To perform the integra?tions required by IAST,the single?component iso?therms should be fitted by a proper model.There is no restriction on the choice of the model to fit the adsorp?tion isotherm,but data over the pressure range under study should be fitted very precisely.The dual?site Langmuir?Freundlich equation was used to fit the experimental data:

    wherepis the pressure of the bulk gas at equilibrium with the adsorbed phase(kPa);qis the adsorbed amount of the adsorbent(mol·kg-1);qm1andqm2are the saturation capacities(mol·kg-1)of sites 1 and 2,respec?tively;b1andb2are the affinity coefficients(kPa-1)of sites 1 and 2,respectively;andn1andn2represent the deviations from an ideal homogeneous surface.TheR2values for all the fitted isotherms were over 0.999 97.Hence,the fitted isotherm parameters were applied to perform the necessary integrations in IAST.

    1.9 Estimation of the isosteric heats of gas adsorption

    A virial?type expression comprising the temperature?independent parametersaiandbiwas employed to calculate the enthalpies of adsorption for CH4and CO2(at 273 and 298 K)on 1.In each case,the data were fitted using the following equation:

    wherepis the pressure(Torr),Nis the adsorbed amount(mmol·g-1),Tis the temperature(K),aiandbiare virial coefficients,andmandnrepresent the num?ber of coefficients required to adequately describe the isotherms(mandnwere gradually increased until the contribution of extra addedaandbcoefficients were deemed to be statistically insignificant towards the overall fit,and the average value of the squared devia?tions from the experimental ones was minimized).

    whereQstis the coverage?dependent isosteric heat of adsorption andRis the universal gas constant.

    2 Results and discussion

    2.1 Synthesis and structural characterization

    Under solvothermal conditions,MOF 1 was syn?thesized by adding only Mg(NO3)2·6H2O to DMF/CHCN solution in the presence of HNO.The HCO-332ligand comes from the decomposition of DMF at high temperature,autoclave high pressure,and special acid?ic conditions.This simple synthetic approach is quite different from the reported methods earlier for the for?mate?based MOFs(Mn2+,Co2+,and Ni2+)in which the HCO2H was directly used as an organic linker[22?26].In addition,the present synthetic route can be easily scaled up to prepare MOF 1 in gram grade at a time.Under the same condition,MOF 2 was prepared after adding H4L and Mg(NO3)2·6H2O to DMF/CH3CN solu?tion in the presence of HNO3.

    Although the crystal structure of MOF 1 is known[25],the synthetic methods are quite different.1 crystallizes in the monoclinicP21/nspace group(Fig.1,Table 1),which is also different from another formate?based Mg?MOF with thePbcnspace group[26].Of partic?ular interest is that there is a pentanuclear Mg5cluster consisting of Mg1,Mg2,Mg3,Mg3i,and Mg4 ions,which can be viewed as a[Mg4@Mg2]tetrahedron with the Mg2 ion in the center to act as a secondary building unit(SBU).The SBUs are further connected by the for?mate anions to form a neutral 3Ddianet topology(Fig.1e).1 possesses 1D channels along theb?axis with a diameter of about 0.44 nm(Fig.1d).The channels are filled with DMF molecules,which form two intermolec?ular hydrogen bonds with the H atoms of HCO2-anions(C2…O13 0.354 6(2)nm,C5iii…O13 0.313 1(2)nm,Fig.S1,Supporting information).Interestingly,all the H atoms of HCO2-anions point to the channels in 1(Fig.S2),which may also provide strong interactions with CO2after removing the DMF,reflecting high selective CO2capture.

    Fig.1 Structure of MOF 1:(a)OPTEP drawing of the asymmetric unit with 50% thermal ellipsoids probability;(b)a pentanuclear Mg5cluster consisting of Mg1?Mg3,Mg3i,and Mg4 ions;(c)a[Mg4@Mg2]tetrahedron with the Mg2 ion in the center;(d)1D channels along the b?axis with a diameter of about 0.44 nm;(e)corresponding dia topology

    MOF 2 crystallizes in the monoclinicP21/cspace group with relatively large unit cell parameters.In this asymmetric unit,two Mg2+ions,one L4-ligand,and three coordinated water molecules are observed(Fig.2a,Table 1).However,the HCO2-anion was not observed in 2,despite that the synthetic condition was the same as that of 1.This result demonstrates that there is a coordination competition between H4L and formate acid.The small?sized formate ions cannot meet the coordination requirements of Mg2+in the presence of a large?sized H4L ligand.Further analysis shows that the Mg?O distances in both 1 and 2 are all in a normal range(0.196 4(4)?0.228 4(4)nm).In MOF 2,each L4-ligand is connected by six Mg2+ions with a distorted[MgO6]octahedron.Due to the chelate coordination nature of two carboxylate groups in L4-,two Mg2+ions can be viewed as a binuclear cluster,which is bridged by four different L4-ions.Interestingly,this connection mode makes 2 show the obvious 1D channels with dumbbell window aperture along thea?axis.The win?dow size is 1.42 nm(Fig.2d).Further packing of these channels forms a 3D porous framework(Fig.2e).To better understand this structure,topology analysis was performed.Each L4-linker can be viewed as a 4?connected node(Fig.2b)and the binuclear Mg2cluster can be described as another 4?connected node(Fig.2c).Thus,2 shows a 3Dsratopology[27?29].In addition,the ideal porosity of 2 is as high as 49.2% ,making it a highly porous MOF material.

    Fig.2 Structure of MOF 2:(a)OPTEP drawing of the asymmetric unit with 30% thermal ellipsoids probability;(b)connection of L4-;(c)connection of Mg2cluster;(d)a twisted window aperture along the a?axis with a size of 1.42 nm;(e)packing view of the 3D framework;(f)corresponding sra topology

    PXRD patterns of as?synthesized samples were in good agreement with their simulated results,revealing the high purity of the bulk products(Fig.3a).Addition?ally,activated 1 possessed identical PXRD peaks to the simulated ones,indicating good framework stability of activated 1.However,after guest removal,nearly no diffraction peaks were observed on activated 2(Fig.3b),reflecting that the framework of 2 collapses.In addi?tion,the TGA curve of 1 shows that the weight loss of 18.0% between RT and 200℃can be assigned to the removal of one DMF molecule(Calcd.17.6% ,Fig.3c).For 2,the first weight loss of 28.2% from RT to 145℃is ascribed to the removal of two CH3CN molecules,two lattice water molecules and one DMF molecule(Calcd.27.5% ).The second weight loss of 7.1% until 245℃is ascribed to the loss of three coordinated water molecules(Calcd.7.8% ,Fig.3d).Compared with the decomposition temperatures of 390℃for 1 and 300℃for 2,it is worthwhile to note that the short linker pre?fers to form a more stable porous MOF material.

    Fig.3 PXRD patterns(a,b)and TGA curves(c,d)of MOFs 1 and 2

    2.2 Pore evaluation and single gas adsorption

    The permanent micro?porosity of MOFs 1 and 2 was evaluated by N2adsorption isotherm at 77 K(Fig.4a and S3).The N2adsorption isotherm of 1 shows a quick uptake with a type?Ⅰ behavior at low pressure and a total uptake of 104.5 cm3·g-1atp/p0=1.The Brunauer?Emmett?Teller(BET)and Langmuir surface areas were calculated to be 342 and 378 m2·g-1,respec?tively.As shown in Fig.4b,the pore size centered at about 0.40 nm,which was very close to the value deter?mined from the crystal structure(Fig.1d).However,nearly negligible uptake was found in 2,which agrees with the decomposition of the framework after the removal of guest(Fig.3b).

    Due to the micro?porosity of MOF 1,pure gas?component sorption isotherms of CO2and CH4were collected at 273 and 298 K,respectively(Fig.4c).With reversible type?Ⅰ isotherms,1 exhibited a higher CO2uptake(mass fraction)of 2.4% (0.53 mmol·g-1)at 298 K and 15 kPa,the partial pressure of CO2in the flue gas.This value was higher than that of NJU?Bai50(2.11% )[27],FZU(2.01% )[30]and approaching to that of ZIF?78(3.3% )[31].Interestingly,by reducing the adsorp?tion temperature to 273 K,the uptake at 15 kPa increased by more than two times(5.3% ),which makes 1 a good CO2collector.In addition,the excess CO2uptake reached 11.7% (2.6mmol·g-1)at 273 K and 100 kPa,while the unsaturation CO2uptake was as high as 17.2% (3.9 mmol·g-1)at 2 000 kPa.With a nearly similar adsorption trend,the maximum CO2uptake was about 14.7% at 298 K and 2 000 kPa.Although the CO2uptake at 2 000 kPa was limited by the volume of the micropore,the uptake value of 1 at 100 kPa was higher than those of the known micropo?rous MOFs[32].However,corresponding CH4uptakes of 1 at 2 000 kPa were only 4.4% at 273 K and 4.0% at 298 K.This adsorption difference indicates the high potential of 1 for selective CO2capture from CH4?contained mixture.

    Fig.4 (a)N2adsorption isotherms of MOF 1 at 77 K;(b)Pore size distribution of 1;(c)Single gas adsorption isotherms of 1;(d)IAST selectivity of 1;(e)Qstof 1 for CO2and CH4;(f)PXRD patterns of treated 1

    The unique CO2adsorption isotherms encouraged us to further examine the capacity of MOF 1 for the selective capture of CO2/CH4at 298 K.IAST was employed to predict multi?component adsorption behaviors from the experimental pure?gas isotherms.The predicted adsorption selectivity in 1 as a function of bulk pressure is presented in Fig.4d,S4,and S5.The equimolar selectivity of CO2over CH4was very sensitive to the loading,which showed two steps in the changes of selectivity:a quick decrease from 11 to 5.2 at the low?pressure region and a slow increase from 5.2 to 6.6 following the increased pressure.Interestingly,the CO2/CH4selectivity was also sensitive to the gas ratio,particularly at high pressure.The higher the CO2concentration was,the higher selectivity was.To under?stand these results,the adsorption enthalpies were calculated by the virial method(Fig.S6 and S7).1 exhibited a strong binding affinity(33.5 kJ·mol-1)for CO2at zero coverage,and the enthalpy of adsorption increased to 36.5 kJ·mol-1at about 500 kPa.The initial high value indicates that there are interactions between the H atom of the HCO2-ion and CO2mole?cule,while the increased values stem from pressure?driven CO2…CO2interactions.However,1 had a rela?tively low enthalpy of adsorption(21.5 kJ·mol-1)for CH4.

    Moreover,the framework structure of MOF 1 after the adsorption measurements and water treatment for one month was still kept,confirmed by the PXRD pat?terns(Fig.4f).The convenient synthesis,high stability towards the water,good selectivity,and facile regenera?tion make 1 a promising porous MOF material for the separation of CO2and CH4for long?term use.

    3 Conclusions

    In summary,two Mg?based MOFs 1 and 2 were prepared by using a coordination competition strategy between formic acid generated from the decomposition of DMF and 1,1′∶3′,1″?terphenyl?3,3″,5,5″?tetracarbox?ylic acid.MOF 1 possesses a 3Ddiatopological net?work and has a 1D channel,while MOF 2 has a unique binuclear Mg2cluster,yielding a 3Dsratopology net?work.These results demonstrate that ligands with the same coordinating groups and different sizes are diffi?cult to be compatible with when reacting with Mg2+ions.In addition,with good water stability,1 exhibited quick CO2uptake and good selectivity for CO2/CH4sep?aration in a wide pressure range at 298 K.This work permits us to envision that coordination competition strategy may be an important method for the design and preparation of MOF materials in the future.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    化工學(xué)院南京大學(xué)配位
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    我校黨委書記柴林一行赴南京大學(xué)交流學(xué)習(xí)
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    [Zn(Hcpic)·(H2O)]n配位聚合物的結(jié)構(gòu)與熒光性能
    《南京大學(xué)學(xué)報數(shù)學(xué)半年刊》征稿簡則
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    德不配位 必有災(zāi)殃
    《化工學(xué)報》贊助單位
    Comprendre et s'entendre
    échange humain sous le contexte de la mondialisation
    国产一区二区激情短视频| 午夜精品在线福利| 女人十人毛片免费观看3o分钟| 岛国毛片在线播放| 又黄又爽又刺激的免费视频.| 中文字幕人妻熟人妻熟丝袜美| 亚洲图色成人| 精品人妻一区二区三区麻豆| 国产成人a区在线观看| 联通29元200g的流量卡| 青春草视频在线免费观看| 久久久久久久久中文| 不卡视频在线观看欧美| 日本黄色视频三级网站网址| ponron亚洲| 亚洲激情五月婷婷啪啪| 亚洲成人精品中文字幕电影| 欧美bdsm另类| 国产成年人精品一区二区| 麻豆国产97在线/欧美| 成人漫画全彩无遮挡| 亚洲av熟女| а√天堂www在线а√下载| 99riav亚洲国产免费| 能在线免费观看的黄片| 人妻少妇偷人精品九色| 欧美xxxx性猛交bbbb| 国产v大片淫在线免费观看| 亚洲人成网站在线播| 成人美女网站在线观看视频| eeuss影院久久| 人人妻人人澡欧美一区二区| 亚洲成人中文字幕在线播放| 99久久中文字幕三级久久日本| 床上黄色一级片| av在线播放精品| 日日摸夜夜添夜夜爱| 99久久无色码亚洲精品果冻| 高清毛片免费观看视频网站| 亚洲欧美日韩高清专用| 午夜激情欧美在线| 国产v大片淫在线免费观看| 久久久a久久爽久久v久久| 又黄又爽又刺激的免费视频.| 日韩在线高清观看一区二区三区| 伦精品一区二区三区| 久久久久久久久久久免费av| 亚洲电影在线观看av| 国产午夜精品久久久久久一区二区三区| 亚洲欧美成人综合另类久久久 | 两个人的视频大全免费| 国产一区二区在线观看日韩| 国产成人精品婷婷| а√天堂www在线а√下载| 可以在线观看的亚洲视频| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久中文| 亚洲国产高清在线一区二区三| 18禁黄网站禁片免费观看直播| 国产高清视频在线观看网站| 偷拍熟女少妇极品色| 亚洲婷婷狠狠爱综合网| 好男人在线观看高清免费视频| 少妇熟女欧美另类| 亚洲av不卡在线观看| 亚洲av不卡在线观看| 晚上一个人看的免费电影| 亚洲精品乱码久久久v下载方式| 欧美色欧美亚洲另类二区| 免费在线观看成人毛片| 久久久久九九精品影院| 一区二区三区免费毛片| 午夜亚洲福利在线播放| 国产成人精品久久久久久| 国产精品一区二区性色av| 日本黄色片子视频| 少妇猛男粗大的猛烈进出视频 | 欧美成人精品欧美一级黄| 一级av片app| 亚洲久久久久久中文字幕| 精品日产1卡2卡| 高清毛片免费看| 国产 一区 欧美 日韩| 亚洲欧美精品综合久久99| 中文字幕制服av| 亚洲成a人片在线一区二区| 99久国产av精品国产电影| 欧美激情在线99| 久久久精品欧美日韩精品| 色吧在线观看| 久久精品夜夜夜夜夜久久蜜豆| 91aial.com中文字幕在线观看| 男女下面进入的视频免费午夜| 哪个播放器可以免费观看大片| 亚洲精品亚洲一区二区| 中文字幕av成人在线电影| 日韩人妻高清精品专区| 国产三级在线视频| 日日啪夜夜撸| 久久欧美精品欧美久久欧美| 欧美不卡视频在线免费观看| 国产精品.久久久| 久久久久国产网址| 国产精品一区二区在线观看99 | 国产精品综合久久久久久久免费| 少妇的逼水好多| 久久久欧美国产精品| 欧美高清成人免费视频www| 91精品一卡2卡3卡4卡| 亚洲精华国产精华液的使用体验 | 2022亚洲国产成人精品| 亚洲精品亚洲一区二区| 只有这里有精品99| 久久人人精品亚洲av| 国产欧美日韩精品一区二区| 精品人妻一区二区三区麻豆| 国产成人精品一,二区 | 亚洲欧美成人精品一区二区| 欧美三级亚洲精品| 欧美bdsm另类| av在线天堂中文字幕| 深爱激情五月婷婷| 狂野欧美激情性xxxx在线观看| 久久人人精品亚洲av| av卡一久久| 1000部很黄的大片| 欧美最黄视频在线播放免费| 日本免费a在线| 日韩制服骚丝袜av| 99热这里只有精品一区| 联通29元200g的流量卡| 午夜精品国产一区二区电影 | 99久久精品国产国产毛片| 国产精品一二三区在线看| 草草在线视频免费看| 国产大屁股一区二区在线视频| 亚洲精品久久久久久婷婷小说 | 久久久欧美国产精品| 色综合色国产| 深夜a级毛片| 亚洲欧洲日产国产| 久久99热6这里只有精品| 一级毛片aaaaaa免费看小| 两性午夜刺激爽爽歪歪视频在线观看| 色噜噜av男人的天堂激情| 国产一区二区三区在线臀色熟女| 麻豆成人午夜福利视频| 一级毛片aaaaaa免费看小| 亚洲人成网站在线播放欧美日韩| 黄片wwwwww| 精品久久国产蜜桃| 久久99热6这里只有精品| 久久久精品大字幕| 免费av不卡在线播放| 1000部很黄的大片| 变态另类丝袜制服| 18禁裸乳无遮挡免费网站照片| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情久久久久久爽电影| 精华霜和精华液先用哪个| 国产国拍精品亚洲av在线观看| 国产精品一区www在线观看| 成年av动漫网址| 日韩在线高清观看一区二区三区| 22中文网久久字幕| 久久久久久伊人网av| av视频在线观看入口| 亚洲人与动物交配视频| 日韩视频在线欧美| 小说图片视频综合网站| 久久这里只有精品中国| 亚洲国产精品成人综合色| a级毛色黄片| 青春草视频在线免费观看| 亚洲av二区三区四区| 国产三级在线视频| 久久久精品94久久精品| 能在线免费观看的黄片| 联通29元200g的流量卡| 悠悠久久av| 高清日韩中文字幕在线| 亚洲精品国产av成人精品| 亚洲av电影不卡..在线观看| 亚洲最大成人中文| 少妇人妻一区二区三区视频| 美女xxoo啪啪120秒动态图| 久99久视频精品免费| 国产又黄又爽又无遮挡在线| 九九在线视频观看精品| 亚洲av男天堂| 亚洲精品影视一区二区三区av| 一级av片app| 成人午夜精彩视频在线观看| 国产免费一级a男人的天堂| 丰满人妻一区二区三区视频av| 久久九九热精品免费| 亚洲图色成人| 不卡视频在线观看欧美| 色吧在线观看| 国产精华一区二区三区| 99久久人妻综合| 天堂中文最新版在线下载 | 天天一区二区日本电影三级| 美女国产视频在线观看| 一进一出抽搐动态| 波多野结衣巨乳人妻| 亚洲欧美日韩无卡精品| 嫩草影院精品99| videossex国产| 99热这里只有精品一区| 在线a可以看的网站| 男女下面进入的视频免费午夜| 观看美女的网站| 一进一出抽搐动态| 网址你懂的国产日韩在线| 亚洲激情五月婷婷啪啪| 日韩强制内射视频| 最近2019中文字幕mv第一页| 婷婷亚洲欧美| 国产伦精品一区二区三区视频9| 亚洲最大成人手机在线| 青春草视频在线免费观看| 国产一级毛片七仙女欲春2| 亚洲无线在线观看| 中文字幕精品亚洲无线码一区| 啦啦啦观看免费观看视频高清| 天天一区二区日本电影三级| 男的添女的下面高潮视频| 精品午夜福利在线看| 亚洲婷婷狠狠爱综合网| 少妇的逼水好多| 又粗又爽又猛毛片免费看| 变态另类丝袜制服| 蜜桃久久精品国产亚洲av| 亚洲经典国产精华液单| 国产私拍福利视频在线观看| 亚洲最大成人手机在线| 亚洲经典国产精华液单| 少妇的逼好多水| 国产精品久久久久久精品电影小说 | 久久亚洲精品不卡| 一区二区三区免费毛片| 啦啦啦观看免费观看视频高清| 国产乱人视频| 久久久色成人| 日日摸夜夜添夜夜添av毛片| 日韩欧美 国产精品| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播| 特级一级黄色大片| 亚洲精品色激情综合| 人妻少妇偷人精品九色| 国产成人午夜福利电影在线观看| 国产一区二区在线观看日韩| 亚洲va在线va天堂va国产| 最近最新中文字幕大全电影3| 久久人人精品亚洲av| 欧美zozozo另类| 黄色欧美视频在线观看| 2021天堂中文幕一二区在线观| 欧美日韩乱码在线| 亚洲丝袜综合中文字幕| 亚洲精品日韩av片在线观看| 日本爱情动作片www.在线观看| 蜜桃久久精品国产亚洲av| 在线观看66精品国产| 色吧在线观看| 51国产日韩欧美| 免费无遮挡裸体视频| 久久这里只有精品中国| 亚洲欧美清纯卡通| 久久久精品大字幕| 午夜福利高清视频| 亚洲av第一区精品v没综合| 亚洲三级黄色毛片| 精品人妻视频免费看| 国产亚洲av嫩草精品影院| 麻豆一二三区av精品| 91aial.com中文字幕在线观看| 久久午夜亚洲精品久久| 亚洲欧美成人精品一区二区| 热99在线观看视频| 三级毛片av免费| 中文字幕av在线有码专区| 国产亚洲5aaaaa淫片| 亚洲国产欧美人成| 99热这里只有精品一区| 国产精品1区2区在线观看.| 爱豆传媒免费全集在线观看| 青春草国产在线视频 | 久久人人精品亚洲av| 嫩草影院新地址| 亚洲国产精品国产精品| 欧美+日韩+精品| 麻豆成人av视频| 热99re8久久精品国产| 午夜老司机福利剧场| 欧美zozozo另类| 国产精品国产三级国产av玫瑰| 欧美日本亚洲视频在线播放| 日本五十路高清| 看非洲黑人一级黄片| 色吧在线观看| 亚洲熟妇中文字幕五十中出| 久久人人爽人人爽人人片va| 中国国产av一级| 91久久精品国产一区二区成人| 最近手机中文字幕大全| 国产精华一区二区三区| 桃色一区二区三区在线观看| 老师上课跳d突然被开到最大视频| 联通29元200g的流量卡| 亚洲中文字幕一区二区三区有码在线看| 一边亲一边摸免费视频| 成人鲁丝片一二三区免费| 国产老妇女一区| 有码 亚洲区| 国产日本99.免费观看| 国产熟女欧美一区二区| a级毛片a级免费在线| 亚洲av不卡在线观看| 欧美日韩一区二区视频在线观看视频在线 | 久久国内精品自在自线图片| 亚洲成人久久爱视频| 亚洲精品乱码久久久v下载方式| 国产色婷婷99| 岛国毛片在线播放| 亚洲人成网站在线播| 99热全是精品| av女优亚洲男人天堂| 国产日本99.免费观看| 亚洲人成网站在线播| 午夜久久久久精精品| 国产色爽女视频免费观看| 久久精品国产亚洲av天美| 夜夜夜夜夜久久久久| 亚洲第一电影网av| 老师上课跳d突然被开到最大视频| 久久精品国产亚洲av天美| 亚洲av电影不卡..在线观看| 性欧美人与动物交配| 青春草国产在线视频 | 国产成人精品婷婷| 国产成人福利小说| 精品人妻视频免费看| 精品熟女少妇av免费看| 亚洲国产高清在线一区二区三| 91久久精品电影网| av在线观看视频网站免费| 欧美一区二区国产精品久久精品| 久久午夜福利片| 亚洲精品456在线播放app| 亚洲,欧美,日韩| 中文字幕av成人在线电影| 国产黄a三级三级三级人| 精品午夜福利在线看| 身体一侧抽搐| 亚洲欧美精品专区久久| 成人漫画全彩无遮挡| 热99re8久久精品国产| 天堂网av新在线| 日本-黄色视频高清免费观看| 日韩三级伦理在线观看| 超碰av人人做人人爽久久| 久久久色成人| 久久人妻av系列| 看十八女毛片水多多多| 男女下面进入的视频免费午夜| 成人午夜高清在线视频| 能在线免费观看的黄片| 日韩视频在线欧美| 边亲边吃奶的免费视频| 又粗又硬又长又爽又黄的视频 | 亚洲最大成人中文| www日本黄色视频网| 少妇裸体淫交视频免费看高清| 午夜精品在线福利| 成人欧美大片| 久久99热这里只有精品18| 亚洲国产色片| 免费av不卡在线播放| 舔av片在线| 国产又黄又爽又无遮挡在线| 精品国产三级普通话版| 国产老妇伦熟女老妇高清| 亚洲中文字幕一区二区三区有码在线看| 午夜精品在线福利| 亚洲精品乱码久久久久久按摩| 18禁裸乳无遮挡免费网站照片| 欧美区成人在线视频| 观看美女的网站| 亚洲欧美日韩东京热| 在线观看av片永久免费下载| 久久人人爽人人爽人人片va| 国产在线精品亚洲第一网站| av又黄又爽大尺度在线免费看 | 少妇的逼好多水| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 国产亚洲欧美98| 国产女主播在线喷水免费视频网站 | 女的被弄到高潮叫床怎么办| 成人毛片a级毛片在线播放| 我要搜黄色片| 老师上课跳d突然被开到最大视频| 国产 一区精品| 亚洲欧美清纯卡通| 两个人的视频大全免费| 美女cb高潮喷水在线观看| 全区人妻精品视频| 99国产精品一区二区蜜桃av| 国产成人一区二区在线| 两个人视频免费观看高清| 国产午夜精品一二区理论片| 免费av毛片视频| 高清在线视频一区二区三区 | 国产亚洲5aaaaa淫片| 亚洲av免费高清在线观看| ponron亚洲| 美女cb高潮喷水在线观看| 免费观看在线日韩| 午夜老司机福利剧场| 尾随美女入室| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看| 中文精品一卡2卡3卡4更新| 久久精品国产鲁丝片午夜精品| 91av网一区二区| 非洲黑人性xxxx精品又粗又长| 在线a可以看的网站| 99九九线精品视频在线观看视频| 美女被艹到高潮喷水动态| 舔av片在线| a级一级毛片免费在线观看| 国产精品一区二区三区四区久久| 亚洲国产精品久久男人天堂| 哪个播放器可以免费观看大片| 午夜激情欧美在线| 不卡一级毛片| 午夜免费激情av| 亚洲最大成人中文| 最近视频中文字幕2019在线8| 国产欧美日韩精品一区二区| 国产精品国产三级国产av玫瑰| 国产真实伦视频高清在线观看| 精品人妻熟女av久视频| 亚洲中文字幕一区二区三区有码在线看| 天美传媒精品一区二区| 亚洲无线观看免费| 六月丁香七月| 高清午夜精品一区二区三区 | 亚洲色图av天堂| 欧美性猛交黑人性爽| 国产探花在线观看一区二区| ponron亚洲| 日韩视频在线欧美| 久久久久久久久久久免费av| 亚洲真实伦在线观看| 少妇裸体淫交视频免费看高清| 欧美3d第一页| 久久久久久久久中文| 12—13女人毛片做爰片一| 深夜精品福利| 青青草视频在线视频观看| 最后的刺客免费高清国语| 在线国产一区二区在线| 国产不卡一卡二| 91精品国产九色| 亚洲av中文av极速乱| 欧美成人免费av一区二区三区| 人妻夜夜爽99麻豆av| 丝袜美腿在线中文| 麻豆国产av国片精品| 国产淫片久久久久久久久| 亚洲精华国产精华液的使用体验 | 成人国产麻豆网| 午夜免费激情av| 国产色婷婷99| 国产三级在线视频| 美女内射精品一级片tv| 男人狂女人下面高潮的视频| 国产精品一区二区三区四区免费观看| 最好的美女福利视频网| 69人妻影院| 国产成人精品一,二区 | 舔av片在线| 麻豆乱淫一区二区| 麻豆成人av视频| 精品国产三级普通话版| 久久综合国产亚洲精品| 国产乱人偷精品视频| 中文欧美无线码| 国产真实乱freesex| 亚洲国产高清在线一区二区三| 一区二区三区四区激情视频 | 久久亚洲精品不卡| 色吧在线观看| 又爽又黄无遮挡网站| 人妻夜夜爽99麻豆av| 日本一二三区视频观看| 久久久久国产网址| 欧美一区二区国产精品久久精品| 久久精品国产亚洲av天美| 91aial.com中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 亚洲成av人片在线播放无| 色噜噜av男人的天堂激情| 亚洲欧美清纯卡通| 国产亚洲精品av在线| 九九久久精品国产亚洲av麻豆| 麻豆国产av国片精品| 亚洲欧美日韩东京热| 波多野结衣高清作品| 少妇熟女欧美另类| 不卡视频在线观看欧美| 国产精品人妻久久久影院| 非洲黑人性xxxx精品又粗又长| 大香蕉久久网| 亚州av有码| 九九爱精品视频在线观看| 在线观看一区二区三区| 一级毛片aaaaaa免费看小| 色综合站精品国产| 尾随美女入室| 亚洲va在线va天堂va国产| 久久精品91蜜桃| 给我免费播放毛片高清在线观看| 欧美最新免费一区二区三区| 日本一二三区视频观看| 亚洲成人久久性| 成熟少妇高潮喷水视频| 精品一区二区免费观看| 直男gayav资源| 久久中文看片网| 亚洲人成网站高清观看| 亚洲内射少妇av| 天堂网av新在线| 国产黄色小视频在线观看| 国产精品乱码一区二三区的特点| 亚洲精品久久国产高清桃花| 国产熟女欧美一区二区| 1024手机看黄色片| 欧美日韩精品成人综合77777| 高清毛片免费看| 久久久成人免费电影| 日韩在线高清观看一区二区三区| 日韩成人av中文字幕在线观看| 国产熟女欧美一区二区| 久久久久网色| av天堂中文字幕网| 亚洲婷婷狠狠爱综合网| 国产一级毛片七仙女欲春2| 成人av在线播放网站| 日韩av不卡免费在线播放| 欧美色欧美亚洲另类二区| 高清午夜精品一区二区三区 | 久久精品国产鲁丝片午夜精品| 中文欧美无线码| 日本黄色片子视频| 少妇丰满av| 国产精品永久免费网站| 国产精品免费一区二区三区在线| 久久久精品大字幕| 又粗又硬又长又爽又黄的视频 | 国产老妇女一区| 最后的刺客免费高清国语| av在线蜜桃| 美女高潮的动态| 最新中文字幕久久久久| av黄色大香蕉| 国产精品一区二区三区四区久久| 中文字幕av在线有码专区| 偷拍熟女少妇极品色| 午夜福利在线观看免费完整高清在 | 老司机福利观看| 九九久久精品国产亚洲av麻豆| 国产色爽女视频免费观看| 69人妻影院| 日本成人三级电影网站| 日韩亚洲欧美综合| 男女啪啪激烈高潮av片| 日本撒尿小便嘘嘘汇集6| 18禁黄网站禁片免费观看直播| 成人二区视频| 亚洲精品成人久久久久久| 国产久久久一区二区三区| 美女黄网站色视频| 黄色欧美视频在线观看| 哪里可以看免费的av片| 日韩欧美在线乱码| 两个人视频免费观看高清| 欧美不卡视频在线免费观看| 一个人观看的视频www高清免费观看| 国产精品1区2区在线观看.| a级毛色黄片| 亚洲欧美精品专区久久| 联通29元200g的流量卡| 嫩草影院入口| 欧美精品一区二区大全| 亚洲国产精品久久男人天堂| АⅤ资源中文在线天堂| 久久久欧美国产精品| 午夜福利视频1000在线观看| 又粗又爽又猛毛片免费看| 国产综合懂色| 91久久精品国产一区二区三区| 欧美人与善性xxx| 国产人妻一区二区三区在| 亚洲欧美日韩无卡精品| 可以在线观看毛片的网站| 青春草亚洲视频在线观看| 人妻制服诱惑在线中文字幕| 久99久视频精品免费| 丰满人妻一区二区三区视频av| 国产精品一区二区三区四区免费观看|