• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于三腳架羧酸和咪唑基配體的兩種鎘基配合物的合成、結(jié)構與熒光性質(zhì)

    2023-02-03 10:23:20陳魯園侯向陽王記江
    無機化學學報 2023年1期
    關鍵詞:延安大學三腳架咪唑

    唐 龍 陳魯園 侯向陽 王 瀟 王記江

    (1延安大學新能源與新功能材料重點實驗室,延安大學化學與化學工程學院,陜西化學反應工程重點實驗室,延安 716000)

    (2陜西精藝化工有限公司,榆林 719300)

    0 Introduction

    Metal?organic coordination polymers(MOCPs)of mixed?ligand assembly have become a very attractive research field[1?4].Due to its many advantages,it has applications in many fields,such as absorption,hetero?geneous catalysis,electrochemistry,ion exchange,and fluorescence sensing[5?8].The mixed ?ligand strategy by the judicious choice of various organic linkers has been proven to be high?efficient for the construction of MOCPs.Among such systems,the most outstanding is the incorporation of polycarboxylates and N?donors co?ligands,which has successfully been utilized to generate more diverse and interesting polymeric net?works with potential properties and contributes to refin?ing our knowledge of self?assembly processes[9?11].Within polycarboxylate ligands,aromatic polycarboxyl compounds have extensively been documented as mul?tifunctional structures,owing to their versatile linking capability by virtue of both covalent bonding and supra?molecular interactions[12?14].Luminescent metal?organic coordination polymers(LMOCPs)are a very important branch of MOCPs.At present,lots of studies have proved that LMOCPs as fluorescent sensors are feasi?ble and effective in detecting pollutants.LMOCPs gen?erally emit light in the following ways:organic ligands emit light,and the charge transfer between metal ions and ligands can emit light[15?17].The tunable structures and properties of cadmium ?based coordination poly?mers provide an important advantage to fluorescence sensing materials.

    In our strategy,multidentate O?or N?donor ligands have also been employed in the construction of coordi?nation polymers(CPs).Among the family of organic carboxylate,tripodal carboxylate shows more superiori?ty,the ligand 4,4′,4″?s?triazine?2,4,6?tribenzoic acid(H3tatb)as a class example of tripodal ligands has been utilized,and some MOCPs based on H3tatb have also been investigated[18?21].To explore the influence of N ?donor ligands on achieving different dimensional and topological structures based on tripodal carboxylate ligands,we also employ 1,4?bis(imidazole?1?ylmethyl)benzene(1,4?bimb)and 1,4?bis(1?imidazoly)benzene(1,4?bib)with different conformations as co?ligands.Two cadmium?based CPs,[Cd(Htatb)(1,4?bimb)]·H2O(1)and[Cd(Htatb)(1,4?bib)(H2O)]·DMF(2),were synthe?sized and characterized.In addition,their fluorescent properties were also investigated.

    1 Experimental

    1.1 Materials and chemical analysis

    The H3tatb,1,4?bimb,and 1,4?bib ligands were purchased in the Jinan Henghua Sci.&Technol.Co.,Ltd.All other reagents and solvents employed were commercially available and used without further purifi?cation.Elemental analyses were performed with a Perkin?Elmer 2400 CHN Elemental analyzer.Infrared spectra on KBr pellets were recorded on a Nicolet 170SX FT?IR spectrophotometer in a range of 400?4 000 cm-1.Thermogravimetric(TG)analyses were con?ducted with a Nietzsch STA 449C micro analyzer under the atmosphere at a heating rate of 5℃·min-1.Powder X?ray diffraction(PXRD)patterns were recorded on a Shimadzu XRD?7000 diffractometer analyzer.The working voltage was 40 kV,the current was 40mA,the radiation source was CuKα(λ=0.154 18 nm),and the scanning range was 20°?80°.The fluorescence spectra were obtained using a Hitachi F?7100 fluorescence spectrophotometer at room temperature.

    1.2 Synthesis of CP 1

    A mixture of Cd(NO3)2·4H2O(0.1 mmol,0.031 g),H3tatb(0.1 mmol,0.044 g),1,4?bimb(0.1 mmol,0.024 g)and 8 mL DMF?H2O(1∶1,V/V)was stirred for 30 min in the air.The mixture was then transferred to a 20 mL airtight glass reactor and kept at 100℃for 5 d under autogenous pressure,and then cooled to room temperature at a rate of 5℃·h-1.Colorless crystals of 1 were obtained and washed with DMF and dried in the air(Yield:49% based on Cd).Elemental analysis Calcd.for C38H29N7O7Cd(% ):C,56.48;H,3.62;N,12.13.Found(% ):C,56.62;H,3.72;N,12.24.IR data(KBr,cm-1):3 424(w),3 108(s),1 719(s),1 656(w),1 581(w),1 522(vs),1 364(m),1 122(w),1 063(m),1 013(w),933(w),822(m),766(s),647(w).

    1.3 Synthesis of CP 2

    The preparation of 2 was the same as that of 1 except using 1,4?bib ligand(0.1 mmol,0.021 g)instead of 1,4?bimb.Colorless crystals of 2 were obtained and washed with DMF and dried in the air(yield:51% based on Cd). Elemental analysis Calcd. for C39H32N8O8Cd(% ):C,54.91;H,3.78;N,13.13.Found(% ):C,54.83;H,3.87;N,13.21.IR data(KBr,cm-1):3 429(w),3 122(w),1 713(m),1 655(w),1 540(m),1 516(vs),1 401(m),1 362(s),1 237(m),1 112(m),1 088(m),1 016(m),939(w),833(m),771(s),650(w).

    1.4 X?ray crystallographic studies

    Diffraction intensities for CPs 1 and 2 were col?lected at 293 K on a Bruker SMART 1000 CCD diffrac?tometer employing graphite?monochromated MoKαradiation(λ=0.071 073 nm).A semi?empirical absorp?tion correction was applied using the SADABS pro?gram[22].The structures were solved by direct methods and refined by full?matrix least?squares onF2using the SHELXS 2014 and SHELXL 2014 programs,respectively[23?24].Non ?hydrogen atoms were refined anisotropically and hydrogen atoms were placed in geo?metrically calculated positions and refined using a rid?ing model.The crystallographic data for CPs 1 and 2 are listed in Table 1,and selected bond lengths and angles are listed in Table S1(Supporting information).

    Table 1 Crystal data and structural refinement summary of CPs 1 and 2

    CCDC:2178172,1;2178173,2.

    2 Results and discussion

    2.1 Description of the structure

    2.1.1 Crystal structures of CP 1

    Single?crystal X?ray analysis reveals that CP 1 exhibits a 4?fold interpenetrating 3D structure.The asymmetric unit of 1 comprises one CdⅡion,one Htatb2-ion,one 1,4?bimb molecule,and one free water molecule.Each five?coordinated CdⅡcenter is sur?rounded by two nitrogen atoms coming from two 1,4?bimb molecules,and three oxygen atoms from two Htatb2-ions,taking a distorted square pyramidal geom?etry(Fig.1).The bond lengths of Cd—O/N are in a range of 0.220 25(18)?0.244 1(2)nm,and the O/N—Cd—O/N bond angles cover a range of 53.80(8)°?134.41(9)°.In CP 1,the tripodal carboxylate ligands are partly deprotonated and one carboxylate group adoptsμ1?η1?η0to link one CdⅡion,and another one adoptsμ1?η1?η1chelating mode to link one CdⅡion,resulting in a 1D chain structure,further through 1,4?bimb ligand bridging,the adjacent chains are connect?ed to generate a 2D layer structure(Fig.2).These 2D layers are further joined by O—H…O hydrogen bond?ing(O6…O2 distance:0.257 8(3)nm,O6—H6…O2 angle:162.3(4)°)to produce a 3D architecture(Fig.3).To simplify the 3D framework,we considered the Htatb2-anion as a 3?connected node and CdⅡion as a 5?connected node,1,4?bimb ligand as linkers,and topological analysis by TOPOS program suggests that the 3D framework can be simplified as a 3,5?connected net with a point symbol of(3·72)(32·75·83)(Fig.S1).However,due to the absence of large guest molecules to fill the void space,the potential voids are filled via mutual interpenetration of three independent equiva?lent frameworks,generating a four?fold interpenetrating 3D architecture(Fig.4).

    Fig.1 Coordination environment of Cdion in CP 1

    Fig.2 Two?dimensional layer structure of CP 1

    Fig.3 Three?dimensional architecture of CP 1

    Fig.4 Four?fold interpenetrating 3D architecture of CP 1

    2.1.2 Crystal structures of CP 2

    CP 2 shows a 2?fold interpenetrating 3D structure.Each seven?coordinated CdⅡion is located in a[CdO5N2]distorted pentagonal bipyramid geometry and is coordinated to five oxygen atoms of two Htatb2-ions and a coordination water molecule,and two nitrogen atoms of two 1,4?bib molecules,as shown in Fig.5.The bond lengths of Cd—O and Cd—N are in a range of 0.225 1(4)?0.263 7(3)nm,these bond lengths are simi?lar to those found in related cadmium?based coordina?tion polymers[25].Compared with CP 1,the carboxylic groups of 2 adoptμ1?η1?η1andμ1?η1?η1chelating mode to link CdⅡions,resulting in a 1D chain structure(Fig.S2),and through 1,4?bib ligand bridging,the adjacent chains are connected to generate a 2D layer structure(Fig.6).These 2D layers are further joined through O—H…O hydrogen bonding(O5…O2 distance: 0.259 7(5)nm,O5—H5…O2 angle:161.76(4)°)to produce a 3D architecture(Fig.S3).Topological analysis by the TOPOS program suggests that the 3D framework can be simplified as a 3,5?connected net with a point sym?bol of(3·72)(32·75·83)(Fig.7).It is noteworthy that there are large open channels in CP 2.It is apt to form interpenetrating frameworks,accordingly,the final structure of CP 2 is a two?fold interpenetrating 3D framework(Fig.8).

    Fig.5 Coordination environment of Cdion in CP 2

    Fig.6 Two?dimensional layer structure of CP 2

    Fig.7 3,5?connected net topology of CP 2

    Fig.8 Two?fold interpenetrating 3D architecture of CP 2

    2.2 TG analysis

    The experimental diffraction patterns featured peaks that are almost consistent with the simulated pat?terns,indicating that the products are almost pure phases(Fig.S4 and S5).To study the thermal stability of CPs 1 and 2,TG analyses were performed on the polycrystalline samples under a nitrogen atmosphere(Fig.S6 and S7).TG curve of 1 revealed that the first weight loss of 2.4% from 50 to 110℃corresponds to the loss of the lattice water molecules(Calcd.2.23% ),and then the larger weight loss(Obsd.84.3% )occurred in a range of 240?490 ℃,corresponding to the decom?position of the Htatb2-and 1,4?bimb ligands(Calcd.83.86% ).The TG curve of 2 showed two?step weight losses.The first weight loss in a range of 60?170 ℃(Obsd.10.9% ,Calcd.10.68% )is assignable to the loss of DMF and coordination water molecules.The second weight loss of 76.4% in a temperature range of 240?460℃corresponds to the release of the Htatb2-and 1,4?bib ligands(Calcd.76.14% ).The final decomposi?tion products of 1 and 2 were confirmed to be CdO,which has also been further confirmed by the PXRD patterns of the CPs.

    2.3 Infrared spectra of CPs 1 and 2

    IR spectra of CPs 1 and 2 showed features attrib?utable to compositions of the coordination polymers(Fig.S8 and S9).The observed strong characteristic peaks appearing around 3 424 and 3 429 cm-1in spec?tra are attributed to the O—H stretching vibrations,respectively.Due to partial deprotonation of carboxyl?ate in 1 and 2,the absorptions of about 1 719 and 1 713 cm-1can be attributed to the stretching vibrations of theνCOOHin the carboxylate.The presence of the char?acteristic bands at 1 656 and 1 655 cm-1for 1 and 2 suggests theν—C=N—stretching vibrations of Htatb2-ion.The intense characteristic peaks appearing around 1 581 and 1 522,1 364 cm-1for 1,1 540 and 1 516,1 401 cm-1for 2 in the IR spectra correspond to asym?metric and symmetric stretching vibrations of carboxyl?ic groups,respectively.The presence of the characteris?tic bands at 1 122 and 1 112 cm-1for 1 and 2 suggests theνC—Ostretching vibrations.The presence of the char?acteristic bands at 1 063 cm-1for 1 and 1 088 cm-1for 2 suggests theνC—Nstretching vibrations of the imidaz?ole ring.The absorptions of 640?850 cm-1of 1 and 2 can be attributed to theγC—Hout?of?plane bending vi?bration of the phenyl ring.

    2.4 Photoluminescence properties

    The luminescent emission spectra of CPs 1 and 2 were examined in the solid state at room temperature as shown in Fig.9.The main emission peak of the free H3tatb appeared at 454 nm(λex=364 nm),which can be assigned to the intra?ligandπ*?πtransitions[26].CP 1 showed a strong emission peak at 409 nm(λex=369 nm),however,the intense emission of 1,4?bimb was observed at 473 nm(λex=400 nm),respectively.Rela?tive to their ligands,1 showed a blue shift,probably owing to ligand ?to?metal charge transfer(LMCT)[27?28].CP 2 showed an emission peak at 394 nm(λex=334 nm),in comparison with that of free H3tatb and 1,4?bib(an intense emission at 398 nm withλex=306 nm),which are attributed to H3tatb or 1,4?bib ligand?based charge transfer[29?30].

    Fig.9 Emission spectra of the ligands and CPs 1,2

    2.5 Detection of nitroaromatic compounds

    The luminescent responses of CPs 1 and 2 were investigated by treating suspensions(2 mg dispersed in 2 mL aqueous solution)with 50 μmol·L-1different ana?lytes such asp?nitrobenzoic acid(p?NBA),m?nitroani?line (m?NA),o?nitroaniline (o?NA),o?nitrophenol(o?NP),p?nitrophenol(p?NP),p?nitrophenylhydrazine(p?NPH),nitrobenzene(NB),2,4?dinitrophenylhydra?zine(2,4?DNPH),2,4,6?trinitrophenol(2,4,6?TNP),and 2,4,6?trinitrophenyl hydrazine(2,4,6?TNPH),respec?tively.Among these nitroaromatic compounds,NB almost quenched the luminescent intensity of1(Fig.10).The result indicates that 1 may be regarded as a potential luminescent sensor for detecting NB.The luminescent intensities gradually decreased with the increasing concentration of NB.The best quenching efficiency observed for NB was calculated to be 99.17% upon incremental addition of 0 ?400 μL 1 mmol·L-1NB solution(Fig.11).To further analyze the luminescent titration results,the Stern ?Volmer equa?tion:I0/I=1+KsvcNBwas used to calculate the lumines?cence quenching constant,in whichI0andIare the luminescence intensities before and after the addition of NB,Ksvis the quenching constant(L·mol-1),andcNBis the concentration of NB (mmol·L-1),respective?ly[31?32].At low concentrations,the Stern?Volmer curves displayed an almost linear relationship,and the linear equation wasI0/I=0.851 58+148.684 9cNB.TheKsvfor NB was calculated to be 1.49×105L·mol-1(Fig.12).The Stern?Volmer curve deviated from the linear corre?lation when the concentration increased,demonstrating the simultaneous involvement of both the static and dynamic quenching process.Further detailed analysis denoted that the LOD(limit of detection)was 0.197 μmol·L-1according to 3σ/k(σandkrepresent the standard error and slope,respectively)[33?34].

    Fig.10 Fluorescent spectra(left)and fluorescent intensities(right)of CP 1 dispersed in aqueous solutions of different nitroaromatic analytes

    Fig.11 Fluorescence response of CP 1 upon incremental addition of 1 mmol·L-1NB in aqueous solutions

    Fig.12 Stern?Volmer plot of I0/I vs cNBin the aqueous dispersion of CP 1(left);The area enlarged view for linearity of the plot at lower concentrations of NB(right)

    In the fluorescence titration,emission profiles of CP 2 showed selective and significant quenching for 2,4,6?TNP,and relatively low quenching was observed for other nitroaromatic analytes(Fig.13).The best quenching efficiency observed for 2,4,6?TNP was cal?culated to be 99.76% upon incremental addition of 0?80 μL 1 mmol·L-12,4,6?TNP solution(Fig.14).When the concentration of 2,4,6?TNP is as low as 0.074 mmol·L-1,the luminescent intensity of 2 is completely quenched by 2,4,6?TNP.As shown in Fig.15,good lin?earity of the plot at low concentrations of 2,4,6?TNP was observed which fitted well with the Stern?Volmer equation(I0/I=0.536 92+468.319 7cTNP).High fluores?cence quenching efficiency was proved by the high Stern ?Volmer quenching constant(Ksv=4.68×105L·mol-1),and further detailed analysis denoted that the LOD was 0.062 6 μmol·L-1.However,a nonlinear curvature at higher concentrations of 2,4,6?TNP was obtained.The nonlinear nature of the Stern?Volmer plot of 2,4,6?TNP can be attributed to self?absorption,a combination of static and dynamic quenching,or an en?ergy?transfer process between 2,4,6?TNP and 2[35?36].

    Fig.13 Fluorescent spectra(left)and fluorescent intensities(right)of CP 2 dispersed in aqueous solutions of different nitroaromatic analytes

    Fig.14 Fluorescence response of CP 2 upon incremental addition of 1mmol·L-12,4,6?TNP in aqueous solutions

    Fig.15 Stern?Volmer plot of I0/I vs c2,4,6?TNPin the aqueous dispersion of CP 2(left);The area enlarged view for linearity of the plot at lower concentrations of 2,4,6?TNP(right)

    2.6 Detection of metal ions

    To examine the potential of CP 1 for sensing metal ions,changes in the fluorescence intensity of 1 dis?persed in water on the addition of different metal ions,including Na+,K+,Mg2+,Ca2+,Ba2+,Al3+,Fe3+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+,Ag+,Pb2+,and Hg2+in aqueous solutions,were investigated(Fig.16).Among these met?al ions aqueous solutions,high fluorescence quenching of the luminescent intensity of 1 was observed in Fe3+aqueous solution.To further study how the presence of non?Fe3+metal cations affected the recognition of 1 to Fe3+ions,all previously tested metal cations were ana?lyzed again by adding to the solution of 1 containing Fe3+.The fluorescence spectra produced by these new mixtures are shown in Fig.17.From these results,it can be seen that the emission intensity of 1 and Fe3+was subject to fluctuation when in the presence of the testing cations.However,these fluctuations were deemed mostly minor concerning relative percent change,therefore,the conclusion shows that 1 still retains significant selectivity for the recognition of Fe3+ions even in the matrix containing all cations tested[37].The luminescent intensities gradually decreased with the increasing concentration of Fe3+,and the best quenching efficiency observed for Fe3+was calculated to be 97.92% upon incremental addition of 0 ?160 μL 1 mmol·L-1Fe3+solution(Fig.18).As shown in Fig.19,good linearity of the plot at low concentrations of Fe3+was observed which fitted well with the Stern?Volmer equation(I0/I=1.063 76+82.839 7cFe3+).High fluores?cence quenching efficiency was proved by the high Stern ?Volmer quenching constant(Ksv=8.28×104L·mol-1),and further detailed analysis denoted that the LOD was 0.354 μmol·L-1.However,a nonlinear curva?ture at higher concentrations of Fe3+was obtained,revealing that both dynamic and static quenching take place.

    Fig.16 Fluorescent spectra(left)and fluorescent intensities(right)of CP 1 dispersed in aqueous solutions with various metal cations

    Fig.17 Fluorescent spectra(left)and fluorescent intensities(right)of CP 1 and Fe3+in the presence of other cations

    Fig.18 Fluorescence response of CP 1 upon incremental addition of 1 mmol·L-1Fe3+in aqueous solutions

    Fig.19 Stern?Volmer plot of I0/I vscFe3+in the aqueous dispersion of CP 1(left);The area enlarged view for linearity of the plot at lower concentrations of Fe3+(right)

    2.7 Detection of anions

    To examine the potential of CP 2 for sensing anions,changes in the fluorescence intensity of 2 dis?persed in water on the addition of different anions,including I-,Br-,Cl-,IO3-,ClO3-,NO3-,CO32-,SO42-,CrO42-,Cr2O72-,and PO43-in aqueous solutions,were investigated(Fig.20).Among these anions,high fluores?cence quenching of the luminescent intensity of 2 was observed in CrO42-aqueous solution.To further study how the presence of non?CrO42-anions affects the rec?ognition of 2 to CrO42-anions,all previously tested anions were analyzed again by adding to the CP 2 solu?tion containing CrO42-.The fluorescence spectra pro?duced by these new mixtures are shown in Fig.21.From these results,it can be seen that the emission intensity of 2 and CrO42-was subject to fluctuation when in the presence of the testing anions.However,these fluctuations were deemed mostly minor with respect to relative percent change,so the conclusion shows that 2 still retains significant selectivity for the recognition of CrO42-anions even in the matrix contain?ing all anions tested.The luminescent intensities grad?ually decreased with the increasing concentration of CrO42-.The best quenching efficiency observed for CrO42-was calculated to be 97.45% upon incremental addition(0 ?200 μL)of 1 mmol·L-1CrO42-solution(Fig.22).As shown in Fig.23,good linearity of the plot at low concentrations of CrO42-was observed which fitted well with the Stern?Volmer equationHigh fluorescence quench?ing efficiency was proved by the high Stern?Volmer quenching constant(Ksv=7.01×104L·mol-1).Further detailed analysis denoted that the LOD was 0.418 μmol·L-1.A nonlinear curvature at higher concentra?tions of CrO42-was obtained,revealing both dynamic and static quenching take place.

    Fig.20 Fluorescent spectra(left)and fluorescent intensities(right)of CP 2 dispersed in aqueous solutions of different anions

    Fig.21 Fluorescent spectra(left)and fluorescent intensities(right)of CP 2 and CrO42-in the presence of other anions

    Fig.22 Fluorescence response of CP 2 upon incremental addition of 1 mmol·L-1CrO42-in aqueous solutions

    Fig.23 Stern?Volmer plot of in the aqueous dispersion of CP 2(left);The area enlarged view for linearity of the plot at lower concentrations of CrO42-(right)

    3 Conclusions

    In summary,two cadmium?based coordination polymers have been synthesized and characterized by the self?assembly of Cdsalts with H3tatb and imidaz?olyl ligands.CPs 1 and 2 display the 2D layer struc?ture,further these layers are joined by O—H…O hydrogen bonding to generate the interpenetrating 3D architecture.The fluorescent properties of CPs 1 and 2 have been investigated.CP 1 was highly selective and sensitive towards NB and Fe3+through different detec?tion mechanisms,while CP 2 was highly selective and sensitive towards 2,4,6?TNP and CrO42-through differ?ent detection mechanisms.This work demonstrates the potential application of fluorescent CPs 1 and 2 as multi?responsive probes for the detection of nitroaro?matic compounds and anions or cations in the aqueous phase.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    延安大學三腳架咪唑
    延安大學王必成教授書寫
    唐都學刊(2023年2期)2023-03-24 08:21:46
    《延安大學學報(社會科學版)》征稿啟事
    益氣養(yǎng)陰方聯(lián)合甲巰咪唑片治療甲狀腺功能亢進癥的臨床觀察
    Research on the Application of English Reading Strategies for Junior High School Students
    無 題
    文苑(2016年17期)2016-11-26 12:40:05
    巧放三腳架
    左咪唑與丙硫苯咪唑驅(qū)豬體內(nèi)寄生蟲的效果對比試驗
    普萘洛爾與甲巰咪唑?qū)卓哼M癥的臨床治療效果觀察
    美國麥格普公司新型M—LOK相機三腳架適配器
    輕兵器(2015年20期)2015-09-10 07:22:44
    右美托咪定聯(lián)合咪唑安定鎮(zhèn)靜在第三磨牙拔除術中的應用
    超碰97精品在线观看| 午夜福利在线观看免费完整高清在| 黄片无遮挡物在线观看| 777米奇影视久久| 一个人观看的视频www高清免费观看| 最近2019中文字幕mv第一页| 男女无遮挡免费网站观看| 99精国产麻豆久久婷婷| 久久久久久久久大av| 午夜亚洲福利在线播放| 又爽又黄无遮挡网站| 另类亚洲欧美激情| 精品人妻偷拍中文字幕| 国产男女内射视频| 乱系列少妇在线播放| 一级爰片在线观看| 身体一侧抽搐| 国产精品av视频在线免费观看| 亚洲av一区综合| 在线免费观看不下载黄p国产| 国产免费又黄又爽又色| 亚洲欧美一区二区三区黑人 | 精品酒店卫生间| 自拍偷自拍亚洲精品老妇| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 国产成人午夜福利电影在线观看| 日韩一本色道免费dvd| 欧美精品国产亚洲| 一本一本综合久久| 日韩电影二区| 国产免费福利视频在线观看| 三级经典国产精品| 综合色av麻豆| 美女国产视频在线观看| 搡女人真爽免费视频火全软件| 成人国产av品久久久| 亚洲av成人精品一区久久| 国产在线男女| 亚洲经典国产精华液单| 午夜日本视频在线| 九九久久精品国产亚洲av麻豆| 国产成年人精品一区二区| 亚洲国产最新在线播放| 在线观看一区二区三区激情| 亚洲成色77777| 亚洲欧洲国产日韩| 亚洲,一卡二卡三卡| 免费看日本二区| 国产伦在线观看视频一区| 汤姆久久久久久久影院中文字幕| 青春草亚洲视频在线观看| 久久精品夜色国产| 欧美+日韩+精品| 只有这里有精品99| 国产黄片视频在线免费观看| 亚洲久久久久久中文字幕| 国产精品.久久久| 看非洲黑人一级黄片| 国产黄片视频在线免费观看| 日日啪夜夜爽| 精品熟女少妇av免费看| 亚洲内射少妇av| 亚洲国产精品成人久久小说| 欧美高清成人免费视频www| 日韩av不卡免费在线播放| 夫妻午夜视频| 久久精品久久久久久久性| 国产精品不卡视频一区二区| 欧美日韩精品成人综合77777| 久久久精品欧美日韩精品| 精品久久久久久久久av| 久久久欧美国产精品| 国产高清不卡午夜福利| 男女边摸边吃奶| 国产熟女欧美一区二区| 老司机影院毛片| 十八禁网站网址无遮挡 | 99久久精品热视频| 一本色道久久久久久精品综合| av在线观看视频网站免费| 成人毛片a级毛片在线播放| 我的女老师完整版在线观看| 丝袜脚勾引网站| 一级毛片aaaaaa免费看小| 欧美精品一区二区大全| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 麻豆成人av视频| 深夜a级毛片| 亚洲精品久久午夜乱码| av在线app专区| 高清午夜精品一区二区三区| 国产亚洲最大av| 久久人人爽人人片av| 波多野结衣巨乳人妻| 汤姆久久久久久久影院中文字幕| 91精品伊人久久大香线蕉| 欧美精品一区二区大全| 国产精品偷伦视频观看了| 免费大片18禁| 精品99又大又爽又粗少妇毛片| 精品酒店卫生间| 国产精品久久久久久精品电影| 国语对白做爰xxxⅹ性视频网站| 乱码一卡2卡4卡精品| 夜夜看夜夜爽夜夜摸| 丰满人妻一区二区三区视频av| 99久久精品国产国产毛片| 天堂网av新在线| 国产高潮美女av| 夫妻午夜视频| 欧美 日韩 精品 国产| 成人亚洲精品一区在线观看 | 欧美精品国产亚洲| 超碰97精品在线观看| 国产精品.久久久| 一区二区av电影网| 欧美日韩视频高清一区二区三区二| 一级a做视频免费观看| 一级二级三级毛片免费看| 王馨瑶露胸无遮挡在线观看| 能在线免费看毛片的网站| a级毛色黄片| av线在线观看网站| 日韩电影二区| 99久久九九国产精品国产免费| 成人毛片a级毛片在线播放| 国产精品av视频在线免费观看| 在线观看国产h片| 2021少妇久久久久久久久久久| 99热这里只有精品一区| 日日啪夜夜爽| 免费人成在线观看视频色| 精品少妇黑人巨大在线播放| 一级毛片 在线播放| 国产精品嫩草影院av在线观看| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 欧美zozozo另类| 婷婷色av中文字幕| 日本三级黄在线观看| 一级毛片aaaaaa免费看小| 一个人看视频在线观看www免费| 久久99蜜桃精品久久| 亚洲国产欧美人成| 麻豆国产97在线/欧美| 91久久精品国产一区二区成人| 国产精品一二三区在线看| 少妇高潮的动态图| 有码 亚洲区| 成年免费大片在线观看| 大陆偷拍与自拍| 色哟哟·www| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 精品一区在线观看国产| 亚洲美女搞黄在线观看| 久久精品人妻少妇| 欧美xxxx黑人xx丫x性爽| 日韩视频在线欧美| 美女主播在线视频| 最近2019中文字幕mv第一页| 大陆偷拍与自拍| 男女边吃奶边做爰视频| 精品亚洲乱码少妇综合久久| 亚洲精品视频女| 久久99热这里只频精品6学生| 99久久人妻综合| 全区人妻精品视频| 91在线精品国自产拍蜜月| 免费黄频网站在线观看国产| 男的添女的下面高潮视频| 99九九线精品视频在线观看视频| 涩涩av久久男人的天堂| 2021天堂中文幕一二区在线观| 毛片一级片免费看久久久久| 国产成人午夜福利电影在线观看| 一本色道久久久久久精品综合| 最近2019中文字幕mv第一页| 国产熟女欧美一区二区| 听说在线观看完整版免费高清| 日本三级黄在线观看| 午夜福利高清视频| 好男人视频免费观看在线| 亚洲三级黄色毛片| 视频区图区小说| 亚洲精品日本国产第一区| 亚洲无线观看免费| 国产精品人妻久久久影院| 久久久久性生活片| 最近中文字幕2019免费版| 国产亚洲最大av| 亚洲图色成人| 欧美亚洲 丝袜 人妻 在线| 丝袜美腿在线中文| 国产又色又爽无遮挡免| 免费电影在线观看免费观看| 超碰97精品在线观看| 日本免费在线观看一区| 欧美激情在线99| 国产日韩欧美在线精品| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说 | 成人欧美大片| 国产精品一及| 久久人人爽人人片av| 国产男女超爽视频在线观看| 久久人人爽av亚洲精品天堂 | 国产老妇女一区| 国国产精品蜜臀av免费| av在线app专区| 蜜臀久久99精品久久宅男| 欧美成人a在线观看| 成人欧美大片| 亚洲综合色惰| 国产亚洲一区二区精品| 午夜福利网站1000一区二区三区| 欧美成人a在线观看| 午夜免费男女啪啪视频观看| xxx大片免费视频| 亚洲成人一二三区av| 国产成人精品久久久久久| 国产综合精华液| videos熟女内射| 婷婷色麻豆天堂久久| 精品久久久精品久久久| 国产一区二区三区综合在线观看 | 亚洲精品日本国产第一区| 亚洲国产日韩一区二区| 国产视频首页在线观看| 成人美女网站在线观看视频| 国产成人91sexporn| 建设人人有责人人尽责人人享有的 | 亚洲欧美成人精品一区二区| 国产一区二区三区av在线| 日韩欧美精品免费久久| 另类亚洲欧美激情| 精品午夜福利在线看| 又爽又黄无遮挡网站| 亚洲av日韩在线播放| 69人妻影院| 国产探花在线观看一区二区| 最近最新中文字幕免费大全7| 国产精品国产三级国产专区5o| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放| 成人欧美大片| 在线观看三级黄色| 别揉我奶头 嗯啊视频| 久久99精品国语久久久| 简卡轻食公司| 国产成人精品久久久久久| 69av精品久久久久久| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 亚洲精品中文字幕在线视频 | 男女无遮挡免费网站观看| 精品国产三级普通话版| 性色av一级| 国产女主播在线喷水免费视频网站| 91精品伊人久久大香线蕉| 在线播放无遮挡| 亚洲国产欧美在线一区| 乱码一卡2卡4卡精品| 亚洲成人中文字幕在线播放| 久久精品国产亚洲网站| 欧美精品一区二区大全| 色婷婷久久久亚洲欧美| 精品国产一区二区三区久久久樱花 | 欧美精品国产亚洲| 国产 一区 欧美 日韩| 3wmmmm亚洲av在线观看| 水蜜桃什么品种好| 午夜福利网站1000一区二区三区| 大香蕉97超碰在线| 国产男女超爽视频在线观看| 91精品伊人久久大香线蕉| av在线亚洲专区| 亚洲av福利一区| 99热这里只有精品一区| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 国内精品美女久久久久久| 亚洲aⅴ乱码一区二区在线播放| 18+在线观看网站| 99久久中文字幕三级久久日本| 香蕉精品网在线| 久久久午夜欧美精品| 2021少妇久久久久久久久久久| 白带黄色成豆腐渣| 免费观看无遮挡的男女| 国产欧美亚洲国产| 综合色丁香网| 国产精品不卡视频一区二区| 国产精品爽爽va在线观看网站| 久久久a久久爽久久v久久| 久久精品久久久久久噜噜老黄| a级毛色黄片| 在线观看av片永久免费下载| 99九九线精品视频在线观看视频| 欧美 日韩 精品 国产| 黄色配什么色好看| 亚洲熟女精品中文字幕| 97在线视频观看| 好男人在线观看高清免费视频| 99久久精品一区二区三区| 26uuu在线亚洲综合色| 少妇熟女欧美另类| 男女啪啪激烈高潮av片| 国产精品久久久久久精品电影小说 | 午夜福利在线观看免费完整高清在| 偷拍熟女少妇极品色| 超碰97精品在线观看| av网站免费在线观看视频| 国产免费视频播放在线视频| 美女被艹到高潮喷水动态| 久久精品久久久久久噜噜老黄| 天堂俺去俺来也www色官网| 永久免费av网站大全| 能在线免费看毛片的网站| 成人免费观看视频高清| 99九九线精品视频在线观看视频| 亚洲精品一二三| 七月丁香在线播放| 国产成人a∨麻豆精品| 九九久久精品国产亚洲av麻豆| 高清欧美精品videossex| 九草在线视频观看| 国产成人福利小说| 中文字幕亚洲精品专区| www.av在线官网国产| 久久99蜜桃精品久久| 2021少妇久久久久久久久久久| 大香蕉久久网| 欧美国产精品一级二级三级 | 人妻夜夜爽99麻豆av| 大片电影免费在线观看免费| 下体分泌物呈黄色| 人人妻人人爽人人添夜夜欢视频 | 欧美日韩亚洲高清精品| 插逼视频在线观看| 噜噜噜噜噜久久久久久91| 久久久久久久久久久丰满| av网站免费在线观看视频| 69av精品久久久久久| 联通29元200g的流量卡| 欧美日韩在线观看h| 日本欧美国产在线视频| av在线亚洲专区| av免费在线看不卡| 青春草国产在线视频| 九九在线视频观看精品| 99九九线精品视频在线观看视频| 国产 一区 欧美 日韩| 99热网站在线观看| 日本一本二区三区精品| 国产成年人精品一区二区| 久久久a久久爽久久v久久| av免费在线看不卡| 亚洲av成人精品一区久久| av免费观看日本| 国产片特级美女逼逼视频| 人妻 亚洲 视频| 日韩一本色道免费dvd| 亚洲色图综合在线观看| 熟妇人妻不卡中文字幕| 边亲边吃奶的免费视频| 国产黄片视频在线免费观看| 成人美女网站在线观看视频| 亚洲熟女精品中文字幕| 国产精品熟女久久久久浪| 伊人久久精品亚洲午夜| av又黄又爽大尺度在线免费看| 日本黄色片子视频| 身体一侧抽搐| 免费观看无遮挡的男女| 国产伦精品一区二区三区四那| 精品国产三级普通话版| 午夜激情福利司机影院| 在线a可以看的网站| 一级毛片久久久久久久久女| 精品一区二区三卡| 日本wwww免费看| 亚洲欧美日韩另类电影网站 | 免费观看a级毛片全部| 干丝袜人妻中文字幕| 国产精品偷伦视频观看了| 欧美丝袜亚洲另类| 久久99精品国语久久久| 99热全是精品| 91aial.com中文字幕在线观看| 干丝袜人妻中文字幕| 哪个播放器可以免费观看大片| 欧美成人精品欧美一级黄| 日本色播在线视频| 晚上一个人看的免费电影| 男女下面进入的视频免费午夜| 中文字幕制服av| 成人国产麻豆网| 伊人久久国产一区二区| 18禁裸乳无遮挡动漫免费视频 | 听说在线观看完整版免费高清| 色5月婷婷丁香| 超碰av人人做人人爽久久| 十八禁网站网址无遮挡 | 国产精品精品国产色婷婷| 亚洲欧美成人精品一区二区| 久久精品久久精品一区二区三区| .国产精品久久| 欧美xxxx黑人xx丫x性爽| 国产熟女欧美一区二区| 久久久久精品性色| 寂寞人妻少妇视频99o| 国产精品嫩草影院av在线观看| 国产高潮美女av| 在线免费观看不下载黄p国产| 免费看a级黄色片| 免费看日本二区| 成人国产麻豆网| 乱码一卡2卡4卡精品| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 舔av片在线| 国产伦在线观看视频一区| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看 | 久久人人爽人人片av| 国产午夜精品久久久久久一区二区三区| 久热久热在线精品观看| 国产成人91sexporn| 亚洲在线观看片| 欧美国产精品一级二级三级 | 美女被艹到高潮喷水动态| 国产精品爽爽va在线观看网站| 高清视频免费观看一区二区| 男男h啪啪无遮挡| 欧美日韩综合久久久久久| 一本一本综合久久| 蜜臀久久99精品久久宅男| 美女视频免费永久观看网站| 免费av毛片视频| 日本一本二区三区精品| 亚洲精品国产色婷婷电影| 国产伦理片在线播放av一区| 毛片一级片免费看久久久久| av.在线天堂| 在线免费十八禁| 免费看a级黄色片| 成人亚洲精品av一区二区| 国产成人91sexporn| 男人添女人高潮全过程视频| 深爱激情五月婷婷| 色综合色国产| 日韩亚洲欧美综合| 波多野结衣巨乳人妻| 综合色av麻豆| 色综合色国产| 国产精品嫩草影院av在线观看| 亚洲精品亚洲一区二区| 国产欧美日韩一区二区三区在线 | a级一级毛片免费在线观看| 偷拍熟女少妇极品色| 伦理电影大哥的女人| 高清欧美精品videossex| 日韩av不卡免费在线播放| 一级av片app| 亚洲av成人精品一二三区| 一级爰片在线观看| 国产精品精品国产色婷婷| 五月开心婷婷网| 大香蕉97超碰在线| 久久99精品国语久久久| 成人鲁丝片一二三区免费| 汤姆久久久久久久影院中文字幕| 91久久精品国产一区二区三区| 婷婷色综合www| 搞女人的毛片| 大片电影免费在线观看免费| 九九爱精品视频在线观看| 日日啪夜夜撸| 亚洲欧美清纯卡通| 岛国毛片在线播放| 久久久久久久精品精品| 白带黄色成豆腐渣| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| 欧美高清性xxxxhd video| 久久人人爽人人爽人人片va| 在线精品无人区一区二区三 | 麻豆乱淫一区二区| 亚洲国产av新网站| 精品视频人人做人人爽| 99九九线精品视频在线观看视频| av福利片在线观看| 少妇 在线观看| 99热国产这里只有精品6| 亚洲在线观看片| 美女xxoo啪啪120秒动态图| 老司机影院毛片| 最近2019中文字幕mv第一页| 又大又黄又爽视频免费| 一级毛片aaaaaa免费看小| 国产黄片视频在线免费观看| 日本-黄色视频高清免费观看| 久久精品夜色国产| 搡女人真爽免费视频火全软件| 国产探花在线观看一区二区| 啦啦啦中文免费视频观看日本| 免费观看av网站的网址| 欧美3d第一页| 国产精品一及| 亚洲无线观看免费| 一本久久精品| 亚洲欧美精品专区久久| videos熟女内射| 噜噜噜噜噜久久久久久91| 亚洲成色77777| 亚洲人与动物交配视频| 99热国产这里只有精品6| 精品一区二区三卡| 久久久久久久精品精品| 人妻夜夜爽99麻豆av| 蜜桃亚洲精品一区二区三区| 亚洲精品乱久久久久久| 久久久久久久久久成人| 亚洲精品国产av成人精品| 一区二区三区精品91| av在线app专区| 舔av片在线| 国产老妇女一区| 人妻系列 视频| 日本wwww免费看| 另类亚洲欧美激情| 国模一区二区三区四区视频| 日产精品乱码卡一卡2卡三| 久久精品国产亚洲av天美| 国产黄a三级三级三级人| 大香蕉久久网| 亚洲欧美一区二区三区国产| 国产伦精品一区二区三区视频9| 国产在线男女| 亚洲国产最新在线播放| 亚洲精品,欧美精品| 观看免费一级毛片| 一级二级三级毛片免费看| 高清午夜精品一区二区三区| 干丝袜人妻中文字幕| av又黄又爽大尺度在线免费看| 久久精品国产亚洲av涩爱| 色婷婷久久久亚洲欧美| 欧美bdsm另类| 久久这里有精品视频免费| 日日摸夜夜添夜夜爱| 国产爱豆传媒在线观看| av线在线观看网站| 听说在线观看完整版免费高清| 在线天堂最新版资源| 亚洲成人一二三区av| 国产成人精品婷婷| 女人久久www免费人成看片| 欧美xxxx性猛交bbbb| 国产精品久久久久久精品电影| 久久亚洲国产成人精品v| 免费观看的影片在线观看| 免费观看a级毛片全部| 免费人成在线观看视频色| 男男h啪啪无遮挡| 日日啪夜夜撸| 一级爰片在线观看| 久久6这里有精品| 日韩一本色道免费dvd| 精品亚洲乱码少妇综合久久| 深爱激情五月婷婷| 人妻夜夜爽99麻豆av| 九九爱精品视频在线观看| 亚洲最大成人av| 大陆偷拍与自拍| 超碰97精品在线观看| 久久久国产一区二区| 成人亚洲精品一区在线观看 | av线在线观看网站| av在线天堂中文字幕| av.在线天堂| 亚洲国产成人一精品久久久| 麻豆国产97在线/欧美| 久久久久久久久久人人人人人人| 麻豆乱淫一区二区| 国产一区亚洲一区在线观看| 国产一区二区三区综合在线观看 | 人人妻人人看人人澡| 亚洲欧美清纯卡通| 精品久久久久久久久亚洲| 成人欧美大片| 最后的刺客免费高清国语| 少妇人妻一区二区三区视频| 久久这里有精品视频免费| 最后的刺客免费高清国语| 成人黄色视频免费在线看| 久久久精品免费免费高清| 一本久久精品| 少妇被粗大猛烈的视频| 亚洲欧美成人精品一区二区| 午夜福利视频1000在线观看| 一区二区三区精品91| 亚洲人成网站高清观看| 午夜福利视频精品| 国产精品福利在线免费观看| 久久精品熟女亚洲av麻豆精品| 久久午夜福利片| 国产黄频视频在线观看| 欧美潮喷喷水| av国产久精品久网站免费入址| 少妇人妻一区二区三区视频| 国产在线男女|