• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lu摻雜AlN的電子結(jié)構(gòu)和光學(xué)性質(zhì)的第一性原理研究

    2023-02-03 10:23:16張瑞亮盧勝尚肖清泉
    關(guān)鍵詞:第一性光電子貴州大學(xué)

    張瑞亮 盧勝尚 肖清泉 謝 泉

    (貴州大學(xué)大數(shù)據(jù)與信息工程學(xué)院新型光電子材料與技術(shù)研究所,貴陽 550025)

    0 Introduction

    With the rapid development of electronic informa?tion technology,the performance requirements of semi?conductor materials are getting higher[1].As a classic Ⅲ?Ⅴ compound semiconductor material,AlN has attracted much attention because of its advantages,such as a wide direct bandgap[2],high electron mobility,high thermal conductivity[3],low thermal expansion coefficient[4],good chemical stability and mechanical strength,and good resistance to high temperature and corrosion.Therefore,AlN can be used as substrate material for ultraviolet LEDs,ultraviolet lasers,detec?tors,and other devices.AlN has great market applica?tion prospects in various optoelectronics devices,because of its good optical and mechanical properties[5].

    Rare earth elements have been widely used in electronics,petrochemical,and other fields.Due to the low melting points of rare earth metals,with a unique electron shell of rare?earth metal atoms,the doping of rare?earth elements can effectively adjust the photo?electric properties of AlN.Doping has been used to change the conductive type of semiconductors and elec?tronic structure,produce new impurity energy levels and different types of carriers,and then change the optical and electrical properties of the material.Sc[6],La,Er[7],Mg[8],Cr[9],Tm[10],Tb,Ce,or Eu[11]doped AlN has been investigated by experimental and theoretical research.Generally,the bandgap of AlN decreases with the increase of rare?earth element doping concen?trations,and the absorption in the visible light region is enhanced,thereby expanding the absorption region of AlN.

    Lu is the hardest and densest metal element in rare earth elements,it can be used as a catalyst for chemical synthesis and the preparation of scintillation crystals.Li et al.[12]discussed the effect of Lu3+addition on the microstructure and optical properties of phos?phor through experiments,the results showed that the Lu?doped samples had higher luminescence intensity.This suggests that Lu doping could improve the optical properties of the crystal.To our knowledge,few theoret?ical data have been reported on the electronic structure and optical properties of Lu?doped AlN.Therefore,the?oretical research about the electronic structure and optical properties of Lu?doped AlN (denoted as Al1-xLuxN,wherexis the atomic fraction of Lu)is nec?essary.In this paper,the effects of Lu doping concen?trations on the bandgap,density of states,and optical properties of AlN are studied by first?principles,which provide a theoretical basis for the preparation of vari?ous AlN?related electronic devices.

    1 Computational method and details

    1.1 Theoretical models

    In this work,AlN is a hexagonal fiber zinc ore structure,the spatial point group isP63mc(No.186),and the lattice constants area=b=0.311 2 nm,c=0.497 9 nm.

    A 2×2×2 AlN supercell consisting of 16 Al atoms and 16 N atoms was constructed.The doping process was to substitute Al atoms with Lu atoms,and the doping concentrations were 0.062 5,0.125,and 0.187 5,respectively.Fig.1 shows the crystal structures of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)supercells with different Lu doping concentrations after geometry optimization,In Fig.1a,x=0,so it is the actual super?cell of intrinsic AlN.The number of Al or Lu indicates the positions of atoms in the supercell.For example,Al5 represents the position of the fifth Al atom in the supercell,and Lu10 means that a Lu atom occupied the tenth position.When the doping concentration is 0.125,the expression(2,6)means the occupancy of the second and sixth places by Lu atoms.Therefore,when the concentration of Lu doping is 0.125 and 0.187 5,Fig.2 shows the energy after optimization of different Lu doping positions.By comparing the energy of the crystal structure when the doped atoms are in dif?ferent positions,the preferred position of the doped atoms in the crystal structure can be determined.The crystal structure is more stable if its energy is lower.Therefore,the calculations in this work were based on the two structures shown in Fig.1.

    Fig.1 Supercell models of Al1-xLuxN:(a)x=0,(b)x=0.062 5,(c)x=0.125,(d)x=0.187 5

    Fig.2 Lowest energy plots of different doped positions of Al1-xLuxN:(a)x=0.125,(b)x=0.187 5

    1.2 Calculation details

    The calculations used for this work were carried out in the Cambridge Serial Total Energy Package(CASTAT)module of Materials Studio (Accelrys Company,2019 Version)software package,a quantum mechanical program based on density functional theory that calculates from scratch.The BFGS(Broyden?Fletcher?Goldfarb?Shanno)algorithm was used to geo?metrically optimize the crystal geometry model,and then the electronic structure and optical properties of the geometrically optimized structure were calculated.The generalized gradient approximation (GGA)of Perdew?Burke?Ernzerhof(PBE)was selected to deal with the exchange?correlation potential.The base group used by the atom was the plane wave base group,and the method of plane wave ultrasoft pseudopotential was used to deal with the interaction between ions and electrons in the paper.The plane?wave cutoff energy was optimized to be 500 eV,and 8×8×4 K?point grids were selected to sample the Brillouin zone.The calcu?lation parameters were set as follows:the energy con?vergence accuracy was 5×10-7eV per atom,the maxi?mum interaction force was 0.1 GPa,the convergence accuracy of interatomic forces was 0.1 eV·nm-1,the maximum interaction force was 0.05 GPa,and the max?imum displacement was 2×10-4nm.The calculation of energy was performed in the inverted space.The valence electrons involved in the calculations were N:2s22p3,Al:3s23p1,and Lu:4f145s25p65d16s2.

    2 Results and discussion

    2.1 Electronic structure

    The supercell volume and bandgap of Al1-xLuxN with different Lu doping concentrations after geometry optimization were shown in Table 1.Obviously,with the increase of Lu doping concentration,the supercell volume increases,and the bandgap decreases.Since the atomic radius of Lu is larger than that of Al,as Al atoms are substituted by Lu atoms,the supercell volume of AlN increases.Although a larger supercell volume should be obtained with a higher doping concentration,it is difficult to obtain a doping concen?tration higher than 0.187 5 due to the limitation of Lu solid solubility.

    Table 1 Supercell lattice constant and bandgap of Al1-xLuxN

    The top of the valence band and the bottom of the conduction band of intrinsic AlN are located at the same point in the Brillouin zone,as shown in Fig.3,which indicates the intrinsic AlN is a direct bandgap semiconductor,the bandgap value is 3.890 eV,the results of this work do not differ significantly from those of Zou et al[13].The calculated bandgap of the intrinsic AlN is much smaller than the experimental value of 6.2 eV[14],which is consistent with other litera?ture due to the underestimation within GGA[15].The bandgap value calculated by the GGA method is much smaller than the experimental value,and the relevant theoretical calculations show that the bandgap error calculated by the GGA method has a positive correla?tion trend with the bandgap value of the material itself.As a result,the bandgap error for a material calculated using the GGA method will be very small when the band gap is zero.The bandgap error for a material calculated using the GGA method will also be very large when the bandgap is large.For Ⅲ?Ⅴ main group compound semiconductors,the discontinuity of the wave function at CBM and VBM is the main reason for the small bandgap calculated by the GGA method[16].This is a common problem in many articles[13,17?18],but it does not affect our qualitative analysis of AlN.

    Fig.3 Band structures of Al1-xLuxN:(a)x=0,(b)x=0.062 5,(c)x=0.125,(d)x=0.187 5

    The top of the valence band and the bottom of the conduction band of Al1-xLuxN (x≠0)are located at points F and G in the Brillouin zone,respectively,which indicates the Al1-xLuxN(x≠0)is an indirect band?gap semiconductor.As the doping concentration increases,the bottom of the conduction band moves downwards,the band gap width narrows,and the band curve of the doped system becomes denser.This is due to the incorporation of rare earth elements,which cause lattice distortion and introduce new impurity energy levels into the energy band.

    The bandgap is related to the electronic structure,so the electronic structure of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)was further investigated by calculating the electronic density of states(DOS)as shown in Fig.4.

    Fig.4 Electronic density of states(DOS)of Al1-xLuxN:(a)x=0,(b)x=0.062 5,(c)x=0.125,(d)x=0.187 5

    The total DOS(TDOS)spectrum shows three regions:the lower valence band(LVB)region at-15 to-11 eV,the upper valence band(UVB)region at-6 to 0 eV,and the conduction band(CB)region at 0 to 20 eV.For the intrinsic AlN,the TDOS is dominated by N2s,N2p,and Al3pstates.In the TDOS of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5),LVB is mainly contrib?uted by N2sstates,the UVB is mainly contributed by N2pand Lu4fhybrid orbitals,and the CB is dominated by Al3s,Al3p,and Lu5dstates.In addition,an addition?al peak around-24 eV dominated by Lu5pis observed.With the increase of Lu doping concentration,the con?tributions of N2pstate orbital hybridization to UVB gradually decrease,while the contribution of Lu4fstate orbital hybridization to UVB increases.In the CB part,the bottom of the conduction band moves towards the lower energy.Therefore,the bandgap of AlN decreases with the increase of Lu doping concentration.

    2.2 Optical properties

    The optical properties of AlN are related to the transition of electrons between energy levels,and the probability and intensity of electronic transitions can be conducted by the study of the dielectric function.The dielectric function is expressed as[19]:

    where the imaginary part of the dielectric functionε2(ω)can be obtained by calculating the matrix ele?ments of the wave function in the unoccupied state,as shown below[20]:

    Where C and V are the conduction band and valence band,respectively;kandωare the reciprocal lattice vector and angular frequency,respectively;BZ is the first Brillouin zone;e·MCV(k)is the matrix element of momentum warp;EC(k)andEV(k)are the intrinsic ener?gy level of the conduction band and valence band,respectively.

    The real partε1(ω)can be derived from the imagi?nary partε2(ω)through the Kramers?Kronig relation:

    wherePis the value of principal integration.

    The real and imaginary parts of the dielectric function for Al1-xLuxN are shown in Fig.5.The real part is the static dielectric constant under the electrostatic field.As shown in Fig.5a,the static dielectric constantε1(0)are 4.50,4.86,5.17,and 5.46,respectively,when the energy value is zero andx=0.062 5,0.125,0.187 5.Theε1(0)increases with the increase of Lu doping concentration due to the increase of system energy and volume.

    Fig.5 Dielectric function of Al1-xLuxN:(a)real part,(b)imaginary part

    The imaginary part mainly reflects the optical absorption characteristics of the semiconductor.As shown in Fig.5b,the peaks of the imaginary part are all lower than the intrinsic AlN,but its peaks increase with the increase of Lu doping concentration,and whenx=0,0.062 5,0.125,and 0.187 5,the corresponding peaks are 8.28,7.79,7.93,and 7.95 eV,respectively.In addition,Lu doping makes the imaginary part of the dielectric function for AlN move towards the lower energy direction as a whole.This is mainly due to the incorporation of Lu impurity level,and Lu5d,N2p,and Al3pwork together at the top of the valence band,so the bandgap width of the system decreases with the increase of Lu doping concentration,and the electron transition is more prone to occur.Furthermore,the degree of the red shift is enhanced with the increase of Lu doping concentrations,which corresponds to the decrease in the bandgap of AlN.

    The optical properties such as reflectivityR(ω),absorption coefficientα(ω),energy?loss spectrumL(ω),and photoconductivity were calculated using relations given by earlier workers.Fig.6a shows the reflectivity of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5).Al1-xLuxN shows high reflectivity in the ultraviolet region,and the strength of the reflection peak in the ultraviolet region decreases with the increase of Lu doping concentra?tions and shifts to the lower energy.

    Fig.6 Optical properties of Al1-xLuxN:(a)reflective index R(ω),(b)absorption coefficient α(ω)

    The absorption spectrum is the percentage of time?intensity decay of light waves propagating per unit dis?tance in a semiconductor medium.As shown in Fig.6b,the absorption coefficients of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)are all at 105cm-1level,indicating that they all have good absorption performance.In the deep ultraviolet region,the peak intensity decreases gradual?ly with the increase of Lu doping concentration.While in the visible and infrared regions,the absorption coef?ficients increase with the increase of Lu doping concen?tration.The illustration on the upper right shows that the absorption edges of AlN, Al0.9375Lu0.0625N,Al0.875Lu0.125N,Al0.8125Lu0.1875N are equal to 2.43,1.98,1.66,and 1.53 eV,respectively,which are consistent with the change of the bandgap.Compared with intrin?sic AlN,Al1-xLuxN(x≠0)has an extra absorption peak at 30 eV.Since the energy level of generated impuri?ties is in the bandgap,the absorption of visible light increases,and the absorption zone broadens.

    The energy loss when the electron passes through the uniform dielectric can be further deduced from the dielectric function.The energy ?lossL(ω)spectra of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)are shown in Fig.7,and its characteristic peak is related to plasma oscillation[21].The peak values are 17.68,8.94,5.01,and 2.87,respectively.The peaks of Al1-xLuxN(x≠0)are lower than that of intrinsic AlN,indicating that the emissivity of secondary electrons is extremely high after doping.In addition,the peak position exhibits a blue shift with the increase of doping concentration,indicating that Lu doping into AlN enhances the elec?tronic transition of the upper valence band.

    Fig.7 Energy?loss spectra of Al1-xLuxN

    The real and imaginary parts of the photoconduc?tivity of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)are shown in Fig.8.The real part is observed that photocon?ductivity increases sharply in the low?energy region with the increase of energy,which confirms that there are more free electron transitions in the conduction band.The imaginary part of the photoconductivity of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)is 0 at the initial position.Lu doping makes the imaginary part of the photoconductivity for AlN move toward the lower energy direction.The minimum value gradually becomes larger,while the maximum value gradually becomes smaller.After the energy is greater than 60 eV,the con?ductivity overlaps and is relatively stable.

    Fig.8 Photoconductivity of Al1-xLuxN:(a)real part,(b)imaginary part

    3 Conclusions

    Detailed first?principles investigations have been done on the electronic structure and optical properties of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)with differ?ent Lu doping concentrations.The results show that the conduction band moves down and the bandgap becomes narrower with the increase of Lu doping con?centration.Therefore,it is easier for electrons to transi?tion from the valence band to the conduction band,resulting in the redshift of reflectivity,and absorption coefficient.The static dielectric constant increases with the increase of Lu doping concentration,however,the peak intensities of reflectivity,absorption coeffi?cient,energy loss function,and photoconductivity decrease with the increase of Lu doping concentration.Lu doping enhances the absorption coefficient of AlN in the visible and infrared regions,which would make AlN a potential candidate in the photoelectrochemical application.

    Acknowledgments:The work was supported by the Foundation for Sci?tech Activities for the Returned Overseas Chinese Scholars of Guizhou Province,China(Grant No.[2018]09),the High?level Creative Talent Training Program of Guizhou Province,China(Grant No.[2015]4015),and the Construction Project of Intelligent Manufacturing Industry and Education Integration Innovation Platform and Graduate Joint Training Base of Guizhou University,China(Grant No.2020520000?83?01?324061).

    猜你喜歡
    第一性光電子貴州大學(xué)
    先進(jìn)微電子與光電子材料與器件專題引言
    貴州大學(xué) 喀斯特區(qū)耕地地力提升與培育團(tuán)隊(duì) 王小利 課題組
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計(jì)算
    林木病理學(xué)實(shí)驗(yàn)課程教學(xué)改革探索——以貴州大學(xué)林學(xué)專業(yè)為例
    貴州大學(xué)學(xué)報(bào)(自然科學(xué)版)征稿簡(jiǎn)則
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計(jì)算
    缺陷和硫摻雜黑磷的第一性原理計(jì)算
    Franck-Condon因子計(jì)算及甲醛光電子能譜的理論研究
    先進(jìn)顯示與光電子技術(shù)國家重點(diǎn)實(shí)驗(yàn)室
    液晶與顯示(2014年2期)2014-02-28 21:12:59
    秋霞在线观看毛片| 一区二区av电影网| 亚洲欧美日韩卡通动漫| 久久青草综合色| 黑人猛操日本美女一级片| 成人毛片60女人毛片免费| 国产av码专区亚洲av| 亚洲成人一二三区av| 卡戴珊不雅视频在线播放| 这个男人来自地球电影免费观看 | 丝瓜视频免费看黄片| 最近中文字幕高清免费大全6| 美女国产视频在线观看| 麻豆成人av视频| 晚上一个人看的免费电影| 人妻系列 视频| 在线观看免费高清a一片| 超色免费av| 成年女人在线观看亚洲视频| av女优亚洲男人天堂| 久久久久网色| 日韩成人av中文字幕在线观看| 天天影视国产精品| 视频中文字幕在线观看| 久久国产亚洲av麻豆专区| 亚洲欧美中文字幕日韩二区| 亚洲美女搞黄在线观看| 久久精品国产a三级三级三级| 韩国av在线不卡| 国产精品一区www在线观看| 亚洲图色成人| 韩国av在线不卡| 嘟嘟电影网在线观看| 国产日韩欧美视频二区| 51国产日韩欧美| 午夜精品国产一区二区电影| 少妇精品久久久久久久| 成人国产麻豆网| 日本黄色片子视频| 中文字幕精品免费在线观看视频 | 777米奇影视久久| 色哟哟·www| 久久精品熟女亚洲av麻豆精品| 精品亚洲成a人片在线观看| 青春草视频在线免费观看| 精品一区二区三卡| 婷婷色av中文字幕| 亚洲欧美一区二区三区国产| 亚洲精品中文字幕在线视频| 久久久久精品性色| 少妇高潮的动态图| 亚洲人与动物交配视频| 免费不卡的大黄色大毛片视频在线观看| 欧美精品人与动牲交sv欧美| 亚洲中文av在线| 制服丝袜香蕉在线| 少妇人妻久久综合中文| 人人澡人人妻人| 丝袜脚勾引网站| 亚洲av在线观看美女高潮| 三上悠亚av全集在线观看| 中文字幕亚洲精品专区| 午夜免费观看性视频| 成年人免费黄色播放视频| 久久久久国产网址| 国产免费又黄又爽又色| 欧美精品高潮呻吟av久久| 精品一区二区三卡| 欧美日本中文国产一区发布| 亚洲欧美精品自产自拍| 亚洲伊人久久精品综合| 亚洲精品乱久久久久久| 精品少妇久久久久久888优播| 国产亚洲精品久久久com| 热re99久久精品国产66热6| 精品亚洲乱码少妇综合久久| 日日摸夜夜添夜夜添av毛片| 在线看a的网站| 亚洲熟女精品中文字幕| 99久久中文字幕三级久久日本| 精品一区在线观看国产| 人人妻人人添人人爽欧美一区卜| 久久久久久久精品精品| 国产精品偷伦视频观看了| 久久 成人 亚洲| 久久青草综合色| 18禁在线无遮挡免费观看视频| 免费日韩欧美在线观看| 51国产日韩欧美| 国产亚洲一区二区精品| a级毛色黄片| 美女视频免费永久观看网站| 精品99又大又爽又粗少妇毛片| h视频一区二区三区| 精品酒店卫生间| 欧美精品一区二区大全| 久久热精品热| 黄色视频在线播放观看不卡| 久久人人爽av亚洲精品天堂| 777米奇影视久久| 天堂8中文在线网| 18禁在线无遮挡免费观看视频| 欧美精品亚洲一区二区| 九九爱精品视频在线观看| 91成人精品电影| 精品一区二区三卡| 欧美日本中文国产一区发布| 黄片无遮挡物在线观看| 国产日韩一区二区三区精品不卡 | 好男人视频免费观看在线| 水蜜桃什么品种好| 亚洲不卡免费看| 天天影视国产精品| 色5月婷婷丁香| 大话2 男鬼变身卡| 国产伦精品一区二区三区视频9| 精品午夜福利在线看| 免费大片18禁| 亚洲精品成人av观看孕妇| 考比视频在线观看| 久久国产精品大桥未久av| 最黄视频免费看| 国产精品欧美亚洲77777| 性色avwww在线观看| 国内精品宾馆在线| 18禁观看日本| 国产淫语在线视频| 色网站视频免费| 久久99蜜桃精品久久| 免费av中文字幕在线| 午夜老司机福利剧场| 中文字幕人妻熟人妻熟丝袜美| 国产欧美亚洲国产| 日韩伦理黄色片| 在线观看国产h片| 一级黄片播放器| 国产av一区二区精品久久| av网站免费在线观看视频| 国产熟女午夜一区二区三区 | 久久精品熟女亚洲av麻豆精品| 制服丝袜香蕉在线| 97超视频在线观看视频| 在线观看免费高清a一片| 天堂俺去俺来也www色官网| 精品视频人人做人人爽| 亚洲欧美精品自产自拍| 777米奇影视久久| 免费观看的影片在线观看| 国产乱人偷精品视频| 欧美老熟妇乱子伦牲交| 母亲3免费完整高清在线观看 | 国语对白做爰xxxⅹ性视频网站| 丰满饥渴人妻一区二区三| 久久国产精品男人的天堂亚洲 | 久久鲁丝午夜福利片| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩综合久久久久久| 两个人的视频大全免费| 久久精品国产自在天天线| 高清av免费在线| 国内精品宾馆在线| 又黄又爽又刺激的免费视频.| 久久国产精品大桥未久av| 日韩伦理黄色片| 久久久久久久精品精品| 热re99久久精品国产66热6| 赤兔流量卡办理| 在线天堂最新版资源| 搡女人真爽免费视频火全软件| 黑人欧美特级aaaaaa片| 国产乱来视频区| 少妇被粗大的猛进出69影院 | 久久狼人影院| 国产女主播在线喷水免费视频网站| 免费久久久久久久精品成人欧美视频 | 亚洲国产成人一精品久久久| 大片免费播放器 马上看| 精品亚洲乱码少妇综合久久| 国产精品成人在线| 成年人午夜在线观看视频| 亚洲精品一二三| 搡女人真爽免费视频火全软件| 在线 av 中文字幕| 伦理电影大哥的女人| 午夜激情久久久久久久| 99久久人妻综合| 男的添女的下面高潮视频| 久久精品久久精品一区二区三区| 精品一品国产午夜福利视频| 69精品国产乱码久久久| 国产黄色视频一区二区在线观看| 女人久久www免费人成看片| 2018国产大陆天天弄谢| 久久久久久久久久久丰满| 伊人亚洲综合成人网| xxxhd国产人妻xxx| 午夜免费观看性视频| 街头女战士在线观看网站| 午夜福利视频精品| 日韩成人伦理影院| 久久人人爽人人爽人人片va| 伊人久久国产一区二区| 男人操女人黄网站| 久久久久国产精品人妻一区二区| 高清午夜精品一区二区三区| 人人澡人人妻人| av在线老鸭窝| 日韩伦理黄色片| av女优亚洲男人天堂| www.av在线官网国产| 亚洲av.av天堂| 少妇人妻精品综合一区二区| 亚洲第一区二区三区不卡| 18禁在线播放成人免费| 久久久久久久亚洲中文字幕| 如日韩欧美国产精品一区二区三区 | 18禁观看日本| 亚洲精品,欧美精品| 婷婷色综合www| 中国美白少妇内射xxxbb| 99热网站在线观看| 晚上一个人看的免费电影| 高清黄色对白视频在线免费看| 一区二区三区四区激情视频| 久久久欧美国产精品| 极品人妻少妇av视频| 秋霞在线观看毛片| 成年美女黄网站色视频大全免费 | 免费观看在线日韩| 99久久综合免费| 久久毛片免费看一区二区三区| www.色视频.com| 国产精品一二三区在线看| 美女脱内裤让男人舔精品视频| 一级二级三级毛片免费看| 亚洲少妇的诱惑av| 这个男人来自地球电影免费观看 | 国产黄片视频在线免费观看| 人妻少妇偷人精品九色| 亚洲国产毛片av蜜桃av| 亚洲精品aⅴ在线观看| 日本猛色少妇xxxxx猛交久久| 日韩免费高清中文字幕av| 97在线人人人人妻| 色网站视频免费| 99热网站在线观看| 欧美日韩国产mv在线观看视频| 男人爽女人下面视频在线观看| 午夜福利视频在线观看免费| 九草在线视频观看| 看非洲黑人一级黄片| 国产成人a∨麻豆精品| 内地一区二区视频在线| www.av在线官网国产| 精品一区二区免费观看| 最近手机中文字幕大全| 精品一区二区三卡| 久久99精品国语久久久| 人人妻人人添人人爽欧美一区卜| 久久久久久久大尺度免费视频| videosex国产| 爱豆传媒免费全集在线观看| 精品人妻熟女av久视频| 国产精品人妻久久久久久| 一区在线观看完整版| 国产免费一区二区三区四区乱码| 亚洲三级黄色毛片| 国产极品天堂在线| 国产成人免费无遮挡视频| 日本91视频免费播放| 日韩一本色道免费dvd| 精品国产国语对白av| 人人妻人人爽人人添夜夜欢视频| 国产精品欧美亚洲77777| 丁香六月天网| 亚洲国产精品专区欧美| 内地一区二区视频在线| 看非洲黑人一级黄片| 99热全是精品| 亚洲av欧美aⅴ国产| 性色avwww在线观看| 久久鲁丝午夜福利片| 久久ye,这里只有精品| 国产一区有黄有色的免费视频| 日韩中字成人| 婷婷成人精品国产| 只有这里有精品99| 秋霞在线观看毛片| 亚洲一区二区三区欧美精品| 少妇 在线观看| 天堂中文最新版在线下载| 中文字幕高清在线视频| 在线天堂中文资源库| 久久影院123| 午夜福利欧美成人| 色综合欧美亚洲国产小说| 久久精品国产a三级三级三级| 波多野结衣一区麻豆| 国产亚洲av高清不卡| 精品国产乱码久久久久久男人| 日日摸夜夜添夜夜添小说| 欧美老熟妇乱子伦牲交| 多毛熟女@视频| 国产成人系列免费观看| 可以免费在线观看a视频的电影网站| 纯流量卡能插随身wifi吗| 汤姆久久久久久久影院中文字幕| 久久国产精品影院| 亚洲一区二区三区欧美精品| 久久国产精品影院| 免费看十八禁软件| 变态另类成人亚洲欧美熟女 | 九色亚洲精品在线播放| 天天操日日干夜夜撸| 夜夜骑夜夜射夜夜干| av有码第一页| 少妇猛男粗大的猛烈进出视频| 日韩欧美一区二区三区在线观看 | 欧美大码av| 国产不卡一卡二| 亚洲成国产人片在线观看| av线在线观看网站| 亚洲人成伊人成综合网2020| 伊人久久大香线蕉亚洲五| 欧美人与性动交α欧美精品济南到| 又紧又爽又黄一区二区| 亚洲国产欧美一区二区综合| 一二三四在线观看免费中文在| 亚洲中文av在线| 人人妻人人添人人爽欧美一区卜| 十八禁网站免费在线| 两个人看的免费小视频| a级片在线免费高清观看视频| av片东京热男人的天堂| 亚洲五月色婷婷综合| 国产精品二区激情视频| 国产欧美日韩一区二区精品| 国产精品 欧美亚洲| 男女之事视频高清在线观看| 三级毛片av免费| 免费在线观看视频国产中文字幕亚洲| 91麻豆精品激情在线观看国产 | 757午夜福利合集在线观看| 99re在线观看精品视频| 亚洲色图 男人天堂 中文字幕| 久久精品亚洲精品国产色婷小说| 亚洲精品中文字幕在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 悠悠久久av| 国产午夜精品久久久久久| av片东京热男人的天堂| 少妇 在线观看| 大陆偷拍与自拍| 国产片内射在线| 女人高潮潮喷娇喘18禁视频| 亚洲av成人不卡在线观看播放网| 国产伦理片在线播放av一区| 大片电影免费在线观看免费| 999精品在线视频| 99精国产麻豆久久婷婷| 人人妻人人添人人爽欧美一区卜| videos熟女内射| 99香蕉大伊视频| 九色亚洲精品在线播放| 精品国产一区二区三区久久久樱花| 国产亚洲午夜精品一区二区久久| 久久人人97超碰香蕉20202| 色精品久久人妻99蜜桃| 久久国产亚洲av麻豆专区| 少妇被粗大的猛进出69影院| 热99re8久久精品国产| 在线观看66精品国产| 91av网站免费观看| 人人妻人人添人人爽欧美一区卜| 国产高清激情床上av| 日本vs欧美在线观看视频| 妹子高潮喷水视频| 51午夜福利影视在线观看| 国产99久久九九免费精品| 久久亚洲精品不卡| 热99re8久久精品国产| 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| 怎么达到女性高潮| 人妻 亚洲 视频| 日本一区二区免费在线视频| 欧美成人午夜精品| 精品国产乱码久久久久久男人| 黄色a级毛片大全视频| 久久精品aⅴ一区二区三区四区| 国产麻豆69| 久久久精品区二区三区| 老鸭窝网址在线观看| 午夜福利影视在线免费观看| 欧美黑人欧美精品刺激| 国产精品免费大片| 国产精品影院久久| 一区在线观看完整版| 黄色成人免费大全| 视频区欧美日本亚洲| 国产日韩一区二区三区精品不卡| 在线观看一区二区三区激情| 视频区图区小说| 妹子高潮喷水视频| 亚洲av欧美aⅴ国产| 99九九在线精品视频| 亚洲久久久国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 嫩草影视91久久| 日韩大码丰满熟妇| 国产精品久久久久成人av| 精品少妇黑人巨大在线播放| svipshipincom国产片| 国产亚洲精品第一综合不卡| 欧美日韩一级在线毛片| 激情视频va一区二区三区| 久久久久久久久久久久大奶| 一本久久精品| www.999成人在线观看| 国产精品 欧美亚洲| 波多野结衣av一区二区av| av福利片在线| 国产精品亚洲一级av第二区| 天天操日日干夜夜撸| 日韩免费高清中文字幕av| 欧美黑人欧美精品刺激| 午夜老司机福利片| 免费在线观看影片大全网站| 电影成人av| 我要看黄色一级片免费的| www.999成人在线观看| 成人18禁在线播放| 国产精品久久久av美女十八| 免费在线观看黄色视频的| 黄网站色视频无遮挡免费观看| 69av精品久久久久久 | 精品视频人人做人人爽| 日本一区二区免费在线视频| 别揉我奶头~嗯~啊~动态视频| 亚洲熟女毛片儿| 纵有疾风起免费观看全集完整版| 黑人操中国人逼视频| 一二三四社区在线视频社区8| 色尼玛亚洲综合影院| 在线观看一区二区三区激情| 国产成人av教育| 婷婷成人精品国产| 老鸭窝网址在线观看| av电影中文网址| 99re6热这里在线精品视频| 高清在线国产一区| 欧美av亚洲av综合av国产av| 免费不卡黄色视频| 久久久久久人人人人人| 最新的欧美精品一区二区| 国产老妇伦熟女老妇高清| 极品教师在线免费播放| 亚洲 欧美一区二区三区| 亚洲欧美精品综合一区二区三区| 五月开心婷婷网| 久久国产亚洲av麻豆专区| 精品少妇黑人巨大在线播放| 亚洲欧洲精品一区二区精品久久久| av欧美777| 欧美一级毛片孕妇| 男人舔女人的私密视频| 亚洲天堂av无毛| av免费在线观看网站| 99精国产麻豆久久婷婷| 成人精品一区二区免费| 深夜精品福利| 久久ye,这里只有精品| 国产高清激情床上av| 国产单亲对白刺激| 嫩草影视91久久| 欧美人与性动交α欧美精品济南到| 又黄又粗又硬又大视频| 亚洲精品美女久久av网站| 国产精品 欧美亚洲| 欧美在线黄色| 青草久久国产| 国产精品98久久久久久宅男小说| 中文字幕另类日韩欧美亚洲嫩草| 国精品久久久久久国模美| 一本一本久久a久久精品综合妖精| 女人精品久久久久毛片| 另类精品久久| 国产精品 国内视频| 天天躁日日躁夜夜躁夜夜| 黄色视频不卡| 精品第一国产精品| 国产不卡一卡二| 日韩中文字幕视频在线看片| av天堂在线播放| 久久这里只有精品19| 亚洲精品中文字幕在线视频| 18在线观看网站| 黄色视频在线播放观看不卡| 亚洲七黄色美女视频| 欧美 亚洲 国产 日韩一| 少妇裸体淫交视频免费看高清 | 午夜福利乱码中文字幕| 老司机影院毛片| 极品教师在线免费播放| 在线亚洲精品国产二区图片欧美| 一级a爱视频在线免费观看| kizo精华| 男女之事视频高清在线观看| av福利片在线| 97人妻天天添夜夜摸| 久久人妻熟女aⅴ| 啦啦啦在线免费观看视频4| 国产在线一区二区三区精| 一区在线观看完整版| 少妇 在线观看| 老司机影院毛片| 久久久久久久久免费视频了| 欧美日韩黄片免| 日韩三级视频一区二区三区| 制服人妻中文乱码| 国产日韩欧美在线精品| 精品熟女少妇八av免费久了| 国产一区二区三区视频了| 国产成人影院久久av| 手机成人av网站| 男女免费视频国产| 国产成人精品久久二区二区免费| 国产在线视频一区二区| 777米奇影视久久| 亚洲全国av大片| a在线观看视频网站| 欧美国产精品va在线观看不卡| 日本黄色日本黄色录像| 国产精品 欧美亚洲| 亚洲成人免费av在线播放| 视频区图区小说| 少妇 在线观看| 久久人妻福利社区极品人妻图片| 欧美久久黑人一区二区| 午夜福利一区二区在线看| 最新在线观看一区二区三区| 国产高清视频在线播放一区| 国产黄色免费在线视频| 免费日韩欧美在线观看| 亚洲成人国产一区在线观看| 一区二区av电影网| 侵犯人妻中文字幕一二三四区| 久久国产精品大桥未久av| 国产麻豆69| 一区二区三区激情视频| 久久久水蜜桃国产精品网| 欧美日韩亚洲国产一区二区在线观看 | 国产黄色免费在线视频| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| 搡老岳熟女国产| 男女下面插进去视频免费观看| 在线av久久热| 热99re8久久精品国产| 岛国在线观看网站| 午夜福利视频在线观看免费| 久久久久精品人妻al黑| 欧美亚洲 丝袜 人妻 在线| 亚洲国产中文字幕在线视频| 91字幕亚洲| 国产伦人伦偷精品视频| 久久午夜综合久久蜜桃| 我要看黄色一级片免费的| 成年动漫av网址| 中亚洲国语对白在线视频| 中文字幕色久视频| 热99国产精品久久久久久7| h视频一区二区三区| 中国美女看黄片| 国产精品免费大片| 老熟妇仑乱视频hdxx| 久久久久久久精品吃奶| 91九色精品人成在线观看| av在线播放免费不卡| 国产黄色免费在线视频| 黑人操中国人逼视频| 天天影视国产精品| 黄片大片在线免费观看| 国产精品电影一区二区三区 | 桃花免费在线播放| 亚洲一区中文字幕在线| 成年人免费黄色播放视频| 老司机午夜十八禁免费视频| 亚洲av成人不卡在线观看播放网| 欧美黄色淫秽网站| av欧美777| 国产精品一区二区在线不卡| 老汉色av国产亚洲站长工具| 亚洲精品av麻豆狂野| 国产精品自产拍在线观看55亚洲 | 高清欧美精品videossex| 丝袜美腿诱惑在线| 国产精品久久久久成人av| 高清黄色对白视频在线免费看| 一本综合久久免费| 91av网站免费观看| 国产精品一区二区精品视频观看| 中国美女看黄片| 亚洲三区欧美一区| 欧美日韩福利视频一区二区| 国产深夜福利视频在线观看| 99久久精品国产亚洲精品| 欧美精品高潮呻吟av久久| 在线av久久热| 国产精品久久久人人做人人爽| 91麻豆av在线| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| 久久久久久久国产电影| 日本av免费视频播放|