• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lu摻雜AlN的電子結(jié)構(gòu)和光學(xué)性質(zhì)的第一性原理研究

    2023-02-03 10:23:16張瑞亮盧勝尚肖清泉
    關(guān)鍵詞:第一性光電子貴州大學(xué)

    張瑞亮 盧勝尚 肖清泉 謝 泉

    (貴州大學(xué)大數(shù)據(jù)與信息工程學(xué)院新型光電子材料與技術(shù)研究所,貴陽 550025)

    0 Introduction

    With the rapid development of electronic informa?tion technology,the performance requirements of semi?conductor materials are getting higher[1].As a classic Ⅲ?Ⅴ compound semiconductor material,AlN has attracted much attention because of its advantages,such as a wide direct bandgap[2],high electron mobility,high thermal conductivity[3],low thermal expansion coefficient[4],good chemical stability and mechanical strength,and good resistance to high temperature and corrosion.Therefore,AlN can be used as substrate material for ultraviolet LEDs,ultraviolet lasers,detec?tors,and other devices.AlN has great market applica?tion prospects in various optoelectronics devices,because of its good optical and mechanical properties[5].

    Rare earth elements have been widely used in electronics,petrochemical,and other fields.Due to the low melting points of rare earth metals,with a unique electron shell of rare?earth metal atoms,the doping of rare?earth elements can effectively adjust the photo?electric properties of AlN.Doping has been used to change the conductive type of semiconductors and elec?tronic structure,produce new impurity energy levels and different types of carriers,and then change the optical and electrical properties of the material.Sc[6],La,Er[7],Mg[8],Cr[9],Tm[10],Tb,Ce,or Eu[11]doped AlN has been investigated by experimental and theoretical research.Generally,the bandgap of AlN decreases with the increase of rare?earth element doping concen?trations,and the absorption in the visible light region is enhanced,thereby expanding the absorption region of AlN.

    Lu is the hardest and densest metal element in rare earth elements,it can be used as a catalyst for chemical synthesis and the preparation of scintillation crystals.Li et al.[12]discussed the effect of Lu3+addition on the microstructure and optical properties of phos?phor through experiments,the results showed that the Lu?doped samples had higher luminescence intensity.This suggests that Lu doping could improve the optical properties of the crystal.To our knowledge,few theoret?ical data have been reported on the electronic structure and optical properties of Lu?doped AlN.Therefore,the?oretical research about the electronic structure and optical properties of Lu?doped AlN (denoted as Al1-xLuxN,wherexis the atomic fraction of Lu)is nec?essary.In this paper,the effects of Lu doping concen?trations on the bandgap,density of states,and optical properties of AlN are studied by first?principles,which provide a theoretical basis for the preparation of vari?ous AlN?related electronic devices.

    1 Computational method and details

    1.1 Theoretical models

    In this work,AlN is a hexagonal fiber zinc ore structure,the spatial point group isP63mc(No.186),and the lattice constants area=b=0.311 2 nm,c=0.497 9 nm.

    A 2×2×2 AlN supercell consisting of 16 Al atoms and 16 N atoms was constructed.The doping process was to substitute Al atoms with Lu atoms,and the doping concentrations were 0.062 5,0.125,and 0.187 5,respectively.Fig.1 shows the crystal structures of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)supercells with different Lu doping concentrations after geometry optimization,In Fig.1a,x=0,so it is the actual super?cell of intrinsic AlN.The number of Al or Lu indicates the positions of atoms in the supercell.For example,Al5 represents the position of the fifth Al atom in the supercell,and Lu10 means that a Lu atom occupied the tenth position.When the doping concentration is 0.125,the expression(2,6)means the occupancy of the second and sixth places by Lu atoms.Therefore,when the concentration of Lu doping is 0.125 and 0.187 5,Fig.2 shows the energy after optimization of different Lu doping positions.By comparing the energy of the crystal structure when the doped atoms are in dif?ferent positions,the preferred position of the doped atoms in the crystal structure can be determined.The crystal structure is more stable if its energy is lower.Therefore,the calculations in this work were based on the two structures shown in Fig.1.

    Fig.1 Supercell models of Al1-xLuxN:(a)x=0,(b)x=0.062 5,(c)x=0.125,(d)x=0.187 5

    Fig.2 Lowest energy plots of different doped positions of Al1-xLuxN:(a)x=0.125,(b)x=0.187 5

    1.2 Calculation details

    The calculations used for this work were carried out in the Cambridge Serial Total Energy Package(CASTAT)module of Materials Studio (Accelrys Company,2019 Version)software package,a quantum mechanical program based on density functional theory that calculates from scratch.The BFGS(Broyden?Fletcher?Goldfarb?Shanno)algorithm was used to geo?metrically optimize the crystal geometry model,and then the electronic structure and optical properties of the geometrically optimized structure were calculated.The generalized gradient approximation (GGA)of Perdew?Burke?Ernzerhof(PBE)was selected to deal with the exchange?correlation potential.The base group used by the atom was the plane wave base group,and the method of plane wave ultrasoft pseudopotential was used to deal with the interaction between ions and electrons in the paper.The plane?wave cutoff energy was optimized to be 500 eV,and 8×8×4 K?point grids were selected to sample the Brillouin zone.The calcu?lation parameters were set as follows:the energy con?vergence accuracy was 5×10-7eV per atom,the maxi?mum interaction force was 0.1 GPa,the convergence accuracy of interatomic forces was 0.1 eV·nm-1,the maximum interaction force was 0.05 GPa,and the max?imum displacement was 2×10-4nm.The calculation of energy was performed in the inverted space.The valence electrons involved in the calculations were N:2s22p3,Al:3s23p1,and Lu:4f145s25p65d16s2.

    2 Results and discussion

    2.1 Electronic structure

    The supercell volume and bandgap of Al1-xLuxN with different Lu doping concentrations after geometry optimization were shown in Table 1.Obviously,with the increase of Lu doping concentration,the supercell volume increases,and the bandgap decreases.Since the atomic radius of Lu is larger than that of Al,as Al atoms are substituted by Lu atoms,the supercell volume of AlN increases.Although a larger supercell volume should be obtained with a higher doping concentration,it is difficult to obtain a doping concen?tration higher than 0.187 5 due to the limitation of Lu solid solubility.

    Table 1 Supercell lattice constant and bandgap of Al1-xLuxN

    The top of the valence band and the bottom of the conduction band of intrinsic AlN are located at the same point in the Brillouin zone,as shown in Fig.3,which indicates the intrinsic AlN is a direct bandgap semiconductor,the bandgap value is 3.890 eV,the results of this work do not differ significantly from those of Zou et al[13].The calculated bandgap of the intrinsic AlN is much smaller than the experimental value of 6.2 eV[14],which is consistent with other litera?ture due to the underestimation within GGA[15].The bandgap value calculated by the GGA method is much smaller than the experimental value,and the relevant theoretical calculations show that the bandgap error calculated by the GGA method has a positive correla?tion trend with the bandgap value of the material itself.As a result,the bandgap error for a material calculated using the GGA method will be very small when the band gap is zero.The bandgap error for a material calculated using the GGA method will also be very large when the bandgap is large.For Ⅲ?Ⅴ main group compound semiconductors,the discontinuity of the wave function at CBM and VBM is the main reason for the small bandgap calculated by the GGA method[16].This is a common problem in many articles[13,17?18],but it does not affect our qualitative analysis of AlN.

    Fig.3 Band structures of Al1-xLuxN:(a)x=0,(b)x=0.062 5,(c)x=0.125,(d)x=0.187 5

    The top of the valence band and the bottom of the conduction band of Al1-xLuxN (x≠0)are located at points F and G in the Brillouin zone,respectively,which indicates the Al1-xLuxN(x≠0)is an indirect band?gap semiconductor.As the doping concentration increases,the bottom of the conduction band moves downwards,the band gap width narrows,and the band curve of the doped system becomes denser.This is due to the incorporation of rare earth elements,which cause lattice distortion and introduce new impurity energy levels into the energy band.

    The bandgap is related to the electronic structure,so the electronic structure of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)was further investigated by calculating the electronic density of states(DOS)as shown in Fig.4.

    Fig.4 Electronic density of states(DOS)of Al1-xLuxN:(a)x=0,(b)x=0.062 5,(c)x=0.125,(d)x=0.187 5

    The total DOS(TDOS)spectrum shows three regions:the lower valence band(LVB)region at-15 to-11 eV,the upper valence band(UVB)region at-6 to 0 eV,and the conduction band(CB)region at 0 to 20 eV.For the intrinsic AlN,the TDOS is dominated by N2s,N2p,and Al3pstates.In the TDOS of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5),LVB is mainly contrib?uted by N2sstates,the UVB is mainly contributed by N2pand Lu4fhybrid orbitals,and the CB is dominated by Al3s,Al3p,and Lu5dstates.In addition,an addition?al peak around-24 eV dominated by Lu5pis observed.With the increase of Lu doping concentration,the con?tributions of N2pstate orbital hybridization to UVB gradually decrease,while the contribution of Lu4fstate orbital hybridization to UVB increases.In the CB part,the bottom of the conduction band moves towards the lower energy.Therefore,the bandgap of AlN decreases with the increase of Lu doping concentration.

    2.2 Optical properties

    The optical properties of AlN are related to the transition of electrons between energy levels,and the probability and intensity of electronic transitions can be conducted by the study of the dielectric function.The dielectric function is expressed as[19]:

    where the imaginary part of the dielectric functionε2(ω)can be obtained by calculating the matrix ele?ments of the wave function in the unoccupied state,as shown below[20]:

    Where C and V are the conduction band and valence band,respectively;kandωare the reciprocal lattice vector and angular frequency,respectively;BZ is the first Brillouin zone;e·MCV(k)is the matrix element of momentum warp;EC(k)andEV(k)are the intrinsic ener?gy level of the conduction band and valence band,respectively.

    The real partε1(ω)can be derived from the imagi?nary partε2(ω)through the Kramers?Kronig relation:

    wherePis the value of principal integration.

    The real and imaginary parts of the dielectric function for Al1-xLuxN are shown in Fig.5.The real part is the static dielectric constant under the electrostatic field.As shown in Fig.5a,the static dielectric constantε1(0)are 4.50,4.86,5.17,and 5.46,respectively,when the energy value is zero andx=0.062 5,0.125,0.187 5.Theε1(0)increases with the increase of Lu doping concentration due to the increase of system energy and volume.

    Fig.5 Dielectric function of Al1-xLuxN:(a)real part,(b)imaginary part

    The imaginary part mainly reflects the optical absorption characteristics of the semiconductor.As shown in Fig.5b,the peaks of the imaginary part are all lower than the intrinsic AlN,but its peaks increase with the increase of Lu doping concentration,and whenx=0,0.062 5,0.125,and 0.187 5,the corresponding peaks are 8.28,7.79,7.93,and 7.95 eV,respectively.In addition,Lu doping makes the imaginary part of the dielectric function for AlN move towards the lower energy direction as a whole.This is mainly due to the incorporation of Lu impurity level,and Lu5d,N2p,and Al3pwork together at the top of the valence band,so the bandgap width of the system decreases with the increase of Lu doping concentration,and the electron transition is more prone to occur.Furthermore,the degree of the red shift is enhanced with the increase of Lu doping concentrations,which corresponds to the decrease in the bandgap of AlN.

    The optical properties such as reflectivityR(ω),absorption coefficientα(ω),energy?loss spectrumL(ω),and photoconductivity were calculated using relations given by earlier workers.Fig.6a shows the reflectivity of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5).Al1-xLuxN shows high reflectivity in the ultraviolet region,and the strength of the reflection peak in the ultraviolet region decreases with the increase of Lu doping concentra?tions and shifts to the lower energy.

    Fig.6 Optical properties of Al1-xLuxN:(a)reflective index R(ω),(b)absorption coefficient α(ω)

    The absorption spectrum is the percentage of time?intensity decay of light waves propagating per unit dis?tance in a semiconductor medium.As shown in Fig.6b,the absorption coefficients of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)are all at 105cm-1level,indicating that they all have good absorption performance.In the deep ultraviolet region,the peak intensity decreases gradual?ly with the increase of Lu doping concentration.While in the visible and infrared regions,the absorption coef?ficients increase with the increase of Lu doping concen?tration.The illustration on the upper right shows that the absorption edges of AlN, Al0.9375Lu0.0625N,Al0.875Lu0.125N,Al0.8125Lu0.1875N are equal to 2.43,1.98,1.66,and 1.53 eV,respectively,which are consistent with the change of the bandgap.Compared with intrin?sic AlN,Al1-xLuxN(x≠0)has an extra absorption peak at 30 eV.Since the energy level of generated impuri?ties is in the bandgap,the absorption of visible light increases,and the absorption zone broadens.

    The energy loss when the electron passes through the uniform dielectric can be further deduced from the dielectric function.The energy ?lossL(ω)spectra of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)are shown in Fig.7,and its characteristic peak is related to plasma oscillation[21].The peak values are 17.68,8.94,5.01,and 2.87,respectively.The peaks of Al1-xLuxN(x≠0)are lower than that of intrinsic AlN,indicating that the emissivity of secondary electrons is extremely high after doping.In addition,the peak position exhibits a blue shift with the increase of doping concentration,indicating that Lu doping into AlN enhances the elec?tronic transition of the upper valence band.

    Fig.7 Energy?loss spectra of Al1-xLuxN

    The real and imaginary parts of the photoconduc?tivity of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)are shown in Fig.8.The real part is observed that photocon?ductivity increases sharply in the low?energy region with the increase of energy,which confirms that there are more free electron transitions in the conduction band.The imaginary part of the photoconductivity of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)is 0 at the initial position.Lu doping makes the imaginary part of the photoconductivity for AlN move toward the lower energy direction.The minimum value gradually becomes larger,while the maximum value gradually becomes smaller.After the energy is greater than 60 eV,the con?ductivity overlaps and is relatively stable.

    Fig.8 Photoconductivity of Al1-xLuxN:(a)real part,(b)imaginary part

    3 Conclusions

    Detailed first?principles investigations have been done on the electronic structure and optical properties of Al1-xLuxN(x=0,0.062 5,0.125,0.187 5)with differ?ent Lu doping concentrations.The results show that the conduction band moves down and the bandgap becomes narrower with the increase of Lu doping con?centration.Therefore,it is easier for electrons to transi?tion from the valence band to the conduction band,resulting in the redshift of reflectivity,and absorption coefficient.The static dielectric constant increases with the increase of Lu doping concentration,however,the peak intensities of reflectivity,absorption coeffi?cient,energy loss function,and photoconductivity decrease with the increase of Lu doping concentration.Lu doping enhances the absorption coefficient of AlN in the visible and infrared regions,which would make AlN a potential candidate in the photoelectrochemical application.

    Acknowledgments:The work was supported by the Foundation for Sci?tech Activities for the Returned Overseas Chinese Scholars of Guizhou Province,China(Grant No.[2018]09),the High?level Creative Talent Training Program of Guizhou Province,China(Grant No.[2015]4015),and the Construction Project of Intelligent Manufacturing Industry and Education Integration Innovation Platform and Graduate Joint Training Base of Guizhou University,China(Grant No.2020520000?83?01?324061).

    猜你喜歡
    第一性光電子貴州大學(xué)
    先進(jìn)微電子與光電子材料與器件專題引言
    貴州大學(xué) 喀斯特區(qū)耕地地力提升與培育團(tuán)隊(duì) 王小利 課題組
    AuBe5型新相NdMgNi4-xCox的第一性原理研究
    SO2和NO2在γ-Al2O3(110)表面吸附的第一性原理計(jì)算
    林木病理學(xué)實(shí)驗(yàn)課程教學(xué)改革探索——以貴州大學(xué)林學(xué)專業(yè)為例
    貴州大學(xué)學(xué)報(bào)(自然科學(xué)版)征稿簡(jiǎn)則
    W、Bi摻雜及(W、Bi)共摻銳鈦礦TiO2的第一性原理計(jì)算
    缺陷和硫摻雜黑磷的第一性原理計(jì)算
    Franck-Condon因子計(jì)算及甲醛光電子能譜的理論研究
    先進(jìn)顯示與光電子技術(shù)國家重點(diǎn)實(shí)驗(yàn)室
    液晶與顯示(2014年2期)2014-02-28 21:12:59
    欧美变态另类bdsm刘玥| 亚洲av中文av极速乱| 人妻夜夜爽99麻豆av| 婷婷色麻豆天堂久久| 亚洲精品自拍成人| 又粗又硬又长又爽又黄的视频| 91精品伊人久久大香线蕉| 一级黄片播放器| 久久狼人影院| 一级毛片黄色毛片免费观看视频| 日韩不卡一区二区三区视频在线| 少妇裸体淫交视频免费看高清| 男人和女人高潮做爰伦理| 国产91av在线免费观看| 免费大片黄手机在线观看| 在线观看免费日韩欧美大片 | 日韩免费高清中文字幕av| 亚洲国产欧美日韩在线播放 | 亚洲婷婷狠狠爱综合网| 亚洲国产成人一精品久久久| 十八禁网站网址无遮挡 | 麻豆精品久久久久久蜜桃| 久久精品熟女亚洲av麻豆精品| av福利片在线观看| 国产精品秋霞免费鲁丝片| 久久99热这里只频精品6学生| 麻豆乱淫一区二区| kizo精华| 久久久午夜欧美精品| 免费久久久久久久精品成人欧美视频 | 美女国产视频在线观看| 日本爱情动作片www.在线观看| 国内精品宾馆在线| 在线观看人妻少妇| 国产有黄有色有爽视频| 亚洲国产精品专区欧美| 热re99久久国产66热| 晚上一个人看的免费电影| 伦精品一区二区三区| 自拍偷自拍亚洲精品老妇| 激情五月婷婷亚洲| 国产精品99久久99久久久不卡 | 免费观看av网站的网址| 日韩中文字幕视频在线看片| 国产精品熟女久久久久浪| 色吧在线观看| 一二三四中文在线观看免费高清| 三上悠亚av全集在线观看 | 国语对白做爰xxxⅹ性视频网站| 亚洲不卡免费看| 国产成人精品福利久久| 日本午夜av视频| 国产综合精华液| 建设人人有责人人尽责人人享有的| 国产在线男女| 日日啪夜夜撸| 亚洲精品国产成人久久av| 人妻少妇偷人精品九色| 黄色欧美视频在线观看| 男女免费视频国产| 国产男女内射视频| 亚洲人与动物交配视频| 久久久精品免费免费高清| 成年美女黄网站色视频大全免费 | 亚洲四区av| 免费少妇av软件| 午夜福利网站1000一区二区三区| 国产精品无大码| 国产伦精品一区二区三区视频9| 又大又黄又爽视频免费| 国产真实伦视频高清在线观看| 久久精品久久久久久噜噜老黄| 国产国拍精品亚洲av在线观看| 国产精品熟女久久久久浪| 精品一区二区三卡| 伊人亚洲综合成人网| 久久久精品94久久精品| 欧美3d第一页| 国产欧美亚洲国产| 亚洲av.av天堂| 午夜老司机福利剧场| 精品人妻一区二区三区麻豆| 日本-黄色视频高清免费观看| 亚洲精品乱久久久久久| 国产美女午夜福利| 欧美高清成人免费视频www| 亚洲精品亚洲一区二区| 久久人人爽av亚洲精品天堂| 国产深夜福利视频在线观看| 你懂的网址亚洲精品在线观看| 最近最新中文字幕免费大全7| 一本久久精品| 国产淫语在线视频| 国产黄色免费在线视频| 综合色丁香网| 免费黄网站久久成人精品| 亚洲经典国产精华液单| 18禁裸乳无遮挡动漫免费视频| 一本大道久久a久久精品| 成人综合一区亚洲| 伊人亚洲综合成人网| 狂野欧美激情性xxxx在线观看| 99热6这里只有精品| 亚洲精品一二三| 国产精品偷伦视频观看了| 人人澡人人妻人| 欧美日韩亚洲高清精品| 最近中文字幕2019免费版| 亚洲美女视频黄频| 男男h啪啪无遮挡| 国产在线一区二区三区精| av.在线天堂| 18禁裸乳无遮挡动漫免费视频| 男人爽女人下面视频在线观看| 少妇被粗大的猛进出69影院 | 午夜视频国产福利| 少妇人妻一区二区三区视频| 嫩草影院入口| 亚洲av成人精品一区久久| 美女大奶头黄色视频| 精品一区在线观看国产| 久热久热在线精品观看| 久久国产精品大桥未久av | 在线播放无遮挡| 国产 一区精品| 啦啦啦视频在线资源免费观看| 久久精品国产a三级三级三级| 国产有黄有色有爽视频| 有码 亚洲区| 国产69精品久久久久777片| 人妻制服诱惑在线中文字幕| 女人精品久久久久毛片| 欧美xxxx性猛交bbbb| 日日摸夜夜添夜夜添av毛片| 91aial.com中文字幕在线观看| 亚洲色图综合在线观看| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 一级毛片电影观看| 18禁动态无遮挡网站| 女人久久www免费人成看片| 日本vs欧美在线观看视频 | 2022亚洲国产成人精品| 精品少妇内射三级| 男女无遮挡免费网站观看| 自拍偷自拍亚洲精品老妇| 久久国产亚洲av麻豆专区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品aⅴ在线观看| 国国产精品蜜臀av免费| 三上悠亚av全集在线观看 | 麻豆乱淫一区二区| 女人久久www免费人成看片| 一本色道久久久久久精品综合| 曰老女人黄片| 五月开心婷婷网| 成人国产av品久久久| 亚洲欧洲日产国产| 国产成人免费无遮挡视频| 久久久久久久国产电影| 国产精品.久久久| 九九久久精品国产亚洲av麻豆| 午夜老司机福利剧场| 夜夜爽夜夜爽视频| 亚洲av日韩在线播放| 777米奇影视久久| 最近2019中文字幕mv第一页| 蜜桃在线观看..| 免费高清在线观看视频在线观看| 中文精品一卡2卡3卡4更新| av福利片在线| 免费不卡的大黄色大毛片视频在线观看| 亚洲av电影在线观看一区二区三区| 超碰97精品在线观看| 亚洲成色77777| 日本猛色少妇xxxxx猛交久久| 热re99久久精品国产66热6| 亚洲经典国产精华液单| 成人影院久久| 日日啪夜夜爽| av播播在线观看一区| 91精品伊人久久大香线蕉| 久久狼人影院| 国内揄拍国产精品人妻在线| 狂野欧美白嫩少妇大欣赏| 欧美日本中文国产一区发布| 自拍欧美九色日韩亚洲蝌蚪91 | 五月伊人婷婷丁香| 热99国产精品久久久久久7| 亚洲精华国产精华液的使用体验| 十分钟在线观看高清视频www | 纵有疾风起免费观看全集完整版| 亚洲欧洲精品一区二区精品久久久 | 久久韩国三级中文字幕| 久久97久久精品| 国产亚洲一区二区精品| 97超碰精品成人国产| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美在线一区| 美女cb高潮喷水在线观看| 高清在线视频一区二区三区| 国产精品一区二区在线观看99| 免费播放大片免费观看视频在线观看| 高清不卡的av网站| 国产精品蜜桃在线观看| 国产探花极品一区二区| 亚洲精品日韩av片在线观看| av国产精品久久久久影院| 国产精品伦人一区二区| 久久久久久久久久成人| 一级,二级,三级黄色视频| 日韩成人av中文字幕在线观看| 国产高清三级在线| 又大又黄又爽视频免费| 天堂俺去俺来也www色官网| 成人亚洲欧美一区二区av| 久久久精品94久久精品| 欧美精品高潮呻吟av久久| 欧美亚洲 丝袜 人妻 在线| 久久午夜福利片| 蜜桃在线观看..| 日韩制服骚丝袜av| 国产精品久久久久久精品古装| 在线天堂最新版资源| 日韩强制内射视频| 国产高清三级在线| 少妇被粗大猛烈的视频| 熟女人妻精品中文字幕| 国产男女超爽视频在线观看| 激情五月婷婷亚洲| 狂野欧美激情性bbbbbb| 新久久久久国产一级毛片| 大陆偷拍与自拍| 久久人人爽人人片av| 国产色爽女视频免费观看| 免费观看av网站的网址| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美激情极品国产一区二区三区 | 美女中出高潮动态图| 高清午夜精品一区二区三区| 在线观看三级黄色| 美女cb高潮喷水在线观看| 国产日韩欧美在线精品| 夜夜看夜夜爽夜夜摸| 亚洲av福利一区| 高清欧美精品videossex| 国产在线一区二区三区精| 寂寞人妻少妇视频99o| av在线播放精品| 男人添女人高潮全过程视频| 少妇丰满av| 久久久久国产精品人妻一区二区| .国产精品久久| 亚洲精品国产色婷婷电影| 中文在线观看免费www的网站| 日韩av在线免费看完整版不卡| 热re99久久国产66热| kizo精华| 久久人人爽人人爽人人片va| 久久久国产欧美日韩av| 九九久久精品国产亚洲av麻豆| 韩国高清视频一区二区三区| 男女啪啪激烈高潮av片| 国产片特级美女逼逼视频| 五月开心婷婷网| 国产高清国产精品国产三级| av专区在线播放| 亚洲av.av天堂| 国产无遮挡羞羞视频在线观看| 国产精品一区二区性色av| av卡一久久| 久久毛片免费看一区二区三区| 我的女老师完整版在线观看| 狠狠精品人妻久久久久久综合| 亚洲精品日韩在线中文字幕| 国产精品嫩草影院av在线观看| 久久久久久久久久成人| 久久久久人妻精品一区果冻| 国产淫语在线视频| 成人国产av品久久久| 国产一区有黄有色的免费视频| 国产熟女午夜一区二区三区 | 久久狼人影院| 大码成人一级视频| 内地一区二区视频在线| 一区在线观看完整版| 免费黄色在线免费观看| 国产女主播在线喷水免费视频网站| 精品卡一卡二卡四卡免费| 伊人久久精品亚洲午夜| 在线观看美女被高潮喷水网站| 国产乱人偷精品视频| 欧美区成人在线视频| 一区二区三区乱码不卡18| 免费观看的影片在线观看| 国产精品麻豆人妻色哟哟久久| 国产av码专区亚洲av| 亚洲精品久久久久久婷婷小说| 午夜免费鲁丝| freevideosex欧美| 国产综合精华液| 亚洲国产欧美日韩在线播放 | 国产精品久久久久久av不卡| 午夜福利,免费看| 一边亲一边摸免费视频| 99热这里只有是精品50| 日韩一本色道免费dvd| 亚洲欧洲精品一区二区精品久久久 | 草草在线视频免费看| 成人影院久久| 妹子高潮喷水视频| 国产伦理片在线播放av一区| 日韩精品有码人妻一区| 亚洲欧美清纯卡通| 精品一品国产午夜福利视频| 国产真实伦视频高清在线观看| 国产高清有码在线观看视频| 久久久久久久久久久丰满| 天天操日日干夜夜撸| 综合色丁香网| av在线老鸭窝| 婷婷色麻豆天堂久久| 国产成人免费无遮挡视频| 美女中出高潮动态图| 91aial.com中文字幕在线观看| 成人无遮挡网站| 又黄又爽又刺激的免费视频.| 国产极品粉嫩免费观看在线 | 高清在线视频一区二区三区| 久久久久久伊人网av| 免费看日本二区| 2022亚洲国产成人精品| 免费黄色在线免费观看| 天天躁夜夜躁狠狠久久av| 99久国产av精品国产电影| 高清午夜精品一区二区三区| 丰满少妇做爰视频| 大陆偷拍与自拍| 亚洲成人手机| .国产精品久久| 国产免费视频播放在线视频| 成人亚洲精品一区在线观看| 国产成人a∨麻豆精品| 人妻制服诱惑在线中文字幕| 国产免费视频播放在线视频| 久久女婷五月综合色啪小说| av在线播放精品| 精品人妻熟女毛片av久久网站| 国产高清国产精品国产三级| 国产伦在线观看视频一区| 国产精品一区二区在线不卡| 麻豆成人av视频| 噜噜噜噜噜久久久久久91| 国产在线男女| 国产日韩一区二区三区精品不卡 | 久久女婷五月综合色啪小说| 精品久久久精品久久久| 午夜福利在线观看免费完整高清在| 亚洲精品国产av成人精品| av福利片在线观看| 最近手机中文字幕大全| 久久99一区二区三区| 日韩欧美精品免费久久| 人体艺术视频欧美日本| 99久国产av精品国产电影| 亚洲欧美精品自产自拍| 国产精品嫩草影院av在线观看| 欧美xxⅹ黑人| 国产成人aa在线观看| 22中文网久久字幕| 51国产日韩欧美| 久久久久久久久久久久大奶| 韩国av在线不卡| 亚洲精品乱码久久久久久按摩| 最近的中文字幕免费完整| 一级,二级,三级黄色视频| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱码久久久久久按摩| 97精品久久久久久久久久精品| 成人毛片a级毛片在线播放| 大香蕉97超碰在线| 国内少妇人妻偷人精品xxx网站| 国产片特级美女逼逼视频| 交换朋友夫妻互换小说| 99热全是精品| av免费观看日本| 久久久久久久国产电影| 亚洲国产精品专区欧美| 国产成人精品一,二区| 国产成人精品婷婷| 国产又色又爽无遮挡免| 偷拍熟女少妇极品色| 久久精品国产亚洲av涩爱| 日本av手机在线免费观看| 欧美激情国产日韩精品一区| 卡戴珊不雅视频在线播放| 久久久久国产网址| 国产精品久久久久久av不卡| 尾随美女入室| 欧美日韩精品成人综合77777| 免费观看av网站的网址| 中文欧美无线码| 一本久久精品| 成人午夜精彩视频在线观看| 九九久久精品国产亚洲av麻豆| 在线免费观看不下载黄p国产| 免费观看在线日韩| 国产精品女同一区二区软件| 国产探花极品一区二区| 国产免费视频播放在线视频| 我要看日韩黄色一级片| 成年人免费黄色播放视频 | 丝袜在线中文字幕| 精品一区二区免费观看| 老女人水多毛片| 国产欧美另类精品又又久久亚洲欧美| 久久婷婷青草| 中国国产av一级| 麻豆成人av视频| 亚洲欧美日韩卡通动漫| 精品国产露脸久久av麻豆| 夜夜骑夜夜射夜夜干| 欧美xxⅹ黑人| 国产淫片久久久久久久久| 制服丝袜香蕉在线| 精品久久久精品久久久| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 永久网站在线| 嘟嘟电影网在线观看| 最新的欧美精品一区二区| 天堂俺去俺来也www色官网| 日本午夜av视频| 久久久久久久国产电影| 免费不卡的大黄色大毛片视频在线观看| 精品一区二区三卡| 亚洲精品国产色婷婷电影| 亚洲性久久影院| 久久青草综合色| 免费av不卡在线播放| 亚洲va在线va天堂va国产| 亚洲欧美精品自产自拍| av天堂中文字幕网| 一二三四中文在线观看免费高清| 最近中文字幕2019免费版| 日韩亚洲欧美综合| 亚洲av中文av极速乱| 久久精品久久久久久久性| 最黄视频免费看| 国产一区二区三区av在线| 亚洲美女搞黄在线观看| 国产亚洲91精品色在线| 亚洲国产精品999| 91精品国产国语对白视频| 久久国产精品大桥未久av | 制服丝袜香蕉在线| a级毛色黄片| 少妇丰满av| 少妇精品久久久久久久| 国国产精品蜜臀av免费| 欧美老熟妇乱子伦牲交| 国产精品久久久久久av不卡| 我的老师免费观看完整版| 日韩一区二区三区影片| 亚洲av成人精品一二三区| 亚洲av成人精品一区久久| 国产国拍精品亚洲av在线观看| 精品视频人人做人人爽| 国产视频首页在线观看| 成年人免费黄色播放视频 | 亚洲中文av在线| 99久久精品国产国产毛片| 国产精品一区二区性色av| 国产精品国产三级国产专区5o| av福利片在线| 久久国产精品男人的天堂亚洲 | 2022亚洲国产成人精品| 老司机影院成人| 日韩熟女老妇一区二区性免费视频| 99九九线精品视频在线观看视频| 99热这里只有是精品50| 十分钟在线观看高清视频www | 久久亚洲国产成人精品v| 国产精品人妻久久久影院| 内地一区二区视频在线| 男女边摸边吃奶| 久久6这里有精品| 免费大片黄手机在线观看| 国产亚洲欧美精品永久| 欧美xxxx性猛交bbbb| 九草在线视频观看| 中文精品一卡2卡3卡4更新| 久久久久国产精品人妻一区二区| 中国美白少妇内射xxxbb| 色婷婷av一区二区三区视频| 亚洲精品成人av观看孕妇| 美女脱内裤让男人舔精品视频| 中国国产av一级| 91成人精品电影| 国产精品偷伦视频观看了| 亚洲高清免费不卡视频| 久久亚洲国产成人精品v| 午夜激情久久久久久久| 久久久久久久亚洲中文字幕| 少妇人妻久久综合中文| 精品一区二区三卡| 校园人妻丝袜中文字幕| 熟女电影av网| 国产亚洲一区二区精品| 十分钟在线观看高清视频www | 国产亚洲91精品色在线| 在线精品无人区一区二区三| 免费观看的影片在线观看| 只有这里有精品99| 永久免费av网站大全| 男人爽女人下面视频在线观看| 永久网站在线| 18禁在线无遮挡免费观看视频| 精品人妻熟女毛片av久久网站| 亚洲情色 制服丝袜| 青春草视频在线免费观看| 一本色道久久久久久精品综合| 性色av一级| 国产女主播在线喷水免费视频网站| 亚洲,一卡二卡三卡| a级片在线免费高清观看视频| 99久久中文字幕三级久久日本| 啦啦啦啦在线视频资源| 亚洲欧美精品自产自拍| 婷婷色综合www| 岛国毛片在线播放| 最近中文字幕高清免费大全6| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品成人久久小说| 精品久久久久久久久亚洲| 美女中出高潮动态图| 亚洲欧美日韩卡通动漫| 22中文网久久字幕| 黑人巨大精品欧美一区二区蜜桃 | 色吧在线观看| 在线精品无人区一区二区三| 一本一本综合久久| 精品久久久久久久久亚洲| 久久狼人影院| 卡戴珊不雅视频在线播放| 在线观看av片永久免费下载| 老熟女久久久| 男女国产视频网站| av福利片在线观看| a级毛色黄片| 亚洲精品乱久久久久久| 伊人久久精品亚洲午夜| 久久久久精品性色| 成人国产麻豆网| 久久毛片免费看一区二区三区| 午夜91福利影院| 一区二区三区精品91| 亚洲图色成人| 亚洲av福利一区| 亚洲精华国产精华液的使用体验| 成人特级av手机在线观看| av专区在线播放| 亚洲精品国产色婷婷电影| 成人美女网站在线观看视频| 久久久久视频综合| 久久久久久久久久久丰满| av福利片在线| 国产视频内射| 亚洲精品日韩在线中文字幕| 国产淫片久久久久久久久| 日本-黄色视频高清免费观看| 久久午夜福利片| 国产男女超爽视频在线观看| av卡一久久| www.av在线官网国产| 王馨瑶露胸无遮挡在线观看| 日韩熟女老妇一区二区性免费视频| 狂野欧美激情性bbbbbb| 女人精品久久久久毛片| 国产探花极品一区二区| 欧美精品亚洲一区二区| 亚洲av男天堂| 国产探花极品一区二区| 精品久久久精品久久久| 国产永久视频网站| 男人狂女人下面高潮的视频| 国产一区亚洲一区在线观看| 国产在线免费精品| 2021少妇久久久久久久久久久| 午夜日本视频在线| 纯流量卡能插随身wifi吗| 激情五月婷婷亚洲| av.在线天堂| 午夜精品国产一区二区电影| 噜噜噜噜噜久久久久久91| 天堂中文最新版在线下载| 狠狠精品人妻久久久久久综合| 成人影院久久| 国产免费福利视频在线观看| 九九爱精品视频在线观看| 一级二级三级毛片免费看| 国产成人精品无人区| av线在线观看网站| 青青草视频在线视频观看| 寂寞人妻少妇视频99o| 亚洲不卡免费看| 免费av中文字幕在线| 九草在线视频观看| 中文字幕精品免费在线观看视频 | a 毛片基地| 国产极品天堂在线| 久久99热6这里只有精品| 国产一区二区在线观看日韩| 亚洲精品国产av蜜桃| 日日撸夜夜添|