王 珍 張曉莉 劉 淼 姚夢楠 孟曉靜 曲存民,2 盧 坤,2 李加納,2,* 梁 穎,2,*
甘藍(lán)型油菜超量表達(dá)及中油821的轉(zhuǎn)錄差異表達(dá)分析
王 珍1,2,**張曉莉1,**劉 淼3姚夢楠4孟曉靜1曲存民1,2盧 坤1,2李加納1,2,*梁 穎1,2,*
1西南大學(xué)農(nóng)學(xué)與生物科技學(xué)院 / 油菜工程研究中心, 重慶 400715;2西南大學(xué)現(xiàn)代農(nóng)業(yè)科學(xué)研究院, 重慶 400715;3貴州大學(xué)農(nóng)業(yè)生物工程研究院 / 山地植物資源保護與種質(zhì)創(chuàng)新教育部重點實驗室, 貴州貴陽 550025;4江蘇沿江地區(qū)農(nóng)業(yè)科學(xué)研究所 / 南通市農(nóng)業(yè)科學(xué)研究院, 江蘇南通 210014
甘藍(lán)型油菜(L.)是我國重要的油料作物之一, 具有較高的產(chǎn)量及營養(yǎng)價值。挖掘油菜廣譜抗逆基因并深入探究其分子機制, 對提高油菜抗逆性且保證產(chǎn)量及品質(zhì)具有重要意義。MAPK級聯(lián)(Mitogen-activated protein kinase cascades)是多種信號跨膜傳遞的交匯點, 參與生長發(fā)育、生物及非生物脅迫應(yīng)答等生物學(xué)過程。為了解甘藍(lán)型油菜基因的生物學(xué)功能, 本研究以超量表達(dá)(OE)和中油821 (CK)油菜為材料進行數(shù)字基因表達(dá)譜分析。結(jié)果顯示, 與CK相比, 650個基因在OE油菜中差異表達(dá); 其中上調(diào)表達(dá)基因243個, 下調(diào)表達(dá)基因407個。GO注釋共富集到生物學(xué)過程118條途徑, 其中18條與光合作用相關(guān)(包含77個差異表達(dá)基因); 分子功能7條途徑, 包括草酸氧化酶活性、錳離子結(jié)合、氧化還原酶活性等; 細(xì)胞組分38條途徑, 包括葉綠體、質(zhì)體、類囊體等。KEGG分析結(jié)果表明,參與調(diào)控油菜光合作用、碳代謝、次生代謝物生物合成等14條過程。此外, 利用實時熒光定量PCR驗證8個候選基因在OE和CK油菜中的表達(dá), 其表達(dá)變化與測序結(jié)果基本一致。本研究結(jié)果為甘藍(lán)型油菜在生長發(fā)育及光響應(yīng)等生物學(xué)過程中的功能分析奠定了基礎(chǔ), 也為農(nóng)作物廣譜抗逆遺傳育種提供了理論依據(jù)。
甘藍(lán)型油菜;; 差異表達(dá)基因(DEGs); 光合作用; 數(shù)字基因表達(dá)譜測序(DGE-seq)
油菜作為可食用葉類蔬菜及油用作物, 也用于花卉觀賞、生物燃料和動物飼料等, 分布在全球不同氣候地區(qū)[1]。全球油菜四大主產(chǎn)區(qū)為中國、加拿大、印度次大陸及德國、法國、英國等歐洲產(chǎn)區(qū), 我國是世界第一的油菜種植大國, 種植面積和總產(chǎn)量均已接近世界三分之一(FAOSTAT 2020; http://faostat.fao.org/), 在農(nóng)業(yè)生產(chǎn)中占據(jù)舉足輕重的地位。與白菜型油菜()和芥菜型油菜()相比, 甘藍(lán)型油菜()在植株的抗性和產(chǎn)量等方面都具有明顯的優(yōu)勢, 是我國廣泛種植的栽培種[2]。由于全球氣候的變化以及栽培方式的改變, 連續(xù)陰雨天氣導(dǎo)致的播栽推遲、越冬季節(jié)遭遇低溫和干旱疊加災(zāi)害、光照不足及病蟲草害頻發(fā)等問題, 正在嚴(yán)重制約著國民經(jīng)濟和油料產(chǎn)業(yè)的發(fā)展[3-5]。隨著綠色革命的發(fā)生, 育種目標(biāo)從單一高產(chǎn)轉(zhuǎn)向優(yōu)質(zhì)高抗高產(chǎn)等復(fù)合性狀目標(biāo), 使得培育減投增效和減損促穩(wěn)的作物新品種成為保障我國糧油供給的重大需求[6]。然而, 作物產(chǎn)量、品質(zhì)和生物與非生物抗逆性等重要農(nóng)藝性狀是由多個數(shù)量位點控制, 并且不同性狀之間存在連鎖性與模塊化調(diào)控[7-9]。因此, 挖掘油菜農(nóng)藝性狀形成的樞紐基因并解析其調(diào)控機理對油菜廣譜抗性新品種的培育具有重要的理論意義。
MAPK級聯(lián)(Mitogen-activated protein kinase cascades)是存在于所有真核生物中的保守信號轉(zhuǎn)導(dǎo)途徑, 參與植物的生長發(fā)育、生物和非生物脅迫應(yīng)答過程, 包括病蟲害、低溫、高溫、干旱、紫外線等[10-14]。經(jīng)典的MAPK級聯(lián)由3種激酶組成, 包括上游MEKKs (MAPK kinase kinases)與MKKs (MAPK kinases)模塊和下游MAPKs模塊[15]。植物在感知到刺激信號后, MAPK級聯(lián)將信號逐級傳遞并放大, 進而通過下游的轉(zhuǎn)錄因子、生物酶以及結(jié)構(gòu)蛋白等行使功能[13,16-17]。下游MAPKs模塊根據(jù)其保守TXY基序(磷酸化位點)被分為A-group~D-group, A-group~C-group為TEY基序, D-group為TDY基序; 其中, MAPK3/6/10屬于A-group, MAPK4/5/11/12/13屬于B-group, MAPK1/2/7/14屬于C-group, MAPK8/9/15/16/17/ 18/19/20屬于D-group[14]。
目前, MAPKs模塊的研究主要集中在A-group MAPK3/6和B-group MAPK4。研究報道, A-group MAPK3/6在擬南芥()、番茄()和水稻()等多種植物中均被發(fā)現(xiàn)與環(huán)境和激素應(yīng)答相關(guān), 包括響應(yīng)鹽脅迫、損傷、茉莉酸(jasmonic acid, JA)、水楊酸(Salicylic acid, SA)等[18-20]。擬南芥AtMAPK3/6通過MAPK級聯(lián)(AtMEKK1-AtMKK4/5- AtMAPK3/6)調(diào)控下游AtWRKY22/29轉(zhuǎn)錄因子, 進而有效抵御細(xì)菌()和真菌()的侵害[21]。B-group AtMAPK4能夠與AtMKS1 (MAPK substrate 1)和AtWRKY33結(jié)合形成復(fù)合體, 調(diào)控植保素(Camalexin)的生物合成參與防御反應(yīng)[22]。此外, AtMAPK4還被報道通過MAPKs級聯(lián)參與滲透、干旱、冷害、鹽害脅迫應(yīng)答以及雄性特異性減數(shù)分裂胞質(zhì)分裂過程[23-26]。C-group MAPKs被報道可能主要在植物的非生物脅迫應(yīng)答過程中起調(diào)控作用。研究表明, 擬南芥AtMEKK17/18- AtMKK3-AtMAPK1級聯(lián)受到PYR/PYL/RCAR-SnRK2- PP2C (Pyrabactin resistance/Pyrabactin resistance-like/ Regulatory component of ABA receptor-SNF1-related protein kinases 2-Protein phosphatases 2C)復(fù)合體的激活而響應(yīng)ABA[27]。AtMKK3-AtMAPK1-AtRBK1 (Rho-like GTPases from plants-binding kinase 1)級聯(lián)通過生長素信號途徑參與細(xì)胞擴張過程[28]。此外, MAPK1還被報道在擬南芥及豌豆()中響應(yīng)H2O2, 正向調(diào)控種子萌發(fā)過程[29-31]。與A-group~C-group不同的是, D-group MAPKs為植物特有, 可不依賴于經(jīng)典的MAPKs級聯(lián)途徑行使功能[32]。研究發(fā)現(xiàn), 玉米參與ABA、SA、JA、低溫、滲透、病原體等多種外源信號分子和脅迫應(yīng)答[33]。番茄通過糖和生長素代謝與信號傳遞而特異性調(diào)節(jié)減數(shù)分裂后的花粉發(fā)育過程[34]。這些研究表明, 植物是具有廣譜抗逆性的保守基因。因此, 甘藍(lán)型油菜基因的生物學(xué)功能研究對油菜廣譜抗性品種的選育具有重要意義。
本課題組前期分別對擬南芥、芥菜()、黑芥()、甘藍(lán)()、白菜()以及甘藍(lán)型油菜的MAPKs基因家族進行比對分析, 在甘藍(lán)型油菜中獲得29個基因(C-group包含5個基因), 其中(同源基因)在不同生長時期及不同組織器官中均有表達(dá), 并且能夠響應(yīng)JA、ABA、H2O2、損傷、核盤菌()、干旱及弱光脅迫誘導(dǎo)[35-36]。我們前期以BnMAPK1為誘餌, 通過酵母雙雜交文庫篩選發(fā)現(xiàn)BnMAPK1可能參與多種激素信號途徑、生物與非生物脅迫應(yīng)答、光合作用、次生代謝物的生物合成與代謝等生物學(xué)過程[37]。目前, 對下游MAPKs模塊的研究主要通過上游MEKKs和MKKs模塊與下游MAPKs模塊之間的相互作用進行功能分析, 受限于該級聯(lián)的逐級激活, 對C-group的生物學(xué)功能還知之甚少。本試驗以不依賴于MAPK級聯(lián)上游模塊的超量表達(dá)轉(zhuǎn)基因油菜及其受體為材料, 利用數(shù)字基因表達(dá)譜測序(digital gene expression profiling sequencing, DGE-seq)技術(shù)對調(diào)控的差異表達(dá)基因進行篩選及分析, 以深入解析在甘藍(lán)型油菜中的基因功能、下游應(yīng)答因子及其調(diào)控途徑。本研究為逐步完善甘藍(lán)型油菜的分子功能奠定基礎(chǔ), 同時也為MAPK級聯(lián)在油菜優(yōu)質(zhì)高抗高產(chǎn)品種改良中的應(yīng)用提供理論支撐。
供試材料超量表達(dá)轉(zhuǎn)基因油菜(OE)及對照受體材料中油821 (CK)由重慶市油菜工程技術(shù)研究中心提供[38]。()的開放閱讀框(open reading frame, ORF)通過限制性內(nèi)切酶I和I連接至pCAMBIA2301M超量表達(dá)載體后, 遺傳轉(zhuǎn)化至CK中。取飽滿一致的T3世代OE及CK種子, 播種于直徑12 cm的花盆中。待真葉長出后, 對轉(zhuǎn)基因植株進行陽性鑒定。首先, 每株植株選取一片真葉涂刷300 mg L-1Basta, 3 d后觀察葉片是否黃化。隨后, 選取無黃化的植株提取葉片DNA, 分別使用35S-F+OCS-R和Bar-F+Bar-R引物檢測和(Basta抗性基因)的插入。對PCR條帶正確的植株進一步提取RNA, 分別使用BnMAPK1- qF+BnMAPK1-qR和BnACT7-F+BnACT7-R引物進行實時熒光定量PCR (qRT-PCR)檢測和內(nèi)參基因()的表達(dá)水平(引物序列見表1)。檢測后的陽性植株每盆定苗3株, 種植于人工氣候光照培養(yǎng)箱(Conviron, 加拿大)。光照及溫度條件設(shè)置為16 h光照(25℃)/8 h黑暗(16℃), 光照強度800 μmol m?2s?1, 濕度50%~60%。分別選取1月齡(4~5葉)苗期健康且長勢一致的OE和CK組植株各6株, 每組材料中每3棵植株的第2~3片真葉取樣作為混合樣本, 迅速放入液氮中冷凍, 貯存于?80℃超低溫冰箱備用, 用于總RNA的提取。
采用TRIzol Reagent (Thermo Fisher Scientific, 美國), 參照說明書提取甘藍(lán)型油菜葉片總RNA, 并檢測RNA的完整性、濃度及純度。無明顯降解和污染的RNA樣品委托上海美吉生物醫(yī)藥科技有限公司進一步評估RNA質(zhì)量。檢測合格的RNA樣品用于DGE-seq文庫構(gòu)建及測序。使用Oligo(dT)磁珠(Thermo Fisher Scientific)富集分離mRNA。隨后采用Truseq RNA sample prep Kit (Illumina, 美國)將mRNA打斷, 以短片段mRNA為模板合成雙鏈cDNA并純化, 末端補平后, 3¢端加A并連接接頭。然后進行PCR擴增及純化, 使用TBS380和Agilent 2100對富集的文庫進行定量、稀釋及質(zhì)量檢測。最后采用Truseq PE Cluster Kit v3-cBot-HS (Illumina)對合格的文庫進行橋式擴增生成clusters, 利用Illumina HiSeq平臺進行測序。原始數(shù)據(jù)(Raw data)已上傳至NCBI (National Center for Biotechnology Information) SRA (Sequence Read Archive)數(shù)據(jù)庫(BioProject ID: PRJNA595447; Accession ID: SRR10681566, SRR10762584, SRR10681565, SRR10681567)。
表1 轉(zhuǎn)基因植株鑒定和差異表達(dá)基因驗證所用引物
DGE-seq的Raw data使用FastQC (http://www. bioinformatics.babraham.ac.uk/projects/fastqc/)和BBTools- BBDuk (https://jgi.doe.gov/data-and-tools/bbtools/)進行質(zhì)控, 獲得Clean data。以Genoscope數(shù)據(jù)庫甘藍(lán)型油菜為參考基因組(http://www.genoscope.cns.fr/brassicanapus/), 分別采用StringTie[39]和HISAT2[40]對Clean data進行序列組裝拼接和mapping比對。通過DESeq2 RLE (Relative Log Expression)算法[41]對比對結(jié)果進行歸一化、統(tǒng)計分析及差異表達(dá)(OE vs. CK)鑒定。為保證差異表達(dá)基因(differentially expressed genes, DEGs)的分析質(zhì)量, 剔除在一組材料中的FPKM (Fragments Per Kilobase of exon model per Million mapped fragments)值均為0的基因, 篩選閾值設(shè)置為adj<0.05和|log2Fold Change |>1。使用TBtools[42]對DEGs在OE及CK各植株中的表達(dá)進行可視化展示, 根據(jù)DEGs進行均一化分析及聚類分析; 熱圖顏色為各DEGs的表達(dá)情況, 以log2(FPKM+1)均一化數(shù)值表示。
利用GOstats平臺[43]對DEGs進行GO (Gene Ontology)和KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway顯著性富集分析。按照生物學(xué)過程、分子功能和細(xì)胞組分三大類別對DEGs進行GO注釋和富集分析, 閾值設(shè)置為adj<0.05。GO富集以柱狀圖進行可視化展示, X軸和Y軸分別表示GO Term名稱和富集顯著性。根據(jù)代謝通路對KEGG pathway進行分類和富集分析, 閾值設(shè)置為value<0.05。KEGG pathway使用R軟件包對各信號通路的DEGs富集進行可視化展示, X軸和Y軸分別表示富集顯著性和通路名稱, 氣泡大小和顏色分別表示富集基因數(shù)量和富集因子(該代謝通路中富集的DEGs數(shù)量占該通路所有注釋基因總數(shù)的百分比)。
結(jié)合GO和KEGG pathway富集分析, 篩選相關(guān)生物學(xué)途徑及其對應(yīng)DEGs。根據(jù)本研究中心前期甘藍(lán)型油菜中油821苗期逆境RNA-Seq數(shù)據(jù)(NCBI Database, BioProject ID: PRJNA680826), 對候選基因在苗期正常生長(Mock)及弱光(Shading)處理條件下的表達(dá)模式進行比較分析。根據(jù)前期甘藍(lán)型油菜中雙11品種各生長時期與組織器官的RNA-Seq數(shù)據(jù)(National Genomics Data Center, BioProject ID: PRJCA001246)[44], 對候選DEGs進行時空表達(dá)模式分析, 包括種子萌發(fā)期、苗期、蕾薹期、初花期、盛花期以及下胚軸、子葉、根系、莖、葉片、主序頂端、種子。使用TBtools對DEGs的log2(FPKM+1)值均一化并進行可視化分析。
為驗證DGE-seq數(shù)據(jù)及候選差異表達(dá)基因的可靠性, 采用Primer 3 (https://primer3.ut.ee/)在線工具[45]設(shè)計qRT-PCR特異引物(表1), 檢測8個DEGs在OE及CK材料中的表達(dá)。根據(jù)操作手冊使用TaKaRa SYBR Premix ExII Kit (Takara, 美國), 采用qTOWER2.2 quantitative real-time PCR thermal cycler system (Analytik Jena, 德國)進行qRT-PCR反應(yīng)。每個樣品3次重復(fù), 內(nèi)參基因為。反應(yīng)程序為: 95℃ 30 s; 95℃ 5 s, 60℃ 45 s, 40個循環(huán); 60℃ 45 s。反應(yīng)結(jié)束后, 采用qPCR soft 3.1 system (Analytik Jena)分析Ct值, 并使用2?ΔΔCt算法[46]分析各DEGs的相對表達(dá)量。
分別采用35S-F+OCS-R和Bar-F+Bar-R引物對OE植株進行PCR鑒定, 前者產(chǎn)物長度約為1800 bp, 后者約為530 bp (附圖1-A, B), 表明目的基因與抗性基因已整合至植物基因組中。利用qRT-PCR對CK及OE植株的相對表達(dá)量進行檢測(附圖1-C), 選取長勢一致且表達(dá)水平接近的植株進行DGE-seq分析。將DGE-seq質(zhì)控后的Clean data與甘藍(lán)型油菜基因組進行比對, 并對所有基因在各轉(zhuǎn)錄本中的表達(dá)進行差異顯著性分析。根據(jù)基因在各樣本間的|log2Fold Change|>1及adj<0.05篩選標(biāo)準(zhǔn), 并且同組材料中至少一個轉(zhuǎn)錄本的FPKM≠0, 與CK相比, 在OE轉(zhuǎn)基因甘藍(lán)型油菜中共獲得650個DEGs, 其中上調(diào)與下調(diào)的DEGs分別為243、407個, 分別占總DEGs的37.38%、62.62% (圖1和附表1)。表達(dá)上調(diào)與下調(diào)2~4倍的DEGs分別為91、101個, 分別占總上調(diào)與總下調(diào)DEGs的37.45%、24.82%; 表達(dá)上調(diào)與下調(diào)4~8倍的DEGs分別為73個和117個, 分別占總上調(diào)與總下調(diào)DEGs的30.04%、28.75% (附圖1-D和附表1)。表明, DEGs的表達(dá)水平變化主要集中在8倍以內(nèi), 表現(xiàn)出高度的不均一性。
圖1 BnMAPK1超量表達(dá)(OE)及對照(CK)甘藍(lán)型油菜間的650個差異表達(dá)基因(DEGs)熱圖
Fig. 1 Heatmap of 650 differentially expressed genes (DEGs)between-overexpression (OE) and the control (CK) in rapeseed
熱圖顏色代表DEGs均一化后的log2(FPKM+1)數(shù)值, |log2Fold Change|>1且adj.< 0.05。
The color in the heatmap represents the log2(FPKM+1) value of DEGs after normalization, with |log2Fold Change|>1 andadj.< 0.05.
對650個DEGs進行GO功能注釋, 分別富集到生物學(xué)過程、分子功能和細(xì)胞組分118、7和38條pathways (附表2)。其中, 生物學(xué)過程主要包括光合作用(GO:0015979)、響應(yīng)蔗糖(GO:0009744)和響應(yīng)細(xì)菌(GO:0009617)等; 分子功能主要包括草酸氧化酶活性(GO:0050162)、錳離子結(jié)合(GO:0030145)和氧化還原酶活性(GO:0016491)等; 細(xì)胞組分主要包括葉綠體(GO:0009507)、質(zhì)體(GO:0009536)和類囊體(GO:0009579)等(圖2-A和附表2)。值得注意的是, GO生物學(xué)過程共富集到18條與光合作用相關(guān)的pathways, 包括光合作用光反應(yīng)(GO:0019684)、光系統(tǒng)II的組裝(GO:0010207)和光合電子傳遞鏈(GO:0009767)等(圖2-B和附表3)。其中, 與光合作用相關(guān)的DEGs共77個, 上調(diào)DEGs僅有3個(3.90%), 下調(diào)基因74個(96.10%); 這些基因主要參與光反應(yīng)、光系統(tǒng)II、氣孔復(fù)合體形態(tài)建成、光合色素、四吡咯合成及代謝、電子傳遞以及對藍(lán)光、紅光與遠(yuǎn)紅光的響應(yīng)過程(附圖2和附表4)。
圖2 BnMAPK1超量表達(dá)(OE)及對照(CK)甘藍(lán)型油菜DGE-seq中DEGs的Top 10 GO注釋分析(A)及光合作用相關(guān)的GO-BP途徑富集分析(B)
GO分類分別為生物學(xué)過程、分子功能和細(xì)胞組分。GO:0006091表示前體代謝物和能量的產(chǎn)生; GO:0016623表示氧化還原酶活性, 作用于供體的醛基或氧代基團, 氧為受體; GO:0016903表示氧化還原酶活性, 作用于供體的醛基或氧代基團; GO:0003868表示4-羥基苯基丙酮酸雙加氧酶活性。DEGs: 差異表達(dá)基因。
GO category including biological process, molecular function, and cellular component. GO:0006091 represents the generation of precursor metabolites and energy; GO:0016623 represents the oxidoreductase activity, acting on the aldehyde or oxo group of donors, oxygen as acceptor;GO:0016903 represents the oxidoreductase activity, acting on the aldehyde or oxo group of donors; GO:0003868 represents 4-hydroxyphenylpyruvate dioxygenase activity. DEGs: differentially expressed genes.
為進一步了解可能參與的代謝途徑與信號轉(zhuǎn)導(dǎo)過程, 對650個DEGs進行KEGG pathway富集分析。結(jié)果顯示, 650個DEGs主要分布在14條KEGG pathways中, 主要包括光合作用(ko00195)、碳代謝(ko01200)和丙酮酸代謝(ko00620)等(附表5和圖3)。其中, 光合作用pathway最顯著, 共有9個DEGs, 它們在GO pathway中也被富集到, 這些結(jié)果表明可能在甘藍(lán)型油菜光合作用中扮演重要角色。
對GO和KEGG pathway均富集到的9個DEGs進一步分析發(fā)現(xiàn), 它們在超量表達(dá)后均發(fā)生顯著下調(diào)(表2)。9個基因分別參與光合作用pathway中光系統(tǒng)I、光系統(tǒng)II和光合電子傳遞過程(圖4)。其中,(,)與(,)基因參與光系統(tǒng)I, 分別下調(diào)9.73倍和6.87倍;(,)、(,)與(,)基因參與光系統(tǒng)II, 分別下調(diào)8.48、5.32和3.06倍;(,,,,)基因參與光合電子傳遞過程, 分別下調(diào)35.79、24.12、5.72和4.01倍(表2、圖4和圖5-A)。表明可能參與光合作用中光系統(tǒng)I、光系統(tǒng)II與電子傳遞受體的表達(dá)調(diào)控。
圖3 BnMAPK1超量表達(dá)(OE)及對照(CK)甘藍(lán)型油菜DGE-seq中DEGs的Top 10 KEGG pathway富集分析
DEGs: 差異表達(dá)基因。DEGs: differentially expressed genes.
表2 BnMAPK1超量表達(dá)(OE)與對照(CK)甘藍(lán)型油菜的候選光合作用差異表達(dá)基因列表
(續(xù)表2)
圖4 BnMAPK1超量表達(dá)(OE)及對照(CK)甘藍(lán)型油菜DEGs光合作用(ko00195)通路圖
DEGs: 差異表達(dá)基因。DEGs: differentially expressed genes.
利用本課題組前期的甘藍(lán)型油菜中油821品種正常生長與弱光處理的RNA-seq數(shù)據(jù), 分析9個DEGs對弱光脅迫的應(yīng)答模式。結(jié)果顯示, 與正常生長條件相比,()成員在弱光條件下的基因表達(dá)上調(diào), 是正常生長環(huán)境下該基因表達(dá)量的1.24倍; 其余8個DEGs的表達(dá)均下調(diào), 是正常生長條件下基因表達(dá)量的0.30~0.91倍(圖5-B)。根據(jù)本研究室甘藍(lán)型油菜中雙11品種不同組織器官及不同生長時期的RNA-seq數(shù)據(jù), 對9個DEGs的時空表達(dá)模式進行分析。結(jié)果顯示, 光系統(tǒng)I和電子傳遞受體()基因在各生長時期及各組織器官中幾乎不表達(dá); 其余7個DEGs在根系中的表達(dá)均較低, 在葉片(子葉、幼葉與成熟葉)中的表達(dá)最高, 在莖、主序頂端及幼嫩種子(Se_10d)中也有表達(dá)(圖5-C)。葉片作為甘藍(lán)型油菜光合作用的主要場所, 光合作用直接影響其生長發(fā)育、產(chǎn)量及抗性等過程。因此, 我們推測基因可能在光合作用途徑, 尤其是光系統(tǒng)及電子傳遞過程中扮演著重要角色, 進而可能參與調(diào)控甘藍(lán)型油菜的生長發(fā)育和光響應(yīng)等過程。
圖5 BnMAPK1參與甘藍(lán)型油菜光合作用途徑的候選基因的表達(dá)模式分析
A: 候選基因在DGE-seq中的差異表達(dá); B: 候選基因在甘藍(lán)型油菜中油821品種中的弱光應(yīng)答模式; C: 候選基因在甘藍(lán)型油菜中雙11品種不同時期不同組織中的時空表達(dá)模式。Ro_48h: 種子萌發(fā)48 h根系; Ro_s: 苗期根系; Ro_b: 蕾薹期根系; Ro_i: 初花期根系; Ro_f: 盛花期根系。Hy_48h: 種子萌發(fā)48 h下胚軸; St_b: 蕾薹期莖; St_i: 初花期莖; St_f: 盛花期莖。Co_48h: 種子萌發(fā)48 h子葉; LeY_s: 苗期幼葉; LeY_b: 蕾薹期幼葉; LeY_i: 初花期幼葉; LeY_f: 盛花期幼葉。LeM_b: 蕾薹期成熟葉; LeM_i: 初花期成熟葉; LeM_f: 盛花期成熟葉。IT_i: 初花期主序頂端; IT_f: 盛花期主序頂端。Se_10d: 花后10 d種子; Se_21d: 花后21 d種子; Se_30d: 花后30 d種子; Se_40d: 花后40 d種子。熱圖顏色代表DEGs均一化后的log2(FPKM+1)數(shù)值, |log2Fold Change|>1且adj<0.05。
A: the differential expression level of candidate genes in DGE-seq; B: shading stress response patterns of candidate genes inZhongyou 821; C: the spatial and temporal expression patterns of candidate genes in different tissues at different stages inZhongshuang11. Ro_48h: root at 48 h after seed germination; Ro_s: root at seedling stage; Ro_b: root at bolting stage; Ro_i: root at initial bloom stage; Ro_f: root at full bloom stage. Hy_48h: hypocotyl at 48 h after seed germination; St_b: stem at bolting stage; St_i: stem at initial bloom stage; St_f: stem at full bloom stage. Co_48h: cotyledons at 48 h after seed germination; LeY_s: young leaf at seedling stage; LeY_b: young leaf at bolting stage; LeY_i: young leaf at initial bloom stage; LeY_f: young leaf at full bloom stage. LeM_b: mature leaf at bolting stage; LeM_i: mature leaf at initial bloom stage; LeM_f: mature leaf at full bloom stage. IT_i: tip of main inflorescence at initial bloom stage; IT_f: tip of main inflorescence at full bloom stage. Se_10d: seed at 10 d after flowering; Se_21d: seed at 21 d after flowering; Se_30d: seed at 30 d after flowering; Se_40d: seed at 40 d after flowering. The color in the heatmap represents the log2(FPKM+1) value of DEGs after normalization, with |log2Fold Change|>1 andadj<0.05.
為驗證DGE-seq結(jié)果的準(zhǔn)確性, 設(shè)計特異引物對超量表達(dá)及對照植株的8個DEGs進行qRT-PCR驗證。采用作為內(nèi)參基因, 計算8個DEGs的相對表達(dá)量。其中, 5個下調(diào)DEGs與光系統(tǒng)復(fù)合體及電子傳遞受體相關(guān), 包括、、、和(), 在OE植株中的表達(dá)量是CK的0.10~0.33倍(圖6-A~E)。3個上調(diào)DEGs與生長發(fā)育相關(guān), 包括(,)、(,)和(,)。被報道通過生長素與ABA信號途徑正向調(diào)控擬南芥的根系和花藥的發(fā)育過程[47], 雜草地膚()突變后導(dǎo)致維管束系統(tǒng)發(fā)育受阻且光合作用效率顯著下降[48]。CDC5作為植物、動物和真菌中保守的MYB相關(guān)蛋白, 正向調(diào)控初級mRNA的轉(zhuǎn)錄后加工[49]; 同時, CDS作為細(xì)胞周期調(diào)節(jié)劑, 還參與擬南芥莖尖分生組織的細(xì)胞分裂過程[50]?;蚴强缍_花植物所必需的基因,被報道可能作為負(fù)調(diào)控因子參與梅花()和番茄的開花過程[51-52]。qRT-PCR結(jié)果顯示,、和基因在OE油菜中的表達(dá)量分別為CK植株的2.14、4.18和10.20倍(圖6-F~H)。將qRT-PCR結(jié)果與DGE-seq數(shù)據(jù)進行比較分析, 結(jié)果如圖6-I~J所示, 8個DEGs的測序表達(dá)變化趨勢與qRT-PCR中的表達(dá)變化結(jié)果基本一致, 同時DGE-seq數(shù)據(jù)與qRT-PCR結(jié)果一致性高(2=0.9686), 表明DGE-seq數(shù)據(jù)的可靠性, 可以用來分析在甘藍(lán)型油菜中的基因功能。
圖6 BnMAPK1超量表達(dá)(OE)及對照(CK)甘藍(lán)型油菜DGE-seq中DEGs的qRT-PCR驗證結(jié)果
A~H: 8個DEGs的相對表達(dá)量; I: 8個DEGs在DGE-seq中的差異表達(dá)倍數(shù); J: 8個DEGs qRT-PCR與DGE-seq的相關(guān)性分析。DEGs: 差異表達(dá)基因。
A–H: the relative expression levels of eight DGEs; I: the differential expression folds of eight DEGs in DGE-seq; J: the correlation between qRT-PCR and DGE-seq of eight DEGs. DEGs: differentially expressed genes.
MAPK級聯(lián)是植物調(diào)控生長發(fā)育過程、響應(yīng)生物與非生物脅迫的主要信號通路[32,53-54]。下游的MAPKs模塊已在擬南芥、水稻、玉米、小麥、棉花及番茄等多種植物中被鑒定, 其中C-group基因被報道參與生長素誘導(dǎo)的細(xì)胞擴張, 響應(yīng)損傷、JA、ABA、SA、ROS、H2O2及鹽脅迫等[27-29,32,55-58]。值得注意的是, 不同物種對相同的刺激會做出不同的應(yīng)答, 且對應(yīng)的信號轉(zhuǎn)導(dǎo)途徑也不相同[59]。結(jié)合前期對甘藍(lán)型油菜BnMAPKs家族的鑒定與逆境應(yīng)答模式分析以及BnMAPK1的酵母雙雜交文庫篩選發(fā)現(xiàn),基因在多種生物與非生物脅迫應(yīng)答中具有重要調(diào)控作用, 如病原菌、激素信號途徑、高溫、干旱、光照等[35-37]。隨著高通量組學(xué)技術(shù)的不斷發(fā)展及其應(yīng)用成本的降低, 采用轉(zhuǎn)錄水平的測序已經(jīng)成為快速解析基因分子功能及其下游調(diào)控基因的手段之一。本研究對超量表達(dá)轉(zhuǎn)基因油菜及其對照植株進行DEG-Seq分析發(fā)現(xiàn),超量表達(dá)后共有650個基因差異表達(dá)(附表1), 這些基因?qū)樵诟仕{(lán)型油菜中的生物學(xué)功能、相關(guān)的信號途徑及其分子機制的研究提供基礎(chǔ)。
在自然界中, 光合作用是植物的能量來源, 直接決定植物的生長發(fā)育和形態(tài)建成, 是植物生物與非生物脅迫應(yīng)答的基礎(chǔ)[60]。本研究對超量表達(dá)油菜650個DEGs的GO富集分析結(jié)果顯示, 這些差異基因主要集中在光合作用、響應(yīng)蔗糖和細(xì)菌、前體代謝物及能量的產(chǎn)生、小分子代謝過程等; 77個DEGs的注釋結(jié)果顯示參與調(diào)控光合作用過程, 包括光合電子傳遞和光合結(jié)構(gòu)相關(guān)的氣孔復(fù)合體與色素系統(tǒng)等, 其中僅有3個光合相關(guān)DEGs表達(dá)上調(diào)(附表2~附表4)。在植物的光呼吸作用中, 纈氨酸通過氧化脫羧和酯化以及去飽和形成β-羥基異丁酰輔酶A (HIBYL-CoA, β-hydroxyisobutyryl-CoA), 隨后經(jīng)過硫酯水解與氧化等過程逐步形成丙酰輔酶A[61]。研究報道, 擬南芥()基因編碼HIBYL-CoA水解酶, 參與脂肪酸β氧化、過氧化物酶體纈氨酸的分解過程和植物生長素信號途徑, 并正向調(diào)控植物的耐冷性[61-62]。我們的DGE-seq數(shù)據(jù)顯示, 與對照植株相比,超量表達(dá)植株中()基因的表達(dá)水平顯著上調(diào)5.27倍(附表3)。因此, 推測可能在光合作用、生長發(fā)育及冷脅迫應(yīng)答過程中扮演著重要角色。高等植物中, Tic20 (Translocon at the inner envelope membrane of chloroplasts 20)是葉綠體內(nèi)包膜前體蛋白的易位中心, 主要負(fù)責(zé)將細(xì)胞質(zhì)前體蛋白識別并轉(zhuǎn)運至葉綠體基質(zhì)中行使光合功能[63]。擬南芥AtTic20分為2個亞族Group1 (AtTic20-I、-IV)和Group2 (AtTic20-II、-V), Group1在擬南芥中的功能較Group2更重要; 其中AtTic20-II在光合作用及胚胎和種子發(fā)育過程具有調(diào)控作用, 但各異構(gòu)體之間存在嚴(yán)重的功能冗余[63]。在我們的研究中,()基因在超量表達(dá)后顯著上調(diào)4.38倍, 而其他3種異構(gòu)體在DGE-seq中的無差異表達(dá)(附表3)。這些結(jié)果表明, 甘藍(lán)型油菜中BnTic20不同異構(gòu)體之間的功能重要性可能與擬南芥各不相同。與MAPKs相似的另一種絲氨酸/蘇氨酸蛋白激酶雷帕霉素靶蛋白TOR (Target of Rapamycin), 也是真核生物中非常保守的信號通路。胞質(zhì)磷酸核糖基焦磷酸合成酶PRS4 (Phosphoribosyl diphosphate synthase 4)作為一種關(guān)鍵調(diào)節(jié)酶, 是促進植物TOR活性的必需基因, 在協(xié)調(diào)植物的生長發(fā)育、代謝穩(wěn)態(tài)與營養(yǎng)供應(yīng)中發(fā)揮著重要作用[64]。本研究中()基因在OE植株中顯著上調(diào)表達(dá)3.81倍(附表3)。有意思的是, 光自養(yǎng)植物的SnRK1 (Sucrose non-fermenting-1 (SNF1)-related kinase 1)和TOR在糖信號和能量傳遞中是以拮抗方式調(diào)節(jié)生長發(fā)育[65], 前期研究發(fā)現(xiàn)可以招募BnSnRK1的PV42a亞基(BnaA06g10010D), 正向調(diào)控的轉(zhuǎn)錄表達(dá), 這些數(shù)據(jù)表明甘藍(lán)型油菜SnRK1-TOR信號網(wǎng)絡(luò)可能與MAPKs級聯(lián)途徑密切相關(guān)。此外, 前期發(fā)現(xiàn)中包含了大量光合相關(guān)的順式作用元件, 且的表達(dá)受到弱光脅迫的誘導(dǎo)[36]。表明可能在甘藍(lán)型油菜的光合作用過程中具有重要的調(diào)控作用。
高等植物的光合作用是一個非常復(fù)雜的生物過程, 涉及光系統(tǒng)I、光系統(tǒng)II、Cyt b6/f復(fù)合體(Cytochrome b6/f complex)、ATP合成酶以及其他電子傳遞相關(guān)因子等[66]。DGE-seq研究發(fā)現(xiàn),超量表達(dá)植株中光合相關(guān)的其他DEGs均表現(xiàn)為顯著下調(diào); 其中, 編碼光合作用通路(ko00195)光系統(tǒng)I中PSAF與PSAG亞基、光系統(tǒng)II中PSBO、PSBY與PSBS亞基以及光合電子傳遞中PetF亞基的9個DEGs均下調(diào)表達(dá)(表2和圖4)。研究報道, 高等植物中PSAF亞基的N段具有螺旋-螺旋模體, 使得植物的光系統(tǒng)I能夠有效的與電子遞體質(zhì)體藍(lán)素相結(jié)合, 并通過Cyt b6/f復(fù)合體保證電子傳遞的進程[67]。PSAG亞基是植物和綠藻所特有的, PSAG與自身的2個跨膜螺旋構(gòu)成捕光復(fù)合體(LHC, light harvesting complex) I結(jié)合的表面, 同時其C端伸出的20個氨基酸為Cyt b6/f復(fù)合體提供結(jié)合表面[68]。本研究中,和基因在OE植株中顯著下調(diào), 編碼光系統(tǒng)I電子遞體鐵氧還蛋白的4個基因也下調(diào)表達(dá); 但編碼光系統(tǒng)I其他亞基及其他電子遞體如質(zhì)體藍(lán)素的相關(guān)基因均無差異表達(dá)(附表3和圖4), 這表明對光系統(tǒng)I的調(diào)控可能主要集中在電子傳遞過程。
在光系統(tǒng)II中, 核基因編碼的PSBO亞基是高等植物和藍(lán)藻中均存在的非常保守的膜外在蛋白, 結(jié)合在類囊體腔一側(cè), 是光合放氧活性所必需的[69]。低分子質(zhì)量膜蛋白的PSBY亞基被報道也與光系統(tǒng)II相聯(lián)系, 可能是維持光系統(tǒng)II的結(jié)構(gòu)完整和雙體構(gòu)象以及葉綠素、類胡蘿卜素、脂分子的結(jié)合環(huán)境[70]。PSBS亞基也是真核光合生物所獨有的蛋白, 擬南芥突變體被報道不能進行快速可逆的高能淬滅[71]。DGE-seq顯示, 編碼上述亞基的、與基因在OE植株中均顯著下調(diào); 并且編碼外周天線蛋白LHC II中LHCB1 (Chlorophyllbinding protein 1)和LHCB4 (Light-harvesting complex II chlorophyllbinding protein CP29)亞基的()和()基因也顯著下調(diào)表達(dá)(附表3)。在高等植物和一些藻類中, LHCB1與LHCB2、LHCB3組合形成三聚體, LHCB4與LHCB5、LHCB6組合形成LHC II外周天線, 在增強蛋白質(zhì)穩(wěn)定性、有效捕獲光能和控制能量耗散上發(fā)揮重要作用[72]。因此, 我們推測對光系統(tǒng)II的調(diào)控可能是通過控制光系統(tǒng)II-LHC II超級復(fù)合體的穩(wěn)定性而影響甘藍(lán)型油菜的光合作用過程。
盡管在甘藍(lán)型油菜光合作用中的功能還有待進一步的研究, 但這些基于DGE-seq的數(shù)據(jù)為其基因功能及其調(diào)控網(wǎng)絡(luò)的深入研究奠定了基礎(chǔ), 同時也為甘藍(lán)型油菜新種質(zhì)資源的開發(fā)和應(yīng)用提供了理論依據(jù)。
附圖和附表 請見網(wǎng)絡(luò)版: 1) 本刊網(wǎng)站http://zwxb. chinacrops.org/; 2) 中國知網(wǎng)http://www.cnki.net/; 3) 萬方數(shù)據(jù)http://c.wanfangdata.com.cn/Periodicalzuowxb.aspx。
[1] Confortin T C, Todero I, Luft L, Ugalde G A, Mazutti M A, Oliveira Z B, Bottega E L, Knies A E, Zabot G L, Tres M V. Oil yields, protein contents, and cost of manufacturing of oil obtained from different hybrids and sowing dates of canola., 2019, 7: 102972.
[2] 王愛凡, 康雷, 李鵬飛, 李再云. 我國甘藍(lán)型油菜遠(yuǎn)緣雜交和種質(zhì)創(chuàng)新研究進展. 中國油料作物學(xué)報, 2016, 38: 691–698.
Wang A F, Kang L, Li P F, Li Z Y. Review on new germplasm development inthrough wide hybridizations in China., 2016, 38: 691–698 (in Chinese with English abstract).
[3] Hasanuzzaman M. The Plant Family Brassicaceae. Singapore: Springer Nature Press, 2012. pp 1–43.
[4] Raza A. Eco-physiological and biochemical responses of rapeseed (L.) to abiotic stresses: consequences and mitigation strategies., 2021, 40: 1368–1388.
[5] He H, Lei Y, Yi Z, Raza A, Zeng L, Yan L, Xiao Y D, Yong C, Xi L Z. Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (L.) seedlings., 2021, 94: 161–170.
[6] 景海春, 田志喜, 種康, 李家洋. 分子設(shè)計育種的科技問題及其展望概論. 中國科學(xué): 生命科學(xué), 2021, 51: 1356–1365.
Jing H C, Tian Z X, Chong K, Li J Y. Progress and perspective of molecular design breeding., 2021, 51: 1356–1365 (in Chinese with English abstract).
[7] Wollenweber B, Porter J R, Lübberstedt T. Need for multidisciplinary research towards a second green revolution., 2005, 8: 337–341.
[8] Chen Y, Lübberstedt T. Molecular basis of trait correlations., 2010, 15: 454–461.
[9] Pingali P L. Green revolution: impacts, limits, and the path ahead., 2012, 109: 12302–12308.
[10] Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C E, Heberle B E, Ellis B E, Morris P C, Innes R W, Ecker J R, Scheel D, Klessig D F, Machida Y, Mundy J, Ohashi Y, Walker J C. Mitogen-activated protein kinase cascades in plants: a new nomenclature., 2002, 7: 301–308.
[11] Claudia J, Laszlo ?, Laszlo B, Heribert H. Complexity, cross talk and integration of plant MAP kinase signaling., 2002, 5: 415–424.
[12] Pitzschke A, Schikora A, Hirt H. MAPK cascade signaling networks in plant defense., 2009, 12: 421–426.
[13] [13] Cristina M, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants., 2010, 61: 621–649.
[14] Zhang M, Su J, Zhang Y, Xu J, Zhang S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense., 2018, 45: 1–10.
[15] Colcombet J, Hirt H.MAPKs: a complex signaling network involved in multiple biological processes., 2008, 413: 217–226.
[16] Popescu S C, Popescu G V, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh K S P. MAPK target networks inrevealed using functional protein microarrays., 2009, 23: 80–92.
[17] Andreasson E, Ellis B. Convergence and specificity in theMAPK nexus., 2010, 15: 106–113.
[18] Kiegerl S, Cardinale F, Siligan C, Gross A, Baudouin E, Liwosz A, Ekl?f S, Till S, B?gre L, Hirt H, Meskiene I. SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK., 2000, 12: 2247–2258.
[19] Zhang S, Klessig D F. MAPK cascade in plant defense signaling., 2001, 6: 520–527.
[20] Seo S, Katou S, Seto H, Gomi K, Ohashi Y. The mitogen-activated protein kinases WIPK and SIPK regulate the levels of jasmonic and salicylic acids in wounded tobacco plants., 2007, 49: 899–909.
[21] Asai T, Tena G, Plotnikova J, Willmann M R, Chiu W L, Gomez G L, Boller T, Ausubel F M, Sheen J. MAP kinase signaling cascade ininnate immunity., 2002, 415: 977–983.
[22] Qiu J L, Fiil B K, Petersen K, Nielsen H B, Botanga C J, Thorgrimsen S, Palma K, Suarez R M C, Sandbech C S, Lichota J, Brodersen P, Grasser K D, Mattsson O, Glazebrook J, Mundy J, Petersen M.MAP kinase 4 regulates gene expression through transcription factor release in the nucleus., 2008, 27: 2214–2221.
[23] Droillard M J, Boudsocq M, Barbier B H, Laurière C. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of: activation by hypoosmolarity and negative role in hyperosmolarity tolerance., 2004, 574: 42–48.
[24] Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y. The MAP kinase MPK4 is required for cytokinesis in., 2010, 22: 3778–3790.
[25] Zeng Q, Chen J G, Ellis B E. AtMPK4 is required for male-specific meiotic cytokinesis in., 2011, 67: 895–906.
[26] Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl J L, Hirt H. The MKK2 pathway mediates cold and salt stress signaling in., 2004, 15: 141–152.
[27] Danquah A, Zélicourt A, Boudsocq M, Neubauer J, Frei F N, Leonhardt N, Pateyron S, Gwinner F, Tamby J P, Ortiz M D, Marcote M J, Hirt H, Colcombet J. Identification and characterization of an ABA-activated MAP kinase cascade in., 2015, 82: 232–244.
[28] Enders T A, Frick E M, Strader L C. Ankinase cascade influences auxin-responsive cell expansion., 2017, 92: 68–81.
[29] Danquah A, Zelicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses., 2014, 32: 40–52.
[30] Ortiz M D, Perez A M A, Carbonell P, Aniento F, Carbonell J, Marcote M J. Characterization of, the first C1 subgroup MAP kinase from pea (L.)., 2008, 227: 1333–1342.
[31] Barba E G, Diaz V P, Job D, Belghazi M, Job C, Hernández J A. Understanding the role of H2O2during pea seed germination: a combined proteomic and hormone profiling approach., 2011, 34: 1907–1919.
[32] Zhang M, Zhang S. Mitogen-activated protein kinase cascades in plant signaling., 2022, 64: 301–341.
[33] Pan J, Zhang M, Kong X, Xing X, Liu Y, Zhou Y, Liu Y, Sun L, Li D., a novel maize group D MAP kinase gene, is involved in multiple stress responses., 2012, 235: 661–676.
[34] Chen L, Yang D, Zhang Y, Wu L, Zhang Y, Ye L, Pan C, He Y, Huang L, Ruan Y, Lu G. Evidence for a specific and critical role of mitogen-activated protein kinase 20 in uni-to-binucleate transition of microgametogenesis in tomato., 2018, 219: 176–194.
[35] 陸俊杏, 陸奇豐, 張凱, 柴友榮, 李加納, 錢偉, 呂俊, 盧坤, 梁穎. 甘藍(lán)型油菜在損傷和病原菌脅迫下的表達(dá)模式分析. 中國農(nóng)業(yè)科學(xué), 2013, 46: 4388–4396.
Lu J X, Lu Q F, Zhang K, Chai Y R, Li J N, Qian W, Lyu J, Lu K, Liang Y. Expression features ofin wound and pathogenetic fungi stress., 2013, 46: 4388–4396 (in Chinese with English abstract).
[36] Wang Z, Wan Y, Meng X, Zhang X, Yao M, Miu W, Zhu D, Yuan D, Lu K, Li J, Qu C, Liang Y. Genome-wide identification and analysis of MKK and MAPK gene families inspecies and response to stress in., 2021, 22: 544.
[37] 王珍, 姚夢楠, 張曉莉, 曲存民, 盧坤, 李加納, 梁穎. 甘藍(lán)型油菜BnMAPK1的原核表達(dá)、亞細(xì)胞定位及酵母雙雜交文庫篩選. 作物學(xué)報, 2020, 46: 1312–1321.
Wang Z, Yao M N, Zhang X L, Qu C M, Lu K, Li J N, Liang Y. Prokaryotic expression, subcellular localization and yeast two-hybrid library screening of BnMAPK1 in., 2020, 46: 1312–1321 (in Chinese with English abstract).
[38] Weng C M, Lu J X, Wan H F, Wang S W, Wang Z, Lu K, Liang Y. Over-expression ofinenhances tole-rance to drought stress., 2014, 13: 2407–2415.
[39] Pertea M, Pertea G M, Antonescu C M, Chang T C, Mendell J T, Salzberg S L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads., 2015, 33: 290–295.
[40] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements Daehwan HHS Public Access., 2015, 12: 357–360.
[41] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2., 2014, 15: 550.
[42] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data., 2020, 13: 1194–1202.
[43] Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association., 2007, 23: 257–258.
[44] Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai Y, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li N, Zhou G, Zheng H, Wang X, Paterson A H, Li J. Whole-genome resequencing revealsorigin and genetic loci involved in its improvement., 2019, 10: 1154.
[45] K?ressaar T, Lepamets M, Kaplinski L, Raime K, Andreson R, Remm M. Primer3-masker: integrating masking of template sequence with primer design software., 2018, 34: 1937–1938.
[46] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCtmethod., 2001, 25: 402–408.
[47] Rinaldi M A, Liu J, Enders T A, Bartel B, Strader L C. A gain-of-function mutation in IAA16 confers reduced responses to auxin and abscisic acid and impedes plant growth and fertility., 2012, 79: 359–373.
[48] Wu C, LeClere S, Liu K, Paciorek M, Perez-Jones A, Westra P, Sammons R D. A dicamba resistance-endowing IAA16 mutation leads to significant vegetative growth defects and impaired competitiveness in kochia ()., 2021, 77: 795–804.
[49] Zhang S, Xie M, Ren G, Yu B. CDC5, a DNA binding protein, positively regulates posttranscriptional processing and/or transcription of primary microRNA transcripts., 2013, 110: 17588–17593.
[50] Lin Z, Yin K, Zhu D, Chen Z, Gu H, Qu L. AtCDC5 regulates the G2 to M transition of the cell cycle and is critical for the function ofshoot apical meristem., 2007, 17: 815–828.
[51] Shi T, Luo W, Li H, Huang X, Ni Z, Gao H, Iqbal S, Gao Z. Association between blooming time and climatic adaptation in., 2020, 10: 292–306.
[52] Adkar-Purushothama C R, Sano T, Perreault J P. Viroid-derived small RNA induces early flowering in tomato plants by RNA silencing., 2018, 19: 2446–2458.
[53] Sinha A K, Jaggi M, Raghuram B, Tuteja N. Mitogen-activated protein kinase signaling in plants under abiotic stress., 2011, 6: 196–203.
[54] Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development., 2015, 20: 56–64.
[55] Umezawa T, Sugiyama N, Takahashi F, Anderson J C, Ishihama Y, Peck S C, Shinozaki K. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in., 2013, 6: rs8.
[56] Chardin C, Krapp A, Schenk S T, Hirt H, Colcombet J. Review: mitogen-activated protein kinases in nutritional signaling in., 2017, 260: 101–108.
[57] Liang W, Yang B, Yu B J, Zhou Z, Li C, Jia M, Sun Y, Zhang Y, Wu F, Zhang H, Wang B, Deyholos M K, Jiang Y Q. Identification and analysis of MKK and MPK gene families in canola (L.)., 2013, 14: 392.
[58] Ortiz M D, Perez A M A, Carbonell J, Marcote M J. Diverse stress signals activate the C1 subgroup MAP kinases of., 2007, 581: 1834–1840.
[59] Blanco F A, Zanetti M E, Casalongué C A, Daleo G R. Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses., 2006, 44: 315–322.
[60] Vialet C S, Matthews J S A, Simkin A J, Raines C A, Lawson T. Importance of fluctuations in light on plant photosynthetic acclimation., 2017, 173: 2163–2179.
[61] Zolman B K, Monroe A M, Thompson B, Hawes J W, Krukenberg K A, Matsuda S P T, Bartel B., anmutant with impaired β-oxidation, is defective in a peroxisomal β-hydroxyisobutyryl-CoA hydrolase., 2001, 276: 31037–31046.
[62] Dong C H, Zolman B K, Bartel B, Lee B H, Stevenson B, Agarwal M, Zhu J K. Disruption ofreveals an important role of metabolic status in plant cold stress signaling., 2009, 2: 59–72.
[63] Kasmati A R, T?pel M, Patel R, Murtaza G, Jarvis P. Molecular and genetic analyses of Tic20 homologues inchloroplasts., 2011, 66: 877–889.
[64] Busche M, Scarpin M R, Hnasko R, Brunkard J O. TOR coordinates nucleotide availability with ribosome biogenesis in plants., 2021, 33: 1615–1632.
[65] 趙珺玥, 范海延, 崔娜, 于洋, 王翔宇, 楊蕓. 植物雷帕霉素靶蛋白(TOR)信號通路研究進展. 植物生理學(xué)報, 2018, 54: 549–556.
Zhao J Y, Fan H Y, Cui N, Yu Y, Wang X Y, Yang Y. Research progress in plant target of rapamycin (TOR) signaling pathway., 2018, 54: 549–556 (in Chinese with English abstract).
[66] Nelson N, Ben S A. The complex architecture of oxygenic photosynthesis., 2004, 5: 971–982.
[67] Mazor Y, Borovikova A, Nelson N. The structure of plant photosystem I super-complex at 2.8 ? resolution., 2015, 4: e07433.
[68] Sch?ttler M A, Albus C A, Bock R. Photosystem I: its biogenesis and function in higher plants., 2011, 168: 1452–1461.
[69] Bricker T M, Roose J L, Fagerlund R D, Frankel L K, Eaton R J J. The extrinsic proteins of photosystem II., 2012, 1817: 121–142.
[70] Pl?chinger M, Schwenkert S, Von S L, Schr?der W P, Meurer J. Functional update of the auxiliary proteins PsbW, PsbY, HCF136, PsbN, TerC and ALB3 in maintenance and assembly of PSII., 2016, 7: 423.
[71] Dong L, Tu W, Liu K, Sun R, Liu C, Wang K, Yang C. The PsbS protein plays important roles in photosystem II supercomplex remodeling under elevated light conditions., 2015, 172: 33–41.
[72] Sheng X, Liu Z, Kim E, Minagawa J. Plant and algal PS II-LHC II supercomplexes: structure, evolution and energy transfer., 2021, 62: 1108–1120.
Transcriptional differential expression analysis between-overexpression and Zhongyou 821 rapeseed (L.)
WANG Zhen1,2,**, ZHANG Xiao-Li1,**, LIU Miao3, YAO Meng-Nan4, MENG Xiao-Jing1, QU Cun-Min1,2, LU Kun1,2, LI Jia-Na1,2,*, and LIANG Ying1,2,*
1College of Agronomy and Biotechnology, Southwest University / Chongqing Engineering Research Center for Rapeseed, Chongqing 400715, China;2Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China;3Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education) / Institute of Agro-bioengineering College, Guizhou University, Guiyang 550025, Guizhou, China;4Jiangsu Yanjiang Institute of Agricultural Sciences / Nantong Academy of Agricultural Sciences, Nantong 210014, Jiangsu, China
Rapeseed (L.) is an important oilseed crop in China, with high yield and nutritional value. Exploring the mechanism of the broad-spectrum stress regulatory genes plays key roles for improving stress resistance, yield, and quality in rapeseed. Mitogen-activated protein kinase (MAPK) cascades are the junctions of several transmembrane signaling, and are involved in a wide variety of biological processes, including growth, development, biotic, and abiotic stress responses. In order to survey the biological function ofgene in rapeseed,-overexpression (OE) and Zhongyou 821 (CK) plants were used as the experimental materials to perform the digital gene expression profiling sequencing at one-month-old seedling stage. Compared with CK, a total of 650 differentially expressed genes were obtained in OE plants, including 243 up-regulated genes and 407 down-regulated genes. GO annotation showed that differentially expressed genes were mainly enriched in 118 pathways in biological process, among which 18 pathways related to photosynthesis (with 77 differentially expressed genes). There were seven pathways in molecular function such as oxalate oxidase activity, manganese ion binding, and oxidoreductase activity; and 38 pathways in cellular component such as chloroplast, plastid, and thylakoid. KEGG indicated thatwas involved in regulating 14 pathways in rapeseed, including photosynthesis, carbon metabolism, and biosynthesis of secondary metabolites. In addition, the relative expression levels of eight candidate genes were validated by qRT-PCR in OE and CK in rapeseed, demonstrating that the expression changes of these eight genes were generally consistent with the sequencing data. Our findings lay a foundation for the function ofin growth and development and light response in rapeseed and provide a theoretical basis for genetic breeding of crop resistance.
;; differentially expressed genes (DEGs); photosynthesis; digital gene expression profiling sequencing (DGE-seq)
10.3724/SP.J.1006.2023.24073
本研究由國家自然科學(xué)基金項目(32101663, 31872876), 中國博士后科學(xué)基金項目(2021M692683), 重慶市自然科學(xué)基金項目(cstc2021jcyj-bshX0234), 重慶市博士后科研特別資助項目(2010010006157688)和高等學(xué)校學(xué)科創(chuàng)新引智基地項目111 (B12006)資助。
This study was supported by the National Natural Science Foundation of China (32101663, 31872876), the China Postdoctoral Science Foundation (2021M692683), the Chongqing Natural Science Foundation (cstc2021jcyj-bshX0234), the Chongqing Special Funding in Postdoctoral Scientific Research (2010010006157688), and the Project of Intellectual Base for Discipline Innovation in Colleges and Universities (the 111 Project of China) (B12006).
通信作者(Corresponding authors):梁穎, E-mail: yliang@swu.edu.cn; 李加納, E-mail: ljn1950@swu.edu.cn
同等貢獻(xiàn)(Contributed equally to this work)
王珍, E-mail: wangzhencq@swu.edu.cn; 張曉莉, E-mail: zhangxl806@163.com
2022-03-30;
2022-07-22;
2022-08-29.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20220829.1508.002.html
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).