• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direction-of-ArrivaI Method Based on Randomize-Then-Optimize Approach

    2023-01-13 01:56:38CaiYiTangShengPengZhiQinZhaoBoJiang

    Cai-Yi Tang | Sheng Peng | Zhi-Qin Zhao | Bo Jiang

    Abstract—The direction-of-arrival (DOA) estimation problem can be solved by the methods based on sparse Bayesian learning (SBL).To assure the accuracy,SBL needs massive amounts of snapshots which may lead to a huge computational workload.In order to reduce the snapshot number and computational complexity,a randomizethen-optimize (RTO) algorithm based DOA estimation method is proposed.The “l(fā)earning” process for updating hyperparameters in SBL can be avoided by using the optimization and Metropolis-Hastings process in the RTO algorithm.To apply the RTO algorithm for a Laplace prior,a prior transformation technique is induced.To demonstrate the effectiveness of the proposed method,several simulations are proceeded,which verifies that the proposed method has better accuracy with 1 snapshot and shorter processing time than conventional compressive sensing (CS) based DOA methods.

    1.Introduction

    The direction-of-arrival (DOA) estimation problem is an important research area in radar and antenna,which mainly concerns on recovering signals and getting impinging angles.In recent years,the compressive sensing (CS)[1]theory has been successfully applied in DOA estimation,aiming to reconstruct sparse signals.Several sparse signal construction algorithms have been developed,such as orthogonal matching pursuit(OMP) and basis pursuit (BP).OMP[2]is originated from matching pursuit (MP)[3].To reduce the computational burden of BP methods,[4] proposed a dimensionality reduction method,named asl1-SVD.Based on the CS theory,the sparse signal reconstruction method was extended to Bayesian compressive sensing (BCS)[5]which was formulated from a Bayesian perspective based on the sparse prior assumption of signal and noise.Under the frame of BCS,signal reconstruction was mainly achieved by sparse Bayesian learning (SBL)[6].SBL has obtained great developments in recent studies,such as root SBL[7],variational SBL[8],jointly SBL[9],and the grid evolution method[10].SBL has a multilayered assumption frame which is designed to iterate to“l(fā)earn” new information and update the hyperparameters.

    In the practical applications of DOA estimation problems,the snapshot is usually short or even single.However,the limited data results in poor accuracy of DOA estimation problems.To lower the demand of snapshots,most of the existed methods are developed to improve the traditional spatial spectrum estimation methods.The pseudo covariance matrix method[11]and the spatial smoothing technique[12]are widely used.The influence of snapshots on estimation accuracy still exists in sparse signal reconstruction methods.Usually for SBL based DOA methods,the accuracy of estimated DOA strongly depends on the number of snapshots.It causes poor performance if the number of snapshots is not large enough for retrieving DOA.This phenomenon also occurs in thel1-SVD method as it requires sufficient data for the singular value decomposition and dimensionality reduction.To sum up,the studies on single snapshot for sparse signal reconstruction are limited.

    Thus,aim to relax the requirement of snapshots and improve the performance of sparse signal reconstruction using 1 snapshot,this paper proposes a DOA estimation method based on the randomizethen-optimize (RTO)[13]approach.The RTO based method solves the Bayesian nonlinear inverse problem by using a process of optimization to generate the proposal samples and correcting these samples by the Metropolis-Hastings (MH) approach[14].This MH method is based on the Markov chain Monte-Carlo(MCMC)[15],which has been widely used to evaluate the posterior distribution in the Bayesian inverse problem.Different from traditional SBL,the “l(fā)earning” process in updating hyperparameters is no longer needed in this RTO based method,reducing the required number of snapshots.Also,an intrinsic shortcoming of SBL is that it consumes relative long time to “train” hyperparameters in the assumption frame.RTO has no more requirement on hyperparameters,so that the processing time is significantly reduced.Furthermore,the RTO approach[13]is based on a Gaussian prior,while a Laplace prior has better parametric sparsity for the DOA estimation problem[16].Therefore,a prior transformation method[17]is adopted.Simulation results show that good accuracy can be achieved even with 1 snapshot.

    2.Proposed Method

    2.1.ProbIem FormuIation

    Assume that there areKnarrowband far field signalssk(t),wherek=1,2,···,K,impinging on a linear array ofMsensors fromKdirectionsθk,wherek=1,2,···,K.In the DOA estimation problem,the time delays at different sensors can be represented by simple phase shifts,leading to an observation model of

    where y(t)=[y1(t),y2(t),…,yM(t)]T,θ=[θ1,θ2,…,θK]T,s(t)=[s1(t),s2(t),…,sK(t)]T,and e(t)=[e1(t),e2(t),…,eM(t)]T.ym(t) andem(t) (m=1,2,···,M) are the measurement and noise of themth sensor at timet,respectively.And A(θ)=[a(θ1),a(θ2),…,a(θK)] is the array manifold matrix,a(θk) is the steering vector of thekth source whose entryam(θK) contains the delay information of thekth source to themth sensor.To locate the direction of the sparse signal,the spatial domain is sampled by a grid,whereNdenotes the grid number and usuallyN>>M>K.The sampling is usually uniform because there is no prior information of sources.The measurement vector y(t) and array manifold matrix A () are known,but s (t) needs to be estimated.

    The model given in (1) can be regarded as a Bayesian inverse problem.The manifold matrix A(θ) is a nonlinear parameter-to-measurement mapping.Commonly,solving the Bayesian inverse problem mainly focuses on characterising the posterior density.For the traditional SBL method,the process of obtaining the posterior density requires the hyperparameters γ.According to [18],solving the Bayesian inverse problem leads to minimize the cost function of γ.The likelihood that SBL will converge to the global minimum of the cost function is increased along with increasing the snapshot number.This is important,because the maximally sparse representation is guaranteed due to globally minimizing SBL hyperparameters,and increasing the snapshot number improves the probability that these hyperparameters are found.Too few snapshots induce poor performance of SBL.

    From another perspective of BCS,the RTO method is freed from the dependency of the snapshot number.It solves the Bayesian inverse problem with limited snapshots.RTO produces samples by using repeated solutions of a randomly perturbed optimization problem from a proposal density,which can be used in the MH approach as a Metropolis independence proposal.

    2.2.RTO-MH AIgorithm

    Considering the Bayesian inverse problem with Gaussian measurement errors and the Gaussian prior,linear transformations are used to “whiten” the error model and the prior,so that the following model can be used to describe the inverse problem:

    where ε~N(0,Ii),θ~N(θ0,Ij)θ0is the prior mean,and Iiand Ijare identity matrices with sizeiand sizej,respectively.The model in (2) is only used to describe the Bayesian inverse problem.And y is the measurement vector,fis the forwarding function (also called as the “parameter-to-observable mapping”),and ε is the measurement error.

    By repeatedly optimizing a randomly perturbed cost function,RTO can obtain candidate samples.In order to obtain the unknown parameter θ,RTO requires the target distribution to have a specific form which is defined by (3).This distribution allows the RTO samples being used in the MH process.It is suitable for any form of the target distribution scenarios,because the model in (2) can be generally used in any inverse problem.The MH approach corrects these samples which contain the information of the spatial spectrum.Especially,it needs the target density (usually the posterior density of θ) to be in the form of

    where ||·|| denotes the norm.The right side in the symbol of the norm is defined as a vector-valued function of the parameter θ which has the form of

    We illustrate the steps of sampling from the posterior as (3) by RTO.

    1) Find a linearization point,denoted as,and fix it.Usually,this point is set to be the posterior mode.The following equation is used to obtain the posterior mode:

    2) Calculate the Jacobian ofF(θ) at the linearization point,denoted as JF().The orthonormal basis,denoted asfor the column space of JF(),is evaluated through a thin quadrature rectangle (QR)factorization approach of JF().

    3) Compute independent samples ξ according to ann-dimensional standard Gaussian distribution.The proposal points θpropare evaluated by tackling the following optimization problem:

    According to the previous study in [10],the proposal points are distributed in terms of the proposal density:

    where |·| denotes the absolute value of the matrix determinant.This proposal density is used in the MH approach as an independence proposal.For updating a pointθ(i-1)to the proposed point,the MH acceptance ratio is

    The process mentioned above is called as the RTO-MH algorithm which combines the RTO algorithm and the MCMC method[10].The framework of the MH algorithm can use the samples which are obtained by applying the RTO algorithm.This process produces the samples from a posterior based on an arbitrary measurement model.As described in (2),RTO-MH is proceeded with a Gaussian prior.However,in BCS based DOA estimation methods,a Laplace prior is preferred.From this consideration,a prior transformation technique is induced in RTO-MH in this paper.

    2.3.RTO-MH with Prior Transformation

    First,consider the single parameter with a Laplace prior of the model in (2):

    whereλis a hyperparameter used to describe the Laplace distribution and θ is a Laplace-distributed physical parameter.

    Then the posterior distribution is

    whereσobsis the error standard deviation.

    To satisfy the posterior form in (3),an invertible mapping functionT1Dwhich connects a Gaussian reference random variablevwith the Laplace-distributed physical parameter θ,such that θ=T1D(v) is constructed.The transformation equation can be written as

    whereφis the cumulative distribution function (CDF) of the standard Gaussian distribution,andLis CDF of the Laplace distribution.

    Based on the single parameter prior transformation,this technique is extended to the multiple parameters case.Assume the prior on θ is

    where (Dθ)iis theith element of the vector Dθ andD is an invertible matrix.Thus,the posterior can be derived:

    Random Gaussian distributed variables can be converted to each Laplace-distributed element of Dθ by means of the one-dimensional transformationT1Ddefined in (11).So Dθ=T(v),where

    whereviis the corresponding reference variable,resulting in the prior transformation:

    The Jacobian of the transformation is D-1JT,where JTis the Jacobian of T noted as

    Based on the transformation step as in (15),the posterior density of v can be derived as

    2.4.ImpIementation

    As the observation model stated in (1),the measurement vector is complex.However,RTO-MH with the prior transformation can only operate for real values.In order to apply the algorithm in DOA estimation,the observational model is transformed into the real form

    where tm=[Re{ym},Im{ym}]Tis the real measurement matrix,wm=[Re{si},Im{si}]Tis the real signal matrix,and nm=[Re{em},Im{em}]Tis the real noise matrix.Φ is the real manifold matrix which has the form:

    Equation (19) still satisfies the Bayesian inverse problem model as (2) for the corresponding parameters.Therefore,DOA can be retrieved by three steps: 1) Make the measurement matrix transformation from complex to real;2) input the real measurement matrix to RTO-MH with prior transformation;3) calculate the normalized power of the results and select the main lobes as DOA.

    Algorithm 1.

    RTO-MH with the prior transformation algorithm for DOA estimation is:

    1.Do an observation model data transformation from the complex value to the real value using (19).

    2.Use the prior transformation function as (11),so that v=T-1(θ) has a standard Gaussian distribution.

    5.Fori=1,2,…,nsamps

    Draw a standard Gaussian sampleξ(i)~N(0,In).

    Compute RTO samples as

    6.Fori=1,2,…,nsamps

    Sample v from a uniform distribution on [0,1].

    7.Fori=1,2,…,nsamps

    Defineθ(i)=T(v(i)),which are the corrected samples fromp(θ ∣y).

    End for

    8.The resultedθ(i)forms the spectrum of the spatial domain where the interested signals exist.Calculate the normalized power of the spectrum and select the main lobes as DOA.

    3.SimuIations

    Several simulations are conducted to verify the effectiveness of the proposed method.Two uncorrelated sources are from 30oand 60o,respectively.The signal sources are narrowband and impinge on a uniform linear array with 16 sensors.The spatial range of the interested signal is discretized by the means of a uniform grid sample in the range of [-90o,90o] with a grid interval of 1o.First,the performance of the SBL method and that of the proposed method are compared.In the simulations,1 snapshot is used for the proposed RTO based method and the SBL method.Also,the SBL method with 200 snapshots is performed for comparison.

    Fig.1.Spatial spectra of BCS and the proposed method.

    Fig.1 shows the simulation results of the proposed method with 1 snapshot and the SBL method with 1 and 200 snapshots,respectively.The vertical dotted lines indicate the true locations of DOA.For 1 snapshot,the SBL method can only retrieve DOA at 30o.And its side lobes are so high,implying the poor performance of SBL for 1 snapshot.When the number of snapshots increases to 200,the performance of SBL improves.Both the proposed method and the SBL method retrieve the signal at 30oexactly and have an 1odeviation at 60o.Though the main lobe at 60oof the proposed method is wider than that of the SBL method,the side lobes of the proposed method are much lower.

    To illustrate how the accuracy performs,the proposed method is compared with OMP,l1-SVD,and SBL in the root mean square error (RMSE).The signal-to-noise ratio (SNR) in the comparison ranges from -10 dB to 10 dB with an interval of 2 dB.Here 200 independent Monte-Carlo trials for each SNR are implemented.The SBL method is simulated for 1 snapshot and 200 snapshots,respectively.Thel1-SVD algorithm is simulated for 1 snapshot and 50 snapshots,respectively.RMSE is used to describe the estimation accuracy,defined by

    wherenis the number of Monte-Carlo simulations,is the estimated value for each simulation,andis the true value.

    Fig.2 shows that the proposed method has an obvious lower RMSE level than OMP,SBL with 1 snapshot,andl1-SVD with 1 snapshot algorithms.The OMP algorithm always keeps a high RMSE level which means its estimation accuracy is much worse than SBL andl1-SVD with many snapshots.For the SBL algorithm with 200 snapshots,it has almost the same accuracy with the proposed method.This indicates that the proposed method has an advantage over the snapshot number comparing with the SBL algorithm.Forl1-SVD with 50 snapshots,its accuracy exceeds all the mentioned methods,including the proposed method.However,RMSE can be regarded as an enlarged value for the true error.Thus,the proposed method almost has the same estimation accuracy asl1-SVD with 50 snapshots.

    Table 1 gives a comparison on the processing time of the above methods with SNR=10 dB.All experiments are carried out in MATLAB on a desktop with a 2.2-GHz central processing unit (CPU).It can be found that the proposed method costs the shortest time compared with SBL andl1-SVD.Although the OMP method has a similar time cost,the proposed method has better accuracy than OMP as shown in Fig.2.

    Fig.2.RMSE of OMP,l1-SVD,and the proposed method(RTO-MH) versus SNR.

    Table 1: Processing time comparison

    4.ConcIusions

    In this paper,RTO-MH with the prior transformation algorithm is proposed to improve the performance of the BCS method in DOA estimation.Compared with conventional BCS methods,such as SBL,whose accuracy highly depends on the snapshot number,the proposed method does not require many samples to update the hyperparameters.Simulation results demonstrate that the proposed method has better estimation accuracy than SBL,OMP,andl1-SVD,when the number of snapshots is 1,and the processing time is reduced effectively.Its computational burden is close to that of the OMP algorithm and lower than those ofl1-SVD and SBL methods.However,there exists a disadvantage that the proposed method shows limited resolution of 5obased on several experiments.In the future work,the proposed method will be extended to off-grid signals under the circumstance of wideband sources,and its resolution limit can be expected to be reduced to 1o.

    DiscIosures

    The authors declare no conflicts of interest.

    久久欧美精品欧美久久欧美| 国产精品一区www在线观看| 我的老师免费观看完整版| 99热全是精品| 中文精品一卡2卡3卡4更新| 五月伊人婷婷丁香| 亚洲av成人精品一区久久| 国产黄片视频在线免费观看| 亚洲无线在线观看| 精品一区二区三区人妻视频| 美女 人体艺术 gogo| 长腿黑丝高跟| 国产成人影院久久av| 此物有八面人人有两片| 国产色爽女视频免费观看| av视频在线观看入口| 日日撸夜夜添| 全区人妻精品视频| 中文字幕制服av| 老司机影院成人| 少妇裸体淫交视频免费看高清| 一进一出抽搐gif免费好疼| 国产综合懂色| 久久精品国产亚洲网站| 在现免费观看毛片| 在线观看美女被高潮喷水网站| 国产精品人妻久久久影院| 国产精品麻豆人妻色哟哟久久 | 天美传媒精品一区二区| 亚洲欧美成人综合另类久久久 | 亚洲欧美精品综合久久99| 亚洲乱码一区二区免费版| av福利片在线观看| 男插女下体视频免费在线播放| 久久国产乱子免费精品| 1000部很黄的大片| 亚洲av中文字字幕乱码综合| 国产老妇伦熟女老妇高清| 男人的好看免费观看在线视频| 国产高清激情床上av| 成人高潮视频无遮挡免费网站| 青春草视频在线免费观看| 久久久久性生活片| 国产视频首页在线观看| 国产男人的电影天堂91| 日韩欧美 国产精品| 国产色婷婷99| 国产成人a区在线观看| 99久久精品国产国产毛片| 18禁黄网站禁片免费观看直播| 熟女电影av网| 久久久久久久久久成人| 麻豆乱淫一区二区| 女人十人毛片免费观看3o分钟| 精品久久久久久久久av| 成人特级黄色片久久久久久久| 亚洲av成人精品一区久久| 联通29元200g的流量卡| 能在线免费看毛片的网站| 国产精品免费一区二区三区在线| 亚洲欧美日韩无卡精品| 色综合色国产| 欧洲精品卡2卡3卡4卡5卡区| 欧美色视频一区免费| 欧美在线一区亚洲| www日本黄色视频网| 亚洲经典国产精华液单| 亚洲在久久综合| 男人狂女人下面高潮的视频| 亚洲婷婷狠狠爱综合网| 国产高清有码在线观看视频| 国产 一区精品| 男的添女的下面高潮视频| 国产精品国产高清国产av| 久久精品国产鲁丝片午夜精品| 国产 一区 欧美 日韩| 成人无遮挡网站| 99热只有精品国产| 精品午夜福利在线看| 亚洲欧美精品自产自拍| 欧美高清成人免费视频www| 啦啦啦韩国在线观看视频| 简卡轻食公司| 午夜福利视频1000在线观看| a级毛片免费高清观看在线播放| 久久热精品热| 欧美激情国产日韩精品一区| 欧美日本视频| 嘟嘟电影网在线观看| 欧美成人a在线观看| 91在线精品国自产拍蜜月| avwww免费| 日韩av不卡免费在线播放| 成年版毛片免费区| 久久久久免费精品人妻一区二区| 内地一区二区视频在线| 乱系列少妇在线播放| 综合色丁香网| 久久韩国三级中文字幕| 日日撸夜夜添| 日韩欧美一区二区三区在线观看| 国产女主播在线喷水免费视频网站 | 偷拍熟女少妇极品色| 日本黄色视频三级网站网址| 久久久a久久爽久久v久久| 日本一本二区三区精品| 国产淫片久久久久久久久| 91久久精品国产一区二区三区| 变态另类丝袜制服| 中文字幕av成人在线电影| 中文资源天堂在线| 亚洲成av人片在线播放无| 91精品国产九色| 亚洲人与动物交配视频| 插阴视频在线观看视频| 亚洲国产欧美人成| 男女边吃奶边做爰视频| 亚洲乱码一区二区免费版| 日本成人三级电影网站| 成人亚洲欧美一区二区av| 国产高清三级在线| 麻豆精品久久久久久蜜桃| 蜜桃亚洲精品一区二区三区| 中国美女看黄片| 久久久久久久午夜电影| 久久久久久国产a免费观看| 亚洲成人精品中文字幕电影| 日本与韩国留学比较| 女同久久另类99精品国产91| 午夜视频国产福利| 国产黄片美女视频| 男女那种视频在线观看| 久久99热6这里只有精品| 日韩一区二区三区影片| 91久久精品国产一区二区成人| 免费看美女性在线毛片视频| 91麻豆精品激情在线观看国产| 全区人妻精品视频| 亚洲性久久影院| 国产av麻豆久久久久久久| 国产v大片淫在线免费观看| 国产亚洲av片在线观看秒播厂 | 校园春色视频在线观看| 久久久久九九精品影院| 午夜激情福利司机影院| 亚洲自偷自拍三级| a级毛片免费高清观看在线播放| 最新中文字幕久久久久| 午夜福利在线观看免费完整高清在 | 国产精品一区二区在线观看99 | 午夜亚洲福利在线播放| 99久久中文字幕三级久久日本| 中文字幕熟女人妻在线| 3wmmmm亚洲av在线观看| 色哟哟·www| 国产蜜桃级精品一区二区三区| 欧美精品国产亚洲| av在线观看视频网站免费| 黑人高潮一二区| 2021天堂中文幕一二区在线观| 久久精品人妻少妇| 国产精品一区二区性色av| 国产成人一区二区在线| 在线a可以看的网站| 国产伦理片在线播放av一区 | 老熟妇乱子伦视频在线观看| 免费一级毛片在线播放高清视频| 麻豆一二三区av精品| 色尼玛亚洲综合影院| 亚洲在线观看片| 成人亚洲精品av一区二区| 国产片特级美女逼逼视频| 在线免费十八禁| 69人妻影院| 1024手机看黄色片| 亚洲七黄色美女视频| 免费人成视频x8x8入口观看| 最近最新中文字幕大全电影3| 热99re8久久精品国产| 99热这里只有精品一区| 免费在线观看成人毛片| 国产老妇伦熟女老妇高清| 麻豆成人午夜福利视频| 好男人视频免费观看在线| 亚洲成人久久爱视频| 一边摸一边抽搐一进一小说| 久久午夜亚洲精品久久| av卡一久久| 综合色av麻豆| 一个人观看的视频www高清免费观看| 长腿黑丝高跟| 免费观看的影片在线观看| 久久久国产成人免费| 亚洲七黄色美女视频| 国产中年淑女户外野战色| 日本一二三区视频观看| 国产精品久久电影中文字幕| 少妇人妻精品综合一区二区 | 欧美高清性xxxxhd video| 亚洲天堂国产精品一区在线| 极品教师在线视频| 人妻系列 视频| 色尼玛亚洲综合影院| 午夜福利成人在线免费观看| 国产av麻豆久久久久久久| 成人一区二区视频在线观看| 国产高清三级在线| 久久久色成人| 91精品国产九色| 午夜亚洲福利在线播放| 成人无遮挡网站| 日韩av在线大香蕉| 国产精品久久久久久av不卡| 国产成人影院久久av| 男女视频在线观看网站免费| 性欧美人与动物交配| 99热全是精品| 国产色婷婷99| 国产成人a区在线观看| 国产白丝娇喘喷水9色精品| 久久鲁丝午夜福利片| 在线天堂最新版资源| 亚洲色图av天堂| 精品熟女少妇av免费看| 熟女电影av网| 国产午夜福利久久久久久| 日韩精品青青久久久久久| 一区二区三区高清视频在线| 草草在线视频免费看| 国产不卡一卡二| 成人漫画全彩无遮挡| a级毛片免费高清观看在线播放| 色播亚洲综合网| 天美传媒精品一区二区| 久久精品久久久久久久性| 国产日本99.免费观看| 晚上一个人看的免费电影| 成人二区视频| 亚洲欧美精品综合久久99| 亚洲国产精品国产精品| 一卡2卡三卡四卡精品乱码亚洲| 国产精品99久久久久久久久| 欧美人与善性xxx| 99国产极品粉嫩在线观看| 男女啪啪激烈高潮av片| 99久久中文字幕三级久久日本| 久久精品国产清高在天天线| 夜夜爽天天搞| 夜夜爽天天搞| 九九爱精品视频在线观看| 成年av动漫网址| 中文在线观看免费www的网站| 欧美3d第一页| 女的被弄到高潮叫床怎么办| 成人综合一区亚洲| 亚洲av中文字字幕乱码综合| 熟女电影av网| 亚洲中文字幕一区二区三区有码在线看| 精品一区二区免费观看| 日日撸夜夜添| 久久午夜福利片| 午夜老司机福利剧场| 欧美另类亚洲清纯唯美| 校园春色视频在线观看| 欧美日韩综合久久久久久| 国产成人91sexporn| 亚洲av熟女| 亚洲av第一区精品v没综合| 成年免费大片在线观看| 一级av片app| 久久亚洲国产成人精品v| 国产成人一区二区在线| ponron亚洲| 蜜臀久久99精品久久宅男| АⅤ资源中文在线天堂| 国产精品日韩av在线免费观看| 99久久无色码亚洲精品果冻| 国产av在哪里看| 午夜a级毛片| 精品一区二区免费观看| 床上黄色一级片| 黄色视频,在线免费观看| 日韩av在线大香蕉| 成人av在线播放网站| 国产视频内射| 国内精品久久久久精免费| 国产在线男女| 色哟哟哟哟哟哟| 欧美日本亚洲视频在线播放| 黑人高潮一二区| 国产一区二区激情短视频| 国产精品久久视频播放| 别揉我奶头 嗯啊视频| 亚洲成av人片在线播放无| 国产精品.久久久| 两个人的视频大全免费| av在线观看视频网站免费| av免费在线看不卡| 国产高清视频在线观看网站| 色播亚洲综合网| 久久精品夜色国产| 国产精品伦人一区二区| 日韩大尺度精品在线看网址| 亚洲成av人片在线播放无| 日本成人三级电影网站| 中文字幕av成人在线电影| 18禁黄网站禁片免费观看直播| 丰满乱子伦码专区| 岛国在线免费视频观看| 精品人妻熟女av久视频| 91精品国产九色| 日日摸夜夜添夜夜添av毛片| 三级经典国产精品| 免费观看a级毛片全部| av免费在线看不卡| 日日摸夜夜添夜夜爱| 国产精品久久久久久精品电影小说 | 精品日产1卡2卡| av在线老鸭窝| 91精品一卡2卡3卡4卡| 久久精品国产自在天天线| 亚洲自偷自拍三级| 麻豆国产av国片精品| 女的被弄到高潮叫床怎么办| 美女被艹到高潮喷水动态| 国产单亲对白刺激| 少妇熟女aⅴ在线视频| 国产成人精品久久久久久| 色吧在线观看| 欧美一区二区亚洲| 能在线免费观看的黄片| 午夜福利成人在线免费观看| 欧美潮喷喷水| 亚洲中文字幕日韩| 亚洲乱码一区二区免费版| 春色校园在线视频观看| 欧美丝袜亚洲另类| 啦啦啦韩国在线观看视频| 黄色一级大片看看| 日本五十路高清| 99热网站在线观看| 色播亚洲综合网| 午夜激情福利司机影院| 久久精品国产鲁丝片午夜精品| 日韩成人伦理影院| 亚洲电影在线观看av| 日韩精品有码人妻一区| 国国产精品蜜臀av免费| 一级毛片我不卡| 亚洲一区高清亚洲精品| 中文字幕av在线有码专区| 小说图片视频综合网站| 99热网站在线观看| 免费观看人在逋| 午夜久久久久精精品| 日日摸夜夜添夜夜添av毛片| 国产av在哪里看| 精华霜和精华液先用哪个| 免费观看人在逋| 国产精品久久久久久精品电影小说 | 中文字幕av在线有码专区| 久久99精品国语久久久| 国产精品人妻久久久影院| 亚洲精品影视一区二区三区av| 女人被狂操c到高潮| 亚洲在线观看片| 亚洲电影在线观看av| 看非洲黑人一级黄片| 免费看美女性在线毛片视频| 欧美色视频一区免费| 在线国产一区二区在线| 久久精品91蜜桃| 九九热线精品视视频播放| 午夜免费激情av| 老女人水多毛片| 熟女电影av网| 最新中文字幕久久久久| 日本一二三区视频观看| 校园春色视频在线观看| 夜夜看夜夜爽夜夜摸| 国内揄拍国产精品人妻在线| 一级二级三级毛片免费看| 国产精品美女特级片免费视频播放器| 天堂影院成人在线观看| 亚洲欧美精品自产自拍| 日韩制服骚丝袜av| 成人性生交大片免费视频hd| 中文在线观看免费www的网站| 国产午夜福利久久久久久| 一个人免费在线观看电影| 久久这里只有精品中国| 国内精品宾馆在线| 午夜精品一区二区三区免费看| 在线a可以看的网站| 久久这里只有精品中国| 搡老妇女老女人老熟妇| 免费人成在线观看视频色| 全区人妻精品视频| 亚洲av男天堂| 精品久久久久久久末码| 成熟少妇高潮喷水视频| 欧美激情国产日韩精品一区| 91午夜精品亚洲一区二区三区| 国产一区二区亚洲精品在线观看| 禁无遮挡网站| 日韩国内少妇激情av| 亚洲精品亚洲一区二区| 免费看美女性在线毛片视频| 中文字幕久久专区| 欧美一区二区精品小视频在线| 色吧在线观看| 在线观看午夜福利视频| 精品人妻一区二区三区麻豆| 国产精品一区二区在线观看99 | 亚洲欧美日韩卡通动漫| 国产精品一二三区在线看| 亚洲国产高清在线一区二区三| 久久婷婷人人爽人人干人人爱| 欧美zozozo另类| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区 | 全区人妻精品视频| 亚洲精品日韩在线中文字幕 | 赤兔流量卡办理| 22中文网久久字幕| 色综合站精品国产| 国产日本99.免费观看| 精品久久久久久久人妻蜜臀av| 色噜噜av男人的天堂激情| 免费大片18禁| 精品久久久久久久久久久久久| 波野结衣二区三区在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人a在线观看| 成人二区视频| 一进一出抽搐gif免费好疼| 日韩三级伦理在线观看| 国产真实乱freesex| 中文资源天堂在线| 亚洲欧美精品专区久久| 麻豆成人午夜福利视频| 国产亚洲精品av在线| 国产午夜精品久久久久久一区二区三区| 男人的好看免费观看在线视频| 久久人妻av系列| 精品一区二区三区人妻视频| 激情 狠狠 欧美| 国产单亲对白刺激| 12—13女人毛片做爰片一| 长腿黑丝高跟| 午夜激情福利司机影院| 欧美激情久久久久久爽电影| 搡女人真爽免费视频火全软件| 亚洲人与动物交配视频| 亚洲精华国产精华液的使用体验 | 一卡2卡三卡四卡精品乱码亚洲| 国产白丝娇喘喷水9色精品| av免费在线看不卡| 国产片特级美女逼逼视频| 精品久久久久久久人妻蜜臀av| 久久精品91蜜桃| 国产黄片美女视频| 亚洲国产欧美人成| 日本撒尿小便嘘嘘汇集6| 夫妻性生交免费视频一级片| 免费不卡的大黄色大毛片视频在线观看 | 99热全是精品| 亚洲av二区三区四区| 免费不卡的大黄色大毛片视频在线观看 | 内地一区二区视频在线| 插逼视频在线观看| 18禁在线播放成人免费| 校园春色视频在线观看| 中文亚洲av片在线观看爽| 欧美激情在线99| 亚洲第一电影网av| 国产一级毛片七仙女欲春2| 一级毛片久久久久久久久女| 免费黄网站久久成人精品| 日日啪夜夜撸| 日日干狠狠操夜夜爽| 级片在线观看| 国产精品av视频在线免费观看| 老司机影院成人| 国产午夜精品论理片| 成年女人永久免费观看视频| 成人鲁丝片一二三区免费| 亚洲av二区三区四区| 久久久久久国产a免费观看| 亚洲精品456在线播放app| 桃色一区二区三区在线观看| www.av在线官网国产| 久久综合国产亚洲精品| 精品久久久久久成人av| 午夜福利在线观看免费完整高清在 | 狂野欧美激情性xxxx在线观看| 亚洲av电影不卡..在线观看| 日本黄色视频三级网站网址| 欧美在线一区亚洲| 啦啦啦韩国在线观看视频| 国产真实伦视频高清在线观看| 亚洲国产色片| 亚洲在久久综合| 国产精品人妻久久久影院| 极品教师在线视频| 国产极品精品免费视频能看的| 日本av手机在线免费观看| 午夜精品一区二区三区免费看| 最好的美女福利视频网| 在线免费十八禁| 人人妻人人澡人人爽人人夜夜 | 国产精品永久免费网站| 国产伦精品一区二区三区视频9| 色尼玛亚洲综合影院| 国产成人91sexporn| 久久久国产成人精品二区| 插逼视频在线观看| 男女视频在线观看网站免费| 国产激情偷乱视频一区二区| 国产不卡一卡二| 日韩一区二区三区影片| 精品不卡国产一区二区三区| 超碰av人人做人人爽久久| 日韩成人伦理影院| 寂寞人妻少妇视频99o| 一区二区三区四区激情视频 | 色噜噜av男人的天堂激情| 日本撒尿小便嘘嘘汇集6| 夜夜看夜夜爽夜夜摸| 一个人免费在线观看电影| 18+在线观看网站| 久久中文看片网| 性欧美人与动物交配| 国产乱人视频| 禁无遮挡网站| 久久久久国产网址| 成人漫画全彩无遮挡| 久久这里有精品视频免费| 99久久精品热视频| 成年免费大片在线观看| 亚洲激情五月婷婷啪啪| 一本久久精品| 久久久久国产网址| 欧美性感艳星| 啦啦啦观看免费观看视频高清| 久久精品久久久久久噜噜老黄 | 久久久久网色| 成人特级黄色片久久久久久久| 免费观看人在逋| 国产精品电影一区二区三区| 99热只有精品国产| 精品99又大又爽又粗少妇毛片| 亚洲精品自拍成人| 精品一区二区三区视频在线| 亚洲经典国产精华液单| 免费观看人在逋| 不卡视频在线观看欧美| 日韩三级伦理在线观看| 国产91av在线免费观看| 午夜a级毛片| 麻豆国产av国片精品| 在线观看66精品国产| 国产成人影院久久av| 久久久久国产网址| 黄色视频,在线免费观看| 欧美高清成人免费视频www| 一边亲一边摸免费视频| 老女人水多毛片| 国产蜜桃级精品一区二区三区| 国产久久久一区二区三区| 欧美日本亚洲视频在线播放| 乱系列少妇在线播放| 亚洲精品久久久久久婷婷小说 | 国产精品国产三级国产av玫瑰| 中文字幕免费在线视频6| 久久人人精品亚洲av| 欧美成人精品欧美一级黄| 91aial.com中文字幕在线观看| 久久精品夜色国产| 一进一出抽搐gif免费好疼| 国产老妇伦熟女老妇高清| 九九在线视频观看精品| 岛国在线免费视频观看| 在线a可以看的网站| 一个人观看的视频www高清免费观看| 欧美人与善性xxx| 日本爱情动作片www.在线观看| 麻豆成人av视频| 亚洲无线在线观看| 久久这里有精品视频免费| 99在线人妻在线中文字幕| 99热这里只有是精品50| 我的女老师完整版在线观看| 最近最新中文字幕大全电影3| 日本色播在线视频| 久久久国产成人精品二区| avwww免费| 精品久久久久久成人av| 国产一区二区在线观看日韩| 国产v大片淫在线免费观看| 深夜a级毛片| 国产精品伦人一区二区| 91aial.com中文字幕在线观看| 欧美另类亚洲清纯唯美| 国产一区二区在线观看日韩| 特大巨黑吊av在线直播| 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 色噜噜av男人的天堂激情| 午夜精品国产一区二区电影 | 伊人久久精品亚洲午夜| 一个人免费在线观看电影| 日韩,欧美,国产一区二区三区 | 欧美一区二区国产精品久久精品| 中文资源天堂在线|