• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PIasma-Enhanced Atomic Layer Deposition of Amorphous Ga2O3 for SoIar-BIind Photodetection

    2023-01-13 01:56:24ZeYuFanMinJiYangBoYuFanAndraMavriNadiiaPastukhovaMatjazVaIantBoLinLiKuangFengDongLiangLiuGuangWeiDengQiangZhouYanBoLi

    Ze-Yu Fan | Min-Ji Yang | Bo-Yu Fan | Andra? Mavri? | Nadiia Pastukhova | Matjaz VaIant | Bo-Lin Li | Kuang Feng | Dong-Liang Liu | Guang-Wei Deng | Qiang Zhou | Yan-Bo Li

    Abstract—Wide-bandgap gallium oxide (Ga2O3) is one of the most promising semiconductor materials for solar-blind(200 nm to 280 nm) photodetection.In its amorphous form,amorphous gallium oxide (a-Ga2O3) maintains its intrinsic optoelectronic properties while can be prepared at a low growth temperature,thus it is compatible with Si integrated circuits (ICs) technology.Herein,the a-Ga2O3 film is directly deposited on pre-fabricated Au interdigital electrodes by plasma enhanced atomic layer deposition (PE-ALD) at a growth temperature of 250 °C.The stoichiometric a-Ga2O3 thin film with a low defect density is achieved owing to the mild PE-ALD condition.As a result,the fabricated Au/a-Ga2O3/Au photodetector shows a fast time response,high responsivity,and excellent wavelength selectivity for solar-blind photodetection.Furthermore,an ultra-thin MgO layer is deposited by PE-ALD to passivate the Au/a-Ga2O3/Au interface,resulting in the responsivity of 788 A/W (under 254 nm at 10 V),a 250-nm-to-400-nm rejection ratio of 9.2×103,and the rise time and the decay time of 32 ms and 6 ms,respectively.These results demonstrate that the a-Ga2O3 film grown by PE-ALD is a promising candidate for high-performance solar-blind photodetection and potentially can be integrated with Si ICs for commercial production.

    1.Introduction

    The solar-blind spectral region refers to the wavelength range of 200 nm to 280 nm because sunlight cannot reach the Earth’s surface due to the absorption by ozone in the atmosphere[1].Solar-blind photodetectors,which are sensitive to light in the range of 200 nm to 280 nm,have many military and civilian applications,such as missile warning,space communications,flame detection,biological/chemical analysis,and imaging[2]-[6].The commercially available Si-based photodetector shows very low responsivity (<0.1 A/W)in the solar-blind region because of the low penetration depth of high-energy ultraviolet photons and its small bandgap (1.1 eV) requires additional optical filters to achieve solar-blind photodetection[7].Therefore,semiconductors with an intrinsic wide bandgap (>4.5 eV) are promising candidates for solar-blind photodetection.These wide-bandgap semiconductors include AlN,AlxGa1-xN,MgxZn1-xO,and Ga2O3[8]-[11].AlN cannot detect wavelengths longer than 210 nm due to its extremely wide bandgap (6.1 eV)[8].The AlxGa1-xN film is normally grown on a Si substrate,which leads to a high dislocation density and film stress because of its inherent large lattice mismatch (~17%).Besides,the high growth temperature (~1300 °C) for AlxGa1-xN induces thermal strain due to the excessive heat mismatch (~53%),which further leads to the increase of the defect density[9].The synthesis of wurtzite MgxZn1-xO with the bandgap in the solar-blind region is challenging because of the phase segregation problem[10].On the other hand,Ga2O3has a direct bandgap of~4.8 eV and shows excellent chemical,thermal,and radiation stability,which is ideally suited for solar-blind photodetection[11].Besides,Ga2O3can be synthesized with simple physical or chemical vapor deposition methods at a relatively low cost.All of these make Ga2O3an ideal candidate for fabricating solar-blind deepultraviolet (DUV) photodetectors.

    In the past few years,Ga2O3has been extensively used for fabricating various types of solar-blind photodetectors and their properties have been summarized in several recent reviews[12]-[15].Most Ga2O3DUV solar-blind photodetectors were based on monoclinic β-Ga2O3films,which were epitaxially grown on sapphire substrates by molecular beam epitaxy (MBE),chemical vapor deposition (CVD),or pulsed laser deposition(PLD) processes.The solar-blind photodetection characteristics mainly depend on the crystalline quality of the β-Ga2O3film,influenced by the thermal-lattice match with the substrate,growth temperature,deposition rate,and annealing conditions[16].In thin-film β-Ga2O3-based photodetectors,high responsivity could be achieved through the introduction of oxygen vacancies in the β-Ga2O3thin film.However,the existence of oxygen vacancies also leads to an extremely slow response time of a few seconds.For instance,a typical β-Ga2O3metal-semiconductor-metal (MSM) photodetector achieved the responsivity of 153 A/W with the rise time and the decay time of 5.0 s and 10.3 s,respectively[17].Besides,the formation of monoclinic β-Ga2O3phase requires a high processing temperature (>650 °C),causing a drastic increase of the thermal budget and limiting the selection of substrates[18]-[21].In contrast,the amorphous gallium oxide (a-Ga2O3) thin film can be deposited by relatively simple chemical and physical vapor deposition methods,such as radiofrequency (RF) sputtering and atomic layer deposition (ALD) on almost any substrates at a low growth temperature[22]-[25].Compared with RF sputtering,ALD is advantageous due to its precise thickness control,high conformality,outstanding step coverage,and uniformity for the preparation of ultrathin layers[26],[27].In addition,nearly all of a-Ga2O3thin films prepared through the ALD method are stoichiometric with decent electrical and optical properties,which are important factors for achieving high-performance solar-blind photodetection[28].

    In this work,we demonstrate a solar-blind photodetector with high responsivity and a rapid response time based on amorphous a-Ga2O3films deposited by plasma enhanced atomic layer deposition (PE-ALD).The low processing temperature (250 °C) of the PE-ALD method makes it possible to directly deposit the a-Ga2O3film on pre-fabricated Au interdigital electrodes,thus eliminating the possibility to contaminate the a-Ga2O3film during the post device fabrication process.Under the 254-nm DUV illumination at the 10-V bias,the fabricated Au/a-Ga2O3/Au MSM solar-blind photodetector shows high responsivity (R) of 579 A/W and a clear cut-off wavelength at 280 nm.TheR250 nm/R400 nmrejection ratio is as high as 1.5×103and the rise time and the decay time are as quick as 42 ms and 8 ms,respectively.Furthermore,it is found that the passivation of the Au/a-Ga2O3/Au interface with an ultra-thin MgO layer further improves the responsivity to 788 A/W and theR250 nm/R400 nmrejection ratio to 9.2×103,while the rise time and the decay time are decreased to 32 ms and 6 ms,respectively.These results demonstrate the advantages of PE-ALD in the deposition of functional MgO/a-Ga2O3layers for the fabrication of high-performance solar-blind photodetectors that potentially can be integrated with Si integrated circuits (ICs) for commercial applications.

    2.ExperimentaI Section

    2.1.Thin-FiIm Growth and Device Fabrication

    First,quartz glass substrates were ultrasonically cleaned in soap water,deionized water,acetone,and isopropanol for 15 min each.Second,the interdigital electrodes consisted of Cr and Au with thicknesses of 10 nm and 60 nm,respectively,were fabricated by photolithography,electron beam evaporation (Angstrom Engineering AMOD),and lift-off processes.Each device comprised 25 pairs of interdigital electrodes whose length,width,and spacing were 200 μm,4 μm,and 4 μm,respectively,resulting in an effective illumination area of 4×10-4cm2.Then,a-Ga2O3thin films with a thickness of~100 nm were deposited on the substrates with interdigital electrodes by PE-ALD (Picosun R-200 Advanced).Triethylgallium (TEG,99.99%) was used as the Ga precursor.Oxygen (O2) plasma generated remotely by a microwave plasma generator at 3000 W under 50-sccm O2(99.999% purity) flow was used as the O source.The TEG source temperature was maintained at 25 °C and the substrate temperature was 250 °C.The PE-ALD sequence consisted of 0.5-s TEG exposure,5-s N2purge,12-s O2plasma exposure,and 5-s N2purge.This sequence was repeated for 2000 cycles to complete the deposition.For devices with the MgO passivation layer,MgO was deposited before the deposition of the a-Ga2O3film.Bis(cyclopentadienyl)magnesium (MgCp2) was used as the Mg precursor and its temperature was maintained at 120 °C.The PE-ALD sequence for the deposition of MgO consisted of 1.6-s MgCp2pulse,5-s N2purge,12-s O2plasma exposure,and 5-s N2purge.The deposition was completed after 10 cycles to achieve a thickness of~1 nm.Si substrates were also used to determine the thickness of the deposited a-Ga2O3and MgO films by ellipsometry and scanning electron microscopy (SEM),and the composition of the films by X-ray photoelectron spectroscopy (XPS).After deposition,all samples were annealed in air at 300 °C for 1 h before the material and device characterizations.This air annealing process is necessary for improving the photocurrent stability of the devices (refer to Fig.S1 in Supplementary).

    2.2.MateriaI Characterization

    The a-Ga2O3film was analyzed by X-ray diffraction (XRD) with Thermo Scientific ARL EQUINOX 1000 in theθ-2θmode using a monochromatic Cu Kα source operated at 40 kV and 30 mA.The cross-sectional SEM image of the film was taken with Zeiss Crossbeam 340.The optical microscope image of the device was taken with Zeiss Axiocam 305 color.The ultraviolet-visible (UV-Vis) absorption spectrum was measured with a SHIMADZU UV-1900 spectrophotometer.The chemical state and elemental composition of the films were characterized by XPS (Thermo Fisher Scientific ESCALAB-250 Xi) with a monochromatic Al Kα X-ray source.The binding energy was corrected by setting the binding energy of the hydrocarbon C 1s peak to 284.8 eV.The scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy (STEM-EDS) and high-resolution transmission electron microscopy (HRTEM) results were obtained by using JEOL JEM2100F equipped with the STEM unit and an EDS detector (Oxford Instruments).For transmission electron microscopy (TEM) observations,the cross section was glued by the epoxy resin,processed by a standard mechanical sample preparation process,and finalized by Ar+ion-milling and polishing (PIPS II,Gatan) at grazing incidence (<5°).The acceleration voltage for HRTEM was 200 kV and the spot size in the STEM mode was 1 nm.

    2.3.Device Characterization

    To control the gas atmosphere and shield the electrical noise,the devices were installed in a tailor-made metallic chamber with a gas inlet and outlet.The chamber was purged with dry air before measurement.TheI-Vcurves were recorded with a picoammeter/voltage source (Keithley 6487).A DUV fluorescent tube lamp emitting at 254 nm with the irradiance of~310 μW/cm2was used as the light source for theI-Vmeasurement.The irradiance of the light source was measured by an optical power meter (Ophir Nova II) with a high sensitivity thermal sensor (Ophir 3A).The time-dependent photoresponse curves were recorded with a high-speed picoammeter (Feimoto FTH2185) at a 100-kHz sampling rate under the illumination of chopped 255-nm light emitting diode (LED) (Thorlabs LED255J Optan) light.The spectral photoresponse curves were measured with a portable picoammeter (Feimoto FT1185) under the illumination of monochromatic light from a spectrophotometer (SHIMADZU UV-1900) equipped with a deuterium lamp.The responsivity was calculated using the emission irradiance spectrum of the deuterium lamp provided by SHIMADZU and then normalized.A 9-V battery was used as a low-noise voltage source for the time-dependent and spectral photoresponse measurement.

    3.ResuIts and Discussion

    Fig.1 (a) exhibits the cross-sectional SEM image of the a-Ga2O3thin film deposited on a Si substrate with 2000 PE-ALD cycles.The a-Ga2O3thin film has a uniform thickness of~100 nm.And on Au and quartz substrates,a-Ga2O3thin films with a similar thickness are observed (Fig.S2),demonstrating that different substrates have little effect on the growth of a-Ga2O3films due to the low-temperature self-limited PE-ALD growth process.Fig.1 (b) shows the XRD pattern of the a-Ga2O3thin film deposited on a synthetic quartz glass substrate.Besides a hump in the range of 10° to 30° originating from the amorphous quartz glass substrate,the absence of diffraction peak confirms the amorphous nature of the a-Ga2O3thin film deposited by PE-ALD.This is reasonable as a minimum temperature of 500 °C is required to crystallize Ga2O3into α phase[29],[30],which is far higher than the processing temperature of PE-ALD.The Tauc plot of the UV-Vis absorption spectrum shown in Fig.1 (c) reveals that the optical bandgap of the a-Ga2O3film deposited by PE-ALD is~4.95 eV,which is consistent with previously reported values for the a-Ga2O3film[31].The chemical state and elemental composition of the PE-ALD deposited a-Ga2O3film were analyzed by XPS.All the spectral features of the survey spectrum in Fig.1 (d) are attributed to the core levels or Auger lines of Ga and O,except for the C 1s peak.Fig.1 (e) shows that the Ga 2p3/2core level spectrum can be well-fitted with a single peak centered at 1118.1 eV,corresponding to a single Ga3+chemical state in the PE-ALD deposited a-Ga2O3film.The O 1s core level spectrum in Fig.1 (f) is deconvolved into two peaks centered at 530.9 eV and 532.1 eV,which are attributed to the O-Ga chemical bonding in the a-Ga2O3film and the carbonate(C=O)/hydroxyl(OH) species chemisorbed on the surface,respectively.After excluding the contribution from C=O/OH species,the O/Ga ratio was determined to be~1.48 by quantitative XPS analysis.The nearly stoichiometric O/Ga composition is consistent with the single Ga3+chemical state observed in Fig.1 (e).The chemical state and the O/Ga composition of the a-Ga2O3film deposited by PE-ALD are drastically different from those of the a-Ga2O3film deposited by sputtering.In sputter-deposited a-Ga2O3films,there are high-density Ga1+defects due to the reducing nature of the sputtering process and the O/Ga ratio is commonly less than 1[32].The differences of the chemical state and elemental composition for a-Ga2O3films deposited by different methods result in different solar-blind photodetection characteristics,as shown in Fig.2.

    Fig.1.Material characterization of a-Ga2O3 thin film: (a) cross-sectional SEM image of a-Ga2O3 thin film deposited on Si substrate,(b) XRD pattern and (c) Tauc plot of UV-Vis absorption spectrum of a-Ga2O3 thin film deposited on quartz glass substrate,(d) XPS survey spectrum of a-Ga2O3 thin film deposited on Si substrate,and XPS core-level spectra of (e) Ga 2p3/2 and (f) O 1s.

    Fig.2 (a) shows the optical microscopy image of the fabricated Au/a-Ga2O3/Au MSM photodetector.The device has an effective illumination area (S) of 4×10-4cm2with 25 pairs of interdigital electrodes whose length and spacing are 200 μm and 4 μm,respectively.Fig.2 (b) illustrates the semilogarithmic plots ofI-Vcurves of the Au/a-Ga2O3/Au photodetector measured in the dark and under the 254-nm DUV illumination at the irradiance (Plight) of~310 μW/cm2.At the 10-V bias,the dark current (Idark) value of the photodetector is~0.45 nA and the photocurrent (Ilight) is 65.5 μA,resulting in anIlight/Idarkratio of more than 1.4×105.The responsivity (R) of the photodetector is determined by the following equation:

    By using the data from theI-Vcurves in Fig.2 (b),the responsivity of the Au/a-Ga2O3/Au photodetector is estimated to be 579 A/W at the 10-V bias (Fig.2 (c)),which compares favorably with other a-Ga2O3based photodetectors (Table S1 in Supplementary).The time-dependent photoresponse of the Au/a-Ga2O3/Au photodetector is shown in Fig.2 (d).The photocurrent shows a fast rise and decay,and excellent reproducibility upon switching on and off the DUV illumination with a short (0.1 s) time interval.With a highspeed picoammeter,it is possible to capture the rise and decay processes (Fig.2 (e)).The rise time and the decay time,defined as the time interval for the current to rise from 10% to 90% of the peak value and vice versa[33],are 42 ms and 8 ms,respectively.The time response of the Au/a-Ga2O3/Au photodetector is much faster than most a-Ga2O3based photodetectors (Table S1).For photoconductive type MSM photodetectors,there is usually a trade-off between the response time and responsivity.For instance,although high responsivity (4100 A/W) can be achieved using the sputter-deposited a-Ga2O3film with a high density of oxygen vacancies (O/Ga ratio~0.7),the rise time and the decay time are as long as 50 s and 400 s,respectively[34].In addition,the existence of high-density interbond defect states in a-Ga2O3also leads to photoresponse to lower-energy photons beyond the solar-blind region,resulting in a poor DUV/ultraviolet A(UVA) rejection ratio.In contrast,due to the more stoichiometric composition of the PE-ALD a-Ga2O3film(O/Ga ratio~1.48),our device exhibits significantly a shorter rise time and decay time while maintaining relatively high responsivity.The spectral photoresponse of the Au/a-Ga2O3/Au photodetector in Fig.2 (f)shows a clear cut-off at the edge of the solar-blind region.TheR250nm/R400nmrejection ratio is as high as 1.5×103,demonstrating excellent wavelength selectivity for solar-blind photodetection.The high responsivity,fast time response,and excellent wavelength selectivity demonstrate that the a-Ga2O3film deposited by PE-ALD with a low defect density is ideally-suited for solar-blind photodetection.

    Fig.2.Device characterization of Au/a-Ga2O3/Au MSM photodetector: (a) optical microscope image,(b) I-V curves measured in the dark and under 254-nm DUV illumination at the irradiance of~310 μW/cm2,(c) responsivity,(d) transient photocurrent characteristics under chopped 255-nm LED light at 9-V bias,(e) rise and decay processes,and (f) spectral photoresponse.

    The external quantum efficiency (EQE) of the photodetector is calculated by wherehis the Plank’s constant,cis the velocity of light,qis the elementary charge,andλis the wavelength of light.Under the 254-nm DUV illumination at the 10-V bias,the EQE value is as high as 2800 for the Au/a-Ga2O3/Au photodetector (Fig.S3).The EQE value of significantly higher than 1 suggests that there exists the photoconductive gain in the photodetector,whose origin has been well studied in semiconductor nanowire photodetectors[35].Due to the large surface-to-volume ratio and pinning of the Fermi level by the surface states,nanowires exhibit a depletion space charge layer near the surface.This surface depletion layer provides physical separation of electrons and holes and leads to a significantly enhanced photocarrier lifetime,which is the origin of the photoconductive gain.Similarly,in the ultrathin a-Ga2O3film,the surface depletion effect is expected to play an important role.As shown in Fig.S4 (a),a surface depletion layer could be formed due to the pinning of the Fermi level (EF) on the surface.The photogenerated holes migrate to the surface due to the upward band bending and get trapped by the surface states,leaving unpaired electrons moving freely inside the film.Under an external bias,the free electrons continue to circulate until they are annihilated by either recombination or trapping.The photoconductive gain (G) is achieved if the carrier lifetime (τ) is larger than the carrier transit time (τt) between the electrodes (G=τ/τt).According to this mechanism,the degree of surface depletion can affect the photoconductive gain,because a higher degree of surface depletion renders a better charge separation capability.To verify this,a MgO layer was applied on the surface of the a-Ga2O3layer to reduce the degree of surface depletion by partially passivating the surface defects (Fig.S4 (b)).MgO was selected because it is a common high refractory and high-kdielectric candidate for the passivation of metal-oxide semiconductor devices[36]-[38].As shown in Fig.S5,the photoconductive gain is indeed reduced in the fabricated MgO/a-Ga2O3/Au photodetector,while the response time becomes faster.

    Instead of depositing the MgO layer on the top surface of the a-Ga2O3film,we speculate that the performance of the photodetector can be improved by inserting a MgO passivation layer between the Au electrode and the a-Ga2O3layer.As shown in Fig.S6 (a),the hole trap states at the a-Ga2O3/Au interface could become recombination centers for electrons migrating across this interface.By lowering the density of trap states by MgO passivation,the probability for the electrons to recombine at the interface is reduced (Fig.S6 (b)),thus further improving the responsivity of the photodetector.

    The MgO thin layer with a thickness of~1 nm was deposited by PE-ALD before the deposition of the a-Ga2O3film.Figs.3 (a) to (d) show the STEM image and the corresponding EDS mapping results.These results show that the Ga and O elements distribute evenly in the a-Ga2O3layer with a uniform thickness of~100 nm.Despite the MgO layer was not directly observed in the STEM-EDS results due to its thin thickness and the reason that the Kα line of Mg (1.253 keV) lies very closely to the Kα line of Ga (1.098 keV),the HRTEM images in Figs.3 (e) and (f)indeed reveal an interfacial MgO layer between the Si substrate and the a-Ga2O3layer.The HRTEM image in Fig.3 (f) and the selected area electron diffraction (SAED) results in Fig.S7 further confirm the amorphous state of the a-Ga2O3layer.

    Fig.3.Structure characterization of a-Ga2O3 film passivated by MgO: (a) STEM image;corresponding EDS elemental mappings of (b) Si,(c) Ga,and (d) O;(e)HRTEM images of a-Ga2O3/MgO layer deposited on Si substrate;(f) HRTEM image showing a-Ga2O3/MgO/Si interfaces.

    Fig.4 (a) exhibits the XPS survey spectrum of the 1-nm MgO layer deposited on a Si substrate.The Mg 1s core-level spectrum in Fig.4 (b) is well-fitted with a single peak at 1304.8 eV,corresponding to a single chemical state of Mg2+[39].Fig.4 (c) exhibits the O 1s core-level XPS spectrum of MgO.Since the spectrum cannot be fitted with a single peak,two peaks centered at 532.1 eV and 532.2 eV were used to fit the spectrum,which could be assigned to the hydroxyl and surface-adsorbed carbonate species[40].The lattice oxygen (Mg-O bond) was not observed in the O 1s spectrum,most likely because the MgO thin layer was easily hydrolyzed during the transfer process between the PE-ALD deposition and the XPS characterization.Nevertheless,considering there was no OH source during the PE-ALD process and a relatively thick a-Ga2O3compact layer was deposited on top of the MgO layer,we believe that in the actual device the MgO layer maintained in its oxide form,instead of the hydroxide form.Figs.4 (d) to (f) exhibit the XPS core-level spectra of Ga 2p3/2and O 1s,and the Tauc plot of the UV-Vis spectrum of the a-Ga2O3film deposited on the MgO layer.The chemical state,elemental composition,and optical bandgap of the a-Ga2O3film were not affected by the underlying MgO layer,suggesting MgO only modified the interface properties of the Au/a-Ga2O3contact.

    Fig.4.XPS and UV-Vis characterization results: (a) XPS survey spectrum of MgO layer deposited on Si substrate;XPS core-level spectra of (b) Mg 1s and (c) O 1s for MgO layer on Si substrate;XPS core-level spectra of (d) Ga 2p3/2 and(e) O 1s of a-Ga2O3/MgO bi-layer deposited on Si substrate;(f) Tauc plot of UV-Vis absorption spectrum of a-Ga2O3/MgO bi-layer deposited on quartz glass substrate.

    Fig.5 (a) shows the schematic structure of the a-Ga2O3/MgO/Au photodetector.The a-Ga2O3/MgO bilayer was deposited on the same type of Au interdigital electrodes shown in Fig.2 (a).TheI-Vcurves of the a-Ga2O3/MgO/Au photodetector measured in the dark and under the 254-nm DUV illumination at the irradiance of~310 μW/cm2are plotted in Fig.5 (b).With MgO passivation,the photocurrent at the 10-V bias is increased to 89.1 μA and theIlight/Idarkratio reaches 1.9×105.The responsivity is enhanced to 788 A/W at the 10-V bias under the 254-nm DUV illumination (Fig.5 (c)),which is 36% higher than that of the device without the MgO passivation layer.The corresponding detectivity (D*) of the device can be calculated by

    Under the 254-nm DUV illumination at the 10-V bias,D*and EQE are calculated to be 1.27×1016J and 3800 (Fig.S3),respectively.Meanwhile,compared with the result in Fig.2 (d),the time-dependent photoresponse in Fig.5 (d) shows a faster response time under the same operating conditions.The detailed rise and decay processes in Fig.5 (e) reveal the rise time and the decay time for the a-Ga2O3/MgO/Au photodetector are shortened to 32 ms and 6 ms,respectively.Furthermore,the spectral photoresponse in Fig.5 (f) reveals that theR250 nm/R400 nmrejection ratio is enhanced to 9.2×103.These results demonstrate the beneficial effect of the MgO passivation layer on improving the responsivity,response time,and wavelength selectivity of the a-Ga2O3based solar-blind photodetector.

    Fig.5.Device characterization of a-Ga2O3/MgO/Au solar-blind photodetector: (a) schematic diagram,(b) I-V curves measured in the dark and under 254-nm DUV illumination at the irradiance of~310 μW/cm2,(c) responsivity,(d) transient photocurrent characteristics under chopped 255-nm LED light at 9-V bias,(e) rise and decay processes,and (f) spectral photoresponse.

    4.ConcIusions

    The a-Ga2O3thin film deposited by PE-ALD was employed to fabricate the Au/a-Ga2O3/Au MSM solar-blind photodetector.The mild deposition condition of the PE-ALD process rendered a low defect density and nearly stoichiometric composition in the deposited a-Ga2O3thin film.As a result,the fabricated Au/a-Ga2O3/Au MSM photodetector exhibited a fast response time,high responsivity,and excellent wavelength selectivity for solar-blind photodetection.Furthermore,the performance of the device was improved by passivating the a-Ga2O3/Au interface with an ultra-thin MgO layer.The a-Ga2O3/MgO/Au solarblind photodetector achieved high responsivity of 788 A/W at the 10-V bias,a fast rise time and decay time of 32 ms and 6 ms,and a highR250 nm/R400 nmrejection ratio of 9.2×103.These results demonstrate the versatility of the PE-ALD method for the deposition of the a-Ga2O3DUV-absorbing layer and the MgO passivation layer to fabricate high-performance solar-blind photodetectors.The mild processing conditions also make it possible to directly integrate the solar-blind photodetectors with Si ICs for commercial applications.

    SuppIementary

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jnlest.2022.100176.

    DiscIosures

    The authors declare no conflicts of interest.

    国产精品精品国产色婷婷| 午夜福利高清视频| 国产片内射在线| av视频在线观看入口| 日韩欧美 国产精品| 婷婷丁香在线五月| 床上黄色一级片| 精品少妇一区二区三区视频日本电影| 日本在线视频免费播放| 日日干狠狠操夜夜爽| 午夜两性在线视频| 国产精品一区二区免费欧美| 国产三级黄色录像| 欧美成人午夜精品| 欧美中文日本在线观看视频| 变态另类丝袜制服| 麻豆久久精品国产亚洲av| 一本精品99久久精品77| cao死你这个sao货| www日本黄色视频网| 国产熟女xx| 亚洲人成伊人成综合网2020| АⅤ资源中文在线天堂| 国产一级毛片七仙女欲春2| 午夜福利免费观看在线| 手机成人av网站| 狂野欧美激情性xxxx| 国产精品九九99| 国产精品综合久久久久久久免费| 色综合婷婷激情| 成人18禁在线播放| 一进一出抽搐gif免费好疼| 亚洲第一电影网av| 禁无遮挡网站| 淫秽高清视频在线观看| 亚洲全国av大片| 成人三级做爰电影| 久久精品成人免费网站| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲美女久久久| 制服人妻中文乱码| 日本一区二区免费在线视频| 久久精品国产清高在天天线| 亚洲av中文字字幕乱码综合| 大型av网站在线播放| 国产高清视频在线观看网站| 中文字幕人成人乱码亚洲影| 又黄又爽又免费观看的视频| 日本一区二区免费在线视频| 99国产精品一区二区蜜桃av| 久久精品国产清高在天天线| 久久精品国产综合久久久| 色综合欧美亚洲国产小说| 精品免费久久久久久久清纯| 免费看a级黄色片| 久久精品国产综合久久久| 欧美丝袜亚洲另类 | 免费观看人在逋| 久久久久久九九精品二区国产 | 国产日本99.免费观看| 日本a在线网址| 日韩精品青青久久久久久| 国产片内射在线| 黄色片一级片一级黄色片| 国产精品日韩av在线免费观看| 亚洲最大成人中文| 三级毛片av免费| 高清毛片免费观看视频网站| 久久久久久久午夜电影| 日韩精品中文字幕看吧| 成人亚洲精品av一区二区| 久久久久国内视频| 国产精品久久久人人做人人爽| 一进一出抽搐gif免费好疼| 国产亚洲av高清不卡| 国产av一区在线观看免费| 狠狠狠狠99中文字幕| 国产主播在线观看一区二区| 麻豆成人av在线观看| 九色国产91popny在线| 1024手机看黄色片| 天堂动漫精品| 精品电影一区二区在线| 久久久久久久久中文| 亚洲成a人片在线一区二区| 99国产综合亚洲精品| 亚洲欧美日韩无卡精品| 伦理电影免费视频| 黄片大片在线免费观看| 99热只有精品国产| 每晚都被弄得嗷嗷叫到高潮| 一级毛片女人18水好多| 午夜激情福利司机影院| 国产伦人伦偷精品视频| 国产91精品成人一区二区三区| 亚洲成人免费电影在线观看| 真人做人爱边吃奶动态| 黄色丝袜av网址大全| 母亲3免费完整高清在线观看| 亚洲国产看品久久| 99国产极品粉嫩在线观看| 一二三四在线观看免费中文在| 欧美绝顶高潮抽搐喷水| xxx96com| 老司机午夜福利在线观看视频| 精品无人区乱码1区二区| 欧美日韩福利视频一区二区| 人成视频在线观看免费观看| 午夜a级毛片| 国产男靠女视频免费网站| 亚洲成人免费电影在线观看| 国产亚洲av高清不卡| 亚洲av电影不卡..在线观看| 性色av乱码一区二区三区2| 亚洲,欧美精品.| 免费看a级黄色片| 麻豆久久精品国产亚洲av| 亚洲在线自拍视频| 日日干狠狠操夜夜爽| 老汉色av国产亚洲站长工具| 国产一区在线观看成人免费| 亚洲成av人片在线播放无| 亚洲免费av在线视频| 日本 欧美在线| www.999成人在线观看| 久久久久久九九精品二区国产 | 亚洲av中文字字幕乱码综合| 精品久久蜜臀av无| 亚洲免费av在线视频| 久久香蕉国产精品| 国产野战对白在线观看| 免费无遮挡裸体视频| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看成人毛片| 欧美日韩中文字幕国产精品一区二区三区| 男女午夜视频在线观看| 日韩免费av在线播放| 精品一区二区三区视频在线观看免费| 一卡2卡三卡四卡精品乱码亚洲| 天天添夜夜摸| 一二三四社区在线视频社区8| 国产av一区二区精品久久| 天天躁夜夜躁狠狠躁躁| 怎么达到女性高潮| 老司机午夜十八禁免费视频| 国产麻豆成人av免费视频| 日日干狠狠操夜夜爽| 日韩高清综合在线| 一级作爱视频免费观看| 狂野欧美激情性xxxx| 国产97色在线日韩免费| 亚洲成人久久爱视频| 久久久精品国产亚洲av高清涩受| 久久久国产成人免费| 少妇的丰满在线观看| 亚洲天堂国产精品一区在线| 免费一级毛片在线播放高清视频| 99热这里只有精品一区 | 精品久久久久久久久久久久久| 一级片免费观看大全| 亚洲,欧美精品.| 久久国产乱子伦精品免费另类| 亚洲电影在线观看av| 亚洲中文日韩欧美视频| 中文字幕最新亚洲高清| 亚洲精品久久国产高清桃花| 久久香蕉国产精品| 国内揄拍国产精品人妻在线| 精品国产超薄肉色丝袜足j| 日韩国内少妇激情av| 亚洲国产欧美网| 欧美久久黑人一区二区| 久久香蕉激情| а√天堂www在线а√下载| 国产精品久久久久久精品电影| 国产精品久久久人人做人人爽| 国产成人系列免费观看| 久久久精品大字幕| 国产成人欧美在线观看| 久久性视频一级片| 哪里可以看免费的av片| 日本精品一区二区三区蜜桃| 变态另类丝袜制服| 一二三四社区在线视频社区8| 岛国在线观看网站| 欧美久久黑人一区二区| 老司机福利观看| av中文乱码字幕在线| 精品一区二区三区视频在线观看免费| 成人永久免费在线观看视频| 国产又黄又爽又无遮挡在线| 亚洲成av人片免费观看| 免费看十八禁软件| 国产伦人伦偷精品视频| 亚洲熟妇熟女久久| 日韩三级视频一区二区三区| 久久久国产欧美日韩av| 妹子高潮喷水视频| 国产免费男女视频| 久久久久免费精品人妻一区二区| 中文资源天堂在线| 成人永久免费在线观看视频| 欧美成人免费av一区二区三区| 桃色一区二区三区在线观看| 好男人在线观看高清免费视频| tocl精华| 亚洲欧美一区二区三区黑人| 99久久精品热视频| 日本黄色视频三级网站网址| 国产精品乱码一区二三区的特点| 成人永久免费在线观看视频| 一本精品99久久精品77| 免费在线观看黄色视频的| 久久天躁狠狠躁夜夜2o2o| 一夜夜www| 天天添夜夜摸| 琪琪午夜伦伦电影理论片6080| av福利片在线观看| 午夜老司机福利片| 黄色视频,在线免费观看| 黄频高清免费视频| 亚洲国产欧洲综合997久久,| 国产一区二区在线观看日韩 | 国产真人三级小视频在线观看| 1024香蕉在线观看| 久久久国产精品麻豆| 国产成人精品久久二区二区91| 黄片大片在线免费观看| 免费在线观看成人毛片| 99热这里只有精品一区 | 亚洲七黄色美女视频| 岛国在线免费视频观看| 操出白浆在线播放| xxx96com| 亚洲欧美日韩高清在线视频| 99久久99久久久精品蜜桃| 国产成人av激情在线播放| www日本在线高清视频| 久久精品人妻少妇| 国产av不卡久久| 成人午夜高清在线视频| 嫁个100分男人电影在线观看| 亚洲欧美激情综合另类| 日韩欧美国产在线观看| 成人高潮视频无遮挡免费网站| 在线a可以看的网站| 精品人妻1区二区| 天堂动漫精品| 毛片女人毛片| 熟女少妇亚洲综合色aaa.| 韩国av一区二区三区四区| 老熟妇乱子伦视频在线观看| 国产精品综合久久久久久久免费| 久久人人精品亚洲av| 亚洲成人国产一区在线观看| a级毛片在线看网站| 精品久久久久久成人av| 欧美激情久久久久久爽电影| 欧美日韩黄片免| av国产免费在线观看| 最近视频中文字幕2019在线8| 中文字幕精品亚洲无线码一区| 国产激情偷乱视频一区二区| 不卡一级毛片| 波多野结衣高清无吗| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产美女av久久久久小说| 国产一区二区三区在线臀色熟女| 亚洲国产欧美一区二区综合| 三级毛片av免费| 国产高清videossex| 91九色精品人成在线观看| 小说图片视频综合网站| 女人高潮潮喷娇喘18禁视频| 免费在线观看完整版高清| 国产伦人伦偷精品视频| 欧美色视频一区免费| 亚洲精品国产一区二区精华液| 亚洲 欧美一区二区三区| 免费无遮挡裸体视频| 嫩草影视91久久| 黄色女人牲交| 听说在线观看完整版免费高清| 给我免费播放毛片高清在线观看| 欧美一级毛片孕妇| 真人做人爱边吃奶动态| 又紧又爽又黄一区二区| 午夜福利18| 日韩大尺度精品在线看网址| 午夜成年电影在线免费观看| 国产午夜精品论理片| 亚洲一区二区三区色噜噜| 1024香蕉在线观看| 国产精品爽爽va在线观看网站| 丝袜人妻中文字幕| 午夜福利成人在线免费观看| 特级一级黄色大片| 国产精品久久久av美女十八| 51午夜福利影视在线观看| 免费在线观看成人毛片| 亚洲av中文字字幕乱码综合| 曰老女人黄片| 男女午夜视频在线观看| 视频区欧美日本亚洲| 嫁个100分男人电影在线观看| 免费在线观看黄色视频的| 日本一本二区三区精品| 一区二区三区激情视频| 久久精品影院6| 久久九九热精品免费| 国产单亲对白刺激| 国产精品一区二区免费欧美| 无限看片的www在线观看| 三级国产精品欧美在线观看 | 日韩免费av在线播放| 国产91精品成人一区二区三区| 亚洲七黄色美女视频| av片东京热男人的天堂| 高潮久久久久久久久久久不卡| av福利片在线观看| 啦啦啦免费观看视频1| 中文字幕熟女人妻在线| 别揉我奶头~嗯~啊~动态视频| 亚洲欧洲精品一区二区精品久久久| 日本熟妇午夜| 欧美日本亚洲视频在线播放| 女生性感内裤真人,穿戴方法视频| 国内精品久久久久久久电影| 国产成+人综合+亚洲专区| 亚洲真实伦在线观看| АⅤ资源中文在线天堂| 男人的好看免费观看在线视频 | 国产男靠女视频免费网站| 麻豆国产97在线/欧美 | 国内久久婷婷六月综合欲色啪| 国产精品亚洲美女久久久| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久久久久久毛片微露脸| 一级作爱视频免费观看| 一区二区三区国产精品乱码| 婷婷精品国产亚洲av在线| 久久中文字幕一级| 桃色一区二区三区在线观看| 精品一区二区三区av网在线观看| 日韩精品中文字幕看吧| 啦啦啦免费观看视频1| 日韩欧美免费精品| 亚洲精品国产一区二区精华液| 国产精品国产高清国产av| 免费av毛片视频| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 欧美精品亚洲一区二区| 少妇被粗大的猛进出69影院| 18美女黄网站色大片免费观看| 午夜成年电影在线免费观看| 搞女人的毛片| 97碰自拍视频| 久久精品综合一区二区三区| av片东京热男人的天堂| 日本熟妇午夜| 国产高清激情床上av| 99国产综合亚洲精品| 久99久视频精品免费| 欧美最黄视频在线播放免费| 欧美一区二区精品小视频在线| 日本精品一区二区三区蜜桃| 久9热在线精品视频| 看片在线看免费视频| 国产午夜福利久久久久久| www.999成人在线观看| 欧美成狂野欧美在线观看| 天堂影院成人在线观看| 国产一区二区三区视频了| 国产三级黄色录像| 一本久久中文字幕| 91老司机精品| 精品国产超薄肉色丝袜足j| 深夜精品福利| 久9热在线精品视频| 国产探花在线观看一区二区| 国产精品综合久久久久久久免费| videosex国产| 桃色一区二区三区在线观看| 久久久久国产精品人妻aⅴ院| 午夜福利欧美成人| 午夜福利视频1000在线观看| 高潮久久久久久久久久久不卡| 婷婷精品国产亚洲av在线| 深夜精品福利| 成年人黄色毛片网站| 久久久精品大字幕| 不卡一级毛片| 成在线人永久免费视频| 蜜桃久久精品国产亚洲av| 亚洲一区二区三区色噜噜| 舔av片在线| 给我免费播放毛片高清在线观看| 欧美久久黑人一区二区| 日韩免费av在线播放| 亚洲国产欧美人成| 欧美丝袜亚洲另类 | av中文乱码字幕在线| 岛国在线免费视频观看| 午夜成年电影在线免费观看| 在线观看66精品国产| 亚洲精品色激情综合| 午夜福利视频1000在线观看| 久久 成人 亚洲| 亚洲乱码一区二区免费版| 免费看十八禁软件| 亚洲午夜理论影院| 亚洲免费av在线视频| 波多野结衣巨乳人妻| 国产一区在线观看成人免费| 中国美女看黄片| 日韩欧美国产在线观看| 日韩免费av在线播放| 狠狠狠狠99中文字幕| 亚洲欧洲精品一区二区精品久久久| 男人舔奶头视频| 欧美成人一区二区免费高清观看 | 欧美色欧美亚洲另类二区| 日本熟妇午夜| 久久精品国产清高在天天线| 真人一进一出gif抽搐免费| 国产成人精品久久二区二区免费| 亚洲成人精品中文字幕电影| 国产成人精品久久二区二区91| 亚洲欧洲精品一区二区精品久久久| 欧美日韩黄片免| 女生性感内裤真人,穿戴方法视频| aaaaa片日本免费| 国产免费男女视频| 国产av一区二区精品久久| 成年人黄色毛片网站| 麻豆一二三区av精品| 最好的美女福利视频网| 男女视频在线观看网站免费 | av在线播放免费不卡| 91大片在线观看| 男男h啪啪无遮挡| 色综合亚洲欧美另类图片| 亚洲欧美激情综合另类| 欧美成人午夜精品| 在线观看美女被高潮喷水网站 | 亚洲欧美一区二区三区黑人| 国产片内射在线| 日韩精品青青久久久久久| www.www免费av| 亚洲午夜理论影院| 久久精品国产清高在天天线| e午夜精品久久久久久久| 一区二区三区激情视频| 日本免费a在线| 精品国内亚洲2022精品成人| 亚洲成人精品中文字幕电影| 又大又爽又粗| 天堂av国产一区二区熟女人妻 | 国产三级黄色录像| 色综合欧美亚洲国产小说| 国产一级毛片七仙女欲春2| 99国产综合亚洲精品| 久久久久精品国产欧美久久久| 久久久久久九九精品二区国产 | 男男h啪啪无遮挡| 在线观看一区二区三区| 欧美人与性动交α欧美精品济南到| 特级一级黄色大片| 99热只有精品国产| 久久久久性生活片| 国产精品免费视频内射| 黄色视频,在线免费观看| 亚洲欧洲精品一区二区精品久久久| 亚洲电影在线观看av| 一个人免费在线观看电影 | 久久国产精品人妻蜜桃| 无遮挡黄片免费观看| 丝袜美腿诱惑在线| 一本精品99久久精品77| 色在线成人网| 在线观看免费日韩欧美大片| 韩国av一区二区三区四区| 中文字幕人妻丝袜一区二区| 国产v大片淫在线免费观看| 亚洲成人久久性| 18美女黄网站色大片免费观看| 9191精品国产免费久久| 亚洲精品久久成人aⅴ小说| 欧美乱妇无乱码| 国产精品98久久久久久宅男小说| 久久久久久国产a免费观看| 日韩欧美国产在线观看| 美女午夜性视频免费| 精品无人区乱码1区二区| 精品少妇一区二区三区视频日本电影| 88av欧美| 国产97色在线日韩免费| 亚洲 欧美 日韩 在线 免费| 国产精品爽爽va在线观看网站| 国产在线精品亚洲第一网站| 五月伊人婷婷丁香| 欧美丝袜亚洲另类 | 国产一区二区在线av高清观看| 欧美日韩亚洲国产一区二区在线观看| 嫩草影视91久久| 午夜精品在线福利| 国语自产精品视频在线第100页| 黄色视频,在线免费观看| 国产成人av激情在线播放| 五月伊人婷婷丁香| 久久这里只有精品19| 成人av一区二区三区在线看| 99riav亚洲国产免费| 在线十欧美十亚洲十日本专区| 国产一区二区激情短视频| 国产精品久久电影中文字幕| 一区二区三区高清视频在线| 最近最新免费中文字幕在线| 91在线观看av| 免费高清视频大片| 在线播放国产精品三级| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 一边摸一边做爽爽视频免费| 狠狠狠狠99中文字幕| 中文字幕av在线有码专区| 国产成年人精品一区二区| 午夜成年电影在线免费观看| 村上凉子中文字幕在线| 精品熟女少妇八av免费久了| 变态另类成人亚洲欧美熟女| 精品免费久久久久久久清纯| 看黄色毛片网站| 国产精品免费一区二区三区在线| 欧美成人免费av一区二区三区| 国产男靠女视频免费网站| 麻豆成人午夜福利视频| 午夜激情av网站| 亚洲精品av麻豆狂野| 99re在线观看精品视频| 国产成人aa在线观看| 变态另类成人亚洲欧美熟女| 欧美性猛交╳xxx乱大交人| 精品国产乱子伦一区二区三区| 美女午夜性视频免费| 操出白浆在线播放| 中文亚洲av片在线观看爽| 亚洲国产精品成人综合色| 亚洲国产欧美网| 国产精品一区二区三区四区久久| 亚洲avbb在线观看| 波多野结衣高清无吗| 午夜福利在线观看吧| 欧美乱码精品一区二区三区| 五月玫瑰六月丁香| 国产成人啪精品午夜网站| 午夜影院日韩av| 三级毛片av免费| 悠悠久久av| 国产精华一区二区三区| 精品福利观看| 久久久久久久精品吃奶| 人人妻人人看人人澡| 欧美黄色片欧美黄色片| 欧美中文日本在线观看视频| 久久久久久人人人人人| 成人手机av| 国产精品免费视频内射| 国产精品av久久久久免费| 一级毛片高清免费大全| 免费av毛片视频| 亚洲国产中文字幕在线视频| av国产免费在线观看| 国产v大片淫在线免费观看| 18禁黄网站禁片免费观看直播| 精品午夜福利视频在线观看一区| 亚洲欧美日韩无卡精品| 夜夜夜夜夜久久久久| 久久久国产欧美日韩av| aaaaa片日本免费| 亚洲av成人不卡在线观看播放网| 麻豆国产av国片精品| 色哟哟哟哟哟哟| 国产av又大| 12—13女人毛片做爰片一| 欧美人与性动交α欧美精品济南到| 99久久久亚洲精品蜜臀av| 成人av在线播放网站| 此物有八面人人有两片| e午夜精品久久久久久久| av中文乱码字幕在线| 国产69精品久久久久777片 | 老汉色∧v一级毛片| bbb黄色大片| 久久国产乱子伦精品免费另类| 久久久久国产一级毛片高清牌| 两个人免费观看高清视频| 精品一区二区三区av网在线观看| 九色成人免费人妻av| 欧美高清成人免费视频www| 欧美日韩亚洲综合一区二区三区_| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放 | videosex国产| 国产亚洲精品av在线| 免费观看人在逋| 日韩精品中文字幕看吧| 老鸭窝网址在线观看| 亚洲精品一卡2卡三卡4卡5卡| 色精品久久人妻99蜜桃| 在线观看免费视频日本深夜| 亚洲五月婷婷丁香| 日本黄大片高清| 日本一区二区免费在线视频|