• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ModeIing and SimuIation for Transient ThermaI AnaIyses Using a VoItage-in-Current Latency Insertion Method

    2023-01-13 01:56:32WeiChunChinBoonChunNewNurSyazreenAhmadPatrickGoh

    Wei Chun Chin | Boon Chun New | Nur Syazreen Ahmad | Patrick Goh

    Abstract—This article presents a modeling and simulation method for transient thermal analyses of integrated circuits (ICs) using the original and voltage-in-current (VinC) latency insertion method (LIM).LIM-based algorithms are a set of fast transient simulation methods that solve electrical circuits in a leapfrog updating manner without relying on large matrix operations used in conventional Simulation Program with Integrated Circuit Emphasis(SPICE)-based methods which can significantly slow down the solution process.The conversion from the thermal to electrical model is performed first by using the analogy between heat and electrical conduction.Since electrical inductance has no thermal equivalence,a modified VinC LIM formulation is presented which removes the requirement of the insertion of fictitious inductors.Numerical examples are presented,which show that the modified VinC LIM formulation outperforms the basic LIM formulation,in terms of both stability and accuracy in the transient thermal simulation of ICs.

    1.Introduction

    The growth of the semiconductor industry has led to the advancement of system miniaturization technology which results in high packing densities in three-dimensional (3D) integrated circuits (ICs).In addition,higher performance has led to increased power consumption which translates to a larger amount of heat produced by these 3D ICs.Both the larger amount of heat produced per unit area and the difficulty in dissipating the heat due to the overcrowding of devices result in an increased operating temperature which can affect the performance of the IC product in a negative way[1],[2].For example,the increase of the conductor resistance by Joule heating and the distortion of the structure by thermal stress can cause the IC chips to malfunction.Thus,it is vital to understand the thermal effects in the electrical circuit in the design stages of an electronic product.

    To analyze the thermal integrity of circuit designs,a verification of the thermal characteristics is often carried out.Instead of manual testing after fabrication,the software simulation at a pre-or post-layout stage is a more efficient way of analyses.Early testing and verification procedures can detect possible thermal problems in the design of IC and allow modifications to be carried out rapidly to address the issues.There are various approaches to perform thermal analyses,and a common way is by conducting a transient thermal analysis,which is just like a transient electrical analysis.But instead of the electrical behavior,the thermal behavior of the IC design versus time is analyzed.This is done by mapping the thermal model into its equivalent electrical circuit,which can then be simulated using existing electrical simulation tools.Specifically,the similarities between the laws of thermodynamics and electricity are levied to construct a thermal model of the system using electrical components,such as resistors,capacitors,and independent sources[3].The resulting equivalent circuit can then be readily simulated through available electrical simulators in the market.In this regard,the Simulation Program with Integrated Circuit Emphasis (SPICE)[4]and SPICE-based algorithms are often the preferred simulators due to their maturity and historical influence in the field of circuit simulators.However,in terms of simulation time and capacity in handling large circuits,cracks are beginning to emerge in SPICE and SPICE-based simulators.Due to their reliance on the modified nodal analysis (MNA)framework and matrix solution engines,these solvers scale poorly with the size of the circuit,and the circuits with a large number of nodes and branches can require a large amount of computational time and a large number of resources.

    Attempts to solve the bottleneck in SPICE solvers have led to newer ideas and algorithms in electrical simulations,and from that,the latency insertion method (LIM) was proposed in the early 2000s[5].LIM can perform transient simulations of large networks much faster than SPICE as LIM utilizes a leapfrog analytical formulation without any matrix operation.Over the past decades,various improvements to LIM,such as block-LIM[6],partitioned LIM[7],predictor-corrector LIM[8],locally implicit LIM[9],alternating direction explicit-LIM[10],and the most recent voltage-in-current (VinC) LIM[11],have been proposed.These LIM-based algorithms have been applied to various applications including the simulations of input/output (I/O)buffers[12],[13],phase-locked loops[14],power delivery networks[15]-[18],complementary metal oxide semiconductors(CMOSs) and diodes[19]-[21],real-time power electronic systems[22],[23],stochastic[24],and transmission lines[25],[26].

    In addition to these applications,LIM algorithms have been applied to perform electro-thermal analysis as well[27]-[29].However,these studies have only applied the original basic LIM algorithm,whose significant stability restriction limits the time step and hence lengthens the overall runtime of the simulation.This paper shows the application of VinC LIM for the transient thermal analysis of ICs.The VinC LIM formulation does not suffer from the stability restriction and thus is able to complete the analysis significantly faster than the basic LIM algorithm.In addition,since the equivalent thermal modeling circuit does not have inductances,a reformulation of the VinC LIM equation is presented which strips the requirement of fictitious inductances from the simulation.It is shown that the proposed formulation performs much faster and at higher accuracy than the original LIM formulation when applied to transient thermal simulations.

    2.ReIated Backgrounds

    In this section,the analogy between electrical and thermal systems and the fundamentals of the simulation algorithms that will be applied in the transient thermal analysis are reviewed.Discussion on the similarities between the two systems and their equivalent conversion is provided first.Then,for the simulation algorithms,the basic LIM and VinC LIM formulations are reviewed.The former is the root of the LIM-based algorithm family,while the latter is a more recent and improved LIM formulation.These two different LIM simulation algorithms are applied in this article to compare their capabilities in the transient thermal analysis from the scope of simulation stability and accuracy.

    2.1.EIectricaI-ThermaI AnaIogy

    Generally,heat conduction is governed by Fourier’s law which states that the rate of heat transfer ()through two points in a solid material is proportional to the temperature difference (?T) between the two points divided by the distance between the points (?x).It can be mathematically expressed as

    wherekis the proportionality constant,also known as the thermal conductivity of the material,andAis the area normal to the direction of heat flow.On the other hand,Ohm’s law of electrical conduction states that the current (I) through an electrical conductor between two points is proportional to the voltage across the two points (?V) divided by the resistance (R) that exists between the points.It is described by

    Comparing (1) and (2),an analogy can be drawn between Fourier’s law of heat conduction and Ohm’s law of electrical conductance,where=I,?T=?V,and ?x/kA=R.Table 1 summarizes the electrical-thermal analogy,where the first three rows have been explained above,and the remaining rows can be obtained by inspecting the equations governing the electrical charge and heat flux.The interested readers can be referred to [3].

    Table 1: Electrical-thermal analogy

    The conversion from thermal to electrical models allows the thermal analysis to be performed using electrical circuit simulators,and some examples in thermal to electrical modeling and simulations can be referred to [30] and [31].The LIM-based simulation method applied in this work will be reviewed next.

    2.2.Basic LIM FormuIation

    The original LIM,or basic LIM,is a circuit analysis tool built for the fast transient simulations for circuits composed of resistors (R),inductors (L),conductors (G),and capacitors (C)[5].The simulation of a circuit through LIM requires the fulfillment of LIM’s branch and node topologies shown in Figs.1 (a) and (b),respectively,whereViandVjare voltages at nodesiandj,respectively,Ii,jis the current flowing from the nodeito the nodej,Ei,jis a series voltage source,andHiis a shunt current source.

    By utilizing Kirchhoff ’s law,the current and voltage in the branch and node can be solved as

    Fig.1.Circuit topology required for the LIM analysis:(a) branch topology and (b) node topology.

    whereLi,jandRi,jare the inductance and resistance at the branch (i,j),respectively,CiandGiare the capacitance and conductance at the nodei,respectively,and ?tis the time step for the simulation generated from the linearization of the voltage across the inductance in the branchand the current flowing through the capacitance in the nodethrough Euler’s approximation.Thenterm in the formulation refers to the time index of the transient simulation,andMiindicates the number of branches connected to the nodei.From (3) and(4),it can be seen that the latencies,Li,jandCi,are required to be present at every branch and node in the LIM simulation.If they are not present,small fictitious elements are inserted to enable the method.In addition,in the LIM simulation,the current and voltage components are updated using a leapfrog sequence,where the currents and voltages are solved in an alternating order.This order can be seen from the indices labeled in the equations,wherenandn+1 are used for the currents,andn-1/2 andn+1/2 are used for the voltages.In this case,the current is assumed to be slightly ahead of the voltage in the simulation,but this sequence is interchangeable.

    Since the LIM formulation is generated through an explicit formulation,it is only conditionally stable with a limitation on the maximum time step value.This maximum time step value can be calculated according to

    wherenNis the total number of nodes in the circuit,is the total number of branches connected to the nodei,Ciis the value of the grounded capacitance at the nodei,andLi,mis the value of the inductance in themth branch connected to the nodei[32].From (5),it can be seen that the maximum stable time step depends on the values of the capacitance and inductance in the circuit,and that smaller values will result in smaller time steps.Hence,circuits with very small latency values,especially due to the insertion of fictitious elements to enable LIM,will have severely degraded simulation performance as more iterations are required to complete the transient analysis.

    2.3.VinC LIM FormuIation

    VinC LIM[11]is a more recent and improved version of LIM that is derived based on an implicit formulation for enhanced stability.By writing (3) and (4) at the same time index ofn+1,the following equations are obtained

    Then,substituting the voltage in (7) into (6) yields

    3.ThermaI ModeIing and SimuIation Process

    In this section,the procedure to carry out the transient thermal analysis is discussed in detail.First,an example thermal problem is set up,and the formation of the thermal equivalent circuit is discussed.Then,the associated LIM algorithms for the thermal simulation are presented.

    3.1.ThermaI ProbIem Setup

    In this article,a two-dimensional (2D) thermal problem representing an IC structure is selected,and it is based on the same thermal problem shown in [28] and [29].This example is chosen such that comparisons can be made with the results of [28] and [29].Fig.2 illustrates the thermal structure,and its corresponding dimensions,materials,heat source,and observation point.The structure has a dimension of 140 μm × 28 μm with silicon (Si) in the inner layer and silicon dioxide (SiO2) at the top and bottom layers.AB,AD,BC,and DC form the top,left,right,and bottom boundaries of the thermal problem.In these four boundaries,the DC boundary acts as an adiabatic boundary,while the other three are ambient boundaries.When heat is fed into the IC model,it can conduct freely in the model until it is finally dissipated through the AB,AD,and BC boundaries.Finally,the point E in the figure represents the measurement point for the analysis.It is to be remarked that the structure in Fig.2 is symmetric in nature,and this can be exploited to simplify the modeling and solution process with the use of a proper boundary condition.However,in this paper we will model the full structure so as to consider a general case which might be not physical symmetry.

    Fig.2.2D cross section of the thermal problem.

    3.2.ThermaI EquivaIent Circuit Setup

    Next,the thermal problem illustrated in Fig.2 is transformed into its thermal equivalent circuit using the analogy between heat and electrical conduction.It starts with meshing the thermal structure in Fig.2 into grids with the desired dimensions.In this paper,uniform grids are formed with the dimension of 1 μm × 1 μm,similar to [28] and [29],to facilitate comparisons in the next section.This leads to the total number of 3920 thermal grid cells in the thermal problem.Fig.3 shows the meshed 2D plane of the IC structure where the red cells show the heat sources and the green cell is the measurement point.

    Then,an equivalent electrical circuit is formed using the electrical-thermal analogy in Table 1,where the temperature or heat level at each grid is represented by the node voltage,and the heat flow between grids is represented by the current flow.Only horizontal and vertical connections are considered when forming the networks between grids,and the heat is restricted to flow only in these directions.Fig.4 shows the electrical circuit model of the thermal problem,where the resistors represent the thermal resistance between the grids,while the shunt capacitors represent the resulting thermal capacitance in each grid.

    Fig.3.Modeling by uniform grids of the thermal problem.

    The thermal resistances connecting silicon cells (Si-Si),silicon dioxide cells (SiO2-SiO2),and silicon to silicon dioxide cells (Si-SiO2) areRSi,RSiO2,andRavg,respectively.They are calculated as

    where ?xis the length of the thermal cell;Acellis the cross-sectional area of the thermal grid;kSiandkSiO2are the thermal conductivity for silicon and silicon dioxide,respectively;kavgis the equivalent thermal conductivity forRavg.The exact expression forkavgis given by 2kSikSiO2/(kSi+kSiO2),which is derived from (12).The thermal capacitanceCheatis calculated as

    wherecpis the specific heat capacity of the material,ρis the volumetric density of the material at the particular thermal cell,and Vol is the volume of the thermal cell.In addition,since the AB,AD,and BC boundaries of the IC structure are ambient boundaries that allow heat convection,the thermal cells exposed to these boundaries are further connected to the ambient resistanceRambto model the heat flowing out of IC.The equation for the ambient resistance is given by

    Fig.4.Electrical circuit model of the thermal problem.Heat sources are colored in red.

    wherehambis the convection heat transfer coefficient andAambis the effective area of the thermal cell at the connected ambient boundary.

    Table 2 summarizes the dimensions and material properties in this thermal problem.It is to be noted that since the structure is 2D,AcellandAambare equal to ?x,while Vol is equal to (?x)2.

    Table 2: Dimensions and material properties of the thermal problem

    3.3.Modified VinC LIM for Transient ThermaI AnaIysis

    Once the equivalent circuit of the IC model has been constructed,suitable electrical simulation algorithms can be applied to run the transient thermal analysis.In this article,the basic LIM and VinC LIM algorithms are applied.For the basic LIM simulation,an inductance in each branch is necessary for the branch updating equation to be performed correctly.Since the thermal model does not have equivalence for electrical inductances,a small fictitious inductance is inserted in series to the thermal resistance in each branch.The choice and effect of the value of this inductance will be investigated in the next section.

    For the VinC LIM simulation,a reformulation is performed which removes the need of the inductances from the simulation.First,the current expressed by (6) is rewritten without theLi,jterms to yield

    Then,the voltage shown by (7) is substituted into this new current equation to yield

    The VinC LIM simulation can then be performed using the modified equation shown in (17) in place of (9).Note that noLi,jterms exist in the formulation and thus no fictitious inductances need to be inserted.

    4.ResuIts and Discussion

    In this section,the thermal circuit is simulated using the basic LIM and modified VinC LIM formulations.Results are presented,which compare the performance of the algorithms in terms of stability and accuracy,with consideration on the time step of the simulation.First the circuit in Fig.4 is simulated using both algorithms and Fig.5 shows the overall thermal behavior of the IC model at the end of the simulation.The thermal distribution map shows the conduction of heat from the source to the entire 2D IC model.It can be seen that the heating effect at the upper part is averagely lower than the bottom part due to the ambient boundaries that allow heat dissipate to the surrounding,compared with the adiabatic boundary at the bottom which results in more heat stored in the lower part of IC.

    Next,the temperature at the point E (see Fig.3)of the IC structure is plotted in Fig.6.Multiple simulations are carried out with different time steps,starting from 30 ns,which is the calculated maximum stable time step through (5) when the inserted fictitious inductance is 1 nH.Note that for the VinC LIM simulations,no fictitious inductances are inserted.It can be seen that the simulation using basic LIM is stable only for the time step of 30 ns,and any simulations using the time step which is larger than 30 ns are unstable,while the VinC LIM formulation remains stable for all time steps.

    Fig.5.Temperature distribution of the simulated IC model in °C.

    Fig.6.Basic LIM and VinC LIM simulations with different time steps.The 1-nH fictitious inductance is inserted in basic LIM and no fictitious inductances are required in VinC LIM.

    Since basic LIM is only conditionally stable as given by (5),in order to run the simulation with larger time steps,the value of the fictitious inductance must be increased,however,which will have an adverse effect on the accuracy of the simulation.Fig.7 (a)shows the simulation results by using a larger fictitious inductance in basic LIM,in order to relax the simulation time step.As a comparison,Fig.7 (b)shows the simulations using the same time steps in VinC LIM without any fictitious inductance.It can be seen that the simulations using basic LIM show significantly larger degradation in accuracy with larger time steps,compared with VinC LIM.Table 3 shows the root mean square (RMS) errors of the simulations as compared with the simulation at the time step of 30 ns.It can be seen that the RMS errors are significantly lower in the VinC LIM simulations for the same time steps.This shows the superiority of the presented modified VinC LIM formulation which does not require any fictitious inductance.

    Fig.7.Simulated waveforms at different time steps from (a) basic LIM (values of fictitious inductances are written in parentheses) and (b) VinC LIM (no fictitious inductances are required in VinC LIM).

    Table 3: RMS errors in basic LIM and VinC LIM simulations at different time steps

    In addition,Table 4 compares the simulation runtime of the proposed VinC LIM algorithm and SmartSpiceTM,a modern simulator from Silvaco,for the same thermal model but with varying thermal cell lengths of 1.00 μm,0.50 μm,and 0.25 μm at the time step of 30 ns.The results show that the proposed framework is much faster at solving the same model and the speedup ratio increases with the size of the circuit.

    Table 4: Runtime and speedup comparison between SmartSpice and VinC LIM for the simulation time step of 30 ns

    To draw a comparison with previous work,the data from the same simulations in [28] and [29] are referred to.For a 1-μm mesh model,the results in these papers showed that basic LIM,at its minimal time step of 28.7 ns,obtains a similar level of accuracy compared with the commercial software COMSOL Multiphysics and the Gauss-Seidel (GS) method,while being 11.5 folds and 107.8 folds faster than them,respectively.As a comparison,the results from the modified VinC LIM simulation presented in this paper at the time step of 500 ns would be approximately 17.4 folds faster than that from the basic LIM simulation at 28.7 ns,and hence approximately 200 folds and 1875 folds faster than those from COMSOL Multiphysics and GS,respectively.All these results show the potential of the VinC LIM formulation in electro-thermal simulations.

    5.ConcIusion

    In this work,the modeling and simulation method for transient thermal analyses is presented using LIM.Using the electrical-thermal analogy,an electrical equivalent circuit is formed to model the heat conduction problem.Since there is no equivalence for the electrical inductance in heat conduction,a modified formulation is presented for the VinC LIM,which does not require the insertion of fictitious inductances.Results show that the proposed modified formulation is much better in terms of stability and accuracy compared with the basic LIM formulation.Future work will focus on the complete 3D modeling of IC systems towards providing electrothermal co-simulation solutions.

    DiscIosures

    The authors declare no conflicts of interest.

    在线观看一区二区三区| 免费观看性生交大片5| 99久久无色码亚洲精品果冻| 欧美xxxx性猛交bbbb| 免费看av在线观看网站| 真实男女啪啪啪动态图| 直男gayav资源| 女的被弄到高潮叫床怎么办| 欧美另类亚洲清纯唯美| 可以在线观看毛片的网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区性色av| 欧美日本亚洲视频在线播放| av免费在线看不卡| 一区二区三区四区激情视频| 色播亚洲综合网| 国产片特级美女逼逼视频| 色视频www国产| 观看免费一级毛片| 波野结衣二区三区在线| 中文欧美无线码| 亚州av有码| 日本免费a在线| 日本欧美国产在线视频| 亚洲美女搞黄在线观看| 特级一级黄色大片| 国产老妇女一区| 欧美日本亚洲视频在线播放| 久久久久久大精品| 久久久国产成人免费| 久久久久久久国产电影| 国产亚洲精品av在线| 亚洲中文字幕日韩| 男女下面进入的视频免费午夜| 亚洲欧洲日产国产| 国产精品嫩草影院av在线观看| 成年免费大片在线观看| 天堂av国产一区二区熟女人妻| 人妻制服诱惑在线中文字幕| 久久久久久九九精品二区国产| 久久久久精品久久久久真实原创| 欧美一区二区亚洲| 51国产日韩欧美| 久久久久久久久久久丰满| 97超碰精品成人国产| 全区人妻精品视频| 自拍偷自拍亚洲精品老妇| 我的女老师完整版在线观看| 亚洲av熟女| 水蜜桃什么品种好| 天堂影院成人在线观看| 日本熟妇午夜| 日本与韩国留学比较| 在线免费观看的www视频| 我要搜黄色片| 简卡轻食公司| 精品人妻一区二区三区麻豆| 久久久久久久久久久免费av| 精华霜和精华液先用哪个| 高清av免费在线| 丝袜美腿在线中文| 久久久久性生活片| 麻豆一二三区av精品| 99视频精品全部免费 在线| 久久99热这里只有精品18| 嫩草影院入口| 亚洲在线自拍视频| 国产女主播在线喷水免费视频网站 | 黄片wwwwww| 免费观看性生交大片5| 18禁动态无遮挡网站| 免费观看精品视频网站| 免费观看在线日韩| 爱豆传媒免费全集在线观看| 日韩av在线大香蕉| 久久久国产成人精品二区| 啦啦啦观看免费观看视频高清| 亚洲经典国产精华液单| 欧美bdsm另类| 精品免费久久久久久久清纯| 一级毛片电影观看 | 色播亚洲综合网| a级毛片免费高清观看在线播放| 有码 亚洲区| 国产视频首页在线观看| 国产免费视频播放在线视频 | 汤姆久久久久久久影院中文字幕 | 国产精品麻豆人妻色哟哟久久 | 简卡轻食公司| a级毛色黄片| 亚洲av电影不卡..在线观看| 99久久人妻综合| 国产色婷婷99| 久久久久久久久久成人| av国产免费在线观看| 91久久精品国产一区二区三区| 一区二区三区免费毛片| 别揉我奶头 嗯啊视频| 欧美日本视频| 国产亚洲5aaaaa淫片| 亚洲av免费在线观看| 国产高清视频在线观看网站| 美女cb高潮喷水在线观看| 欧美另类亚洲清纯唯美| 九草在线视频观看| 少妇人妻一区二区三区视频| 少妇裸体淫交视频免费看高清| 国产精品一区www在线观看| 在线播放国产精品三级| 成人亚洲欧美一区二区av| 国产精品无大码| 乱人视频在线观看| 最近2019中文字幕mv第一页| 麻豆一二三区av精品| 国产精品一区二区性色av| 亚洲综合色惰| 亚洲国产精品成人综合色| 免费在线观看成人毛片| 日日摸夜夜添夜夜添av毛片| 亚洲精品,欧美精品| 久久久久久久午夜电影| 亚洲国产色片| 日韩一区二区视频免费看| 亚洲成人av在线免费| 26uuu在线亚洲综合色| 色哟哟·www| 综合色丁香网| 亚洲一区高清亚洲精品| 亚洲人成网站在线观看播放| 日韩人妻高清精品专区| 少妇的逼好多水| 性色avwww在线观看| 亚洲不卡免费看| www.av在线官网国产| 久久99蜜桃精品久久| av免费在线看不卡| 久久精品久久精品一区二区三区| 婷婷色麻豆天堂久久 | 黄色欧美视频在线观看| 高清毛片免费看| 天堂影院成人在线观看| 欧美97在线视频| 久久久久免费精品人妻一区二区| 白带黄色成豆腐渣| 国内精品美女久久久久久| 国产亚洲91精品色在线| 欧美精品国产亚洲| 国产亚洲午夜精品一区二区久久 | 天美传媒精品一区二区| 高清毛片免费看| 人人妻人人澡人人爽人人夜夜 | 午夜精品国产一区二区电影 | 亚洲精品久久久久久婷婷小说 | 校园人妻丝袜中文字幕| 亚洲最大成人av| 亚洲欧美日韩卡通动漫| 美女xxoo啪啪120秒动态图| 亚洲精品国产成人久久av| 精品免费久久久久久久清纯| 国模一区二区三区四区视频| 亚洲四区av| 久久99热6这里只有精品| 午夜福利成人在线免费观看| 老司机福利观看| 乱码一卡2卡4卡精品| videos熟女内射| 看片在线看免费视频| 伦精品一区二区三区| 久久久久久久久久久免费av| 亚洲伊人久久精品综合 | 一个人观看的视频www高清免费观看| 秋霞在线观看毛片| 日韩视频在线欧美| 国产又色又爽无遮挡免| 久久99热这里只有精品18| 中文乱码字字幕精品一区二区三区 | 高清在线视频一区二区三区 | 99久国产av精品国产电影| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 久99久视频精品免费| 特级一级黄色大片| 久久久久久久久久黄片| 欧美丝袜亚洲另类| 熟女电影av网| 日韩成人av中文字幕在线观看| 国产亚洲av片在线观看秒播厂 | 看非洲黑人一级黄片| 国产亚洲精品久久久com| 国产精品人妻久久久久久| 亚洲av成人精品一二三区| 久久久国产成人免费| 亚洲最大成人中文| 欧美性猛交黑人性爽| 国产91av在线免费观看| 久久久午夜欧美精品| 男女视频在线观看网站免费| av在线亚洲专区| 高清日韩中文字幕在线| 嘟嘟电影网在线观看| 永久网站在线| 色播亚洲综合网| 国产激情偷乱视频一区二区| 亚洲综合色惰| 老司机福利观看| 国产高潮美女av| 一区二区三区四区激情视频| 亚洲欧美成人精品一区二区| 国产男人的电影天堂91| 国产精品伦人一区二区| 日韩一本色道免费dvd| 一区二区三区四区激情视频| 国产成人午夜福利电影在线观看| 亚洲精品乱久久久久久| 免费看日本二区| 午夜福利在线观看免费完整高清在| 一级毛片久久久久久久久女| 成人一区二区视频在线观看| 国产成人免费观看mmmm| 成人亚洲精品av一区二区| 中文天堂在线官网| 91精品伊人久久大香线蕉| 天堂av国产一区二区熟女人妻| 热99在线观看视频| 成人鲁丝片一二三区免费| 精品国产露脸久久av麻豆 | 天天躁日日操中文字幕| 亚洲性久久影院| 久久久久久久久久黄片| 亚洲国产精品久久男人天堂| 婷婷色麻豆天堂久久 | 国产三级中文精品| 一本一本综合久久| .国产精品久久| 国产精品爽爽va在线观看网站| 天堂影院成人在线观看| 日韩精品有码人妻一区| 日韩一区二区三区影片| 精品国产露脸久久av麻豆 | 亚洲va在线va天堂va国产| 亚洲性久久影院| 国产男人的电影天堂91| 乱码一卡2卡4卡精品| 精品人妻视频免费看| 久久久色成人| 最近中文字幕2019免费版| 欧美性感艳星| 午夜视频国产福利| 又粗又硬又长又爽又黄的视频| 女的被弄到高潮叫床怎么办| 91aial.com中文字幕在线观看| 国产精品熟女久久久久浪| 久久国产乱子免费精品| 六月丁香七月| 黄色一级大片看看| 国产成人精品婷婷| 在线免费十八禁| 欧美一级a爱片免费观看看| 亚洲成人av在线免费| 变态另类丝袜制服| 啦啦啦啦在线视频资源| 国产成人a区在线观看| 国产高清不卡午夜福利| 亚洲av成人精品一二三区| 99久久无色码亚洲精品果冻| 中文字幕人妻熟人妻熟丝袜美| 九九在线视频观看精品| 亚洲18禁久久av| av女优亚洲男人天堂| 欧美变态另类bdsm刘玥| 人人妻人人澡欧美一区二区| 日本av手机在线免费观看| 内地一区二区视频在线| 小说图片视频综合网站| 天堂√8在线中文| 青春草国产在线视频| 女人久久www免费人成看片 | 中文在线观看免费www的网站| 日韩欧美精品v在线| 插阴视频在线观看视频| 国产精品1区2区在线观看.| 免费大片18禁| 久久久欧美国产精品| 五月玫瑰六月丁香| 真实男女啪啪啪动态图| 精品国产三级普通话版| 老司机福利观看| 汤姆久久久久久久影院中文字幕 | 久久精品久久久久久久性| 永久免费av网站大全| 欧美xxxx黑人xx丫x性爽| 搞女人的毛片| 国国产精品蜜臀av免费| 欧美潮喷喷水| 国产男人的电影天堂91| 欧美一级a爱片免费观看看| www.色视频.com| 婷婷色av中文字幕| av在线观看视频网站免费| 久久久国产成人免费| 九九在线视频观看精品| 亚洲国产最新在线播放| 亚洲经典国产精华液单| 欧美成人a在线观看| 欧美日韩国产亚洲二区| 综合色av麻豆| 欧美变态另类bdsm刘玥| 有码 亚洲区| 国产成人精品一,二区| 精品久久久久久电影网 | 搡女人真爽免费视频火全软件| 久久久久性生活片| 男人舔奶头视频| 亚洲国产精品成人久久小说| 国产免费一级a男人的天堂| 一边摸一边抽搐一进一小说| 亚洲经典国产精华液单| 卡戴珊不雅视频在线播放| 国产午夜精品论理片| 国产视频首页在线观看| 在线播放无遮挡| 久久久久久久午夜电影| 中文字幕av在线有码专区| 国产av不卡久久| 久久久a久久爽久久v久久| 亚洲伊人久久精品综合 | av播播在线观看一区| 亚洲成人久久爱视频| 国产精品一区二区性色av| 最近手机中文字幕大全| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| 伦理电影大哥的女人| 嫩草影院新地址| 国产亚洲精品av在线| 久久久久久大精品| 欧美日本视频| 一级毛片久久久久久久久女| 国产伦在线观看视频一区| 国产精品爽爽va在线观看网站| av专区在线播放| 一边亲一边摸免费视频| 国产伦精品一区二区三区四那| 又粗又硬又长又爽又黄的视频| 国产色爽女视频免费观看| 高清日韩中文字幕在线| 亚洲人成网站高清观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲av成人精品一区久久| 久久久成人免费电影| 高清毛片免费看| 免费观看a级毛片全部| 日本黄色片子视频| av国产免费在线观看| 国产精品伦人一区二区| 国产不卡一卡二| 女的被弄到高潮叫床怎么办| 热99在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 日韩制服骚丝袜av| 日韩欧美国产在线观看| 国产一区亚洲一区在线观看| 99热精品在线国产| 97在线视频观看| 亚洲av中文字字幕乱码综合| 舔av片在线| 久久久欧美国产精品| 综合色av麻豆| 熟妇人妻久久中文字幕3abv| 两个人视频免费观看高清| www.av在线官网国产| 亚洲aⅴ乱码一区二区在线播放| 国产成人freesex在线| 嫩草影院新地址| 国内精品一区二区在线观看| 免费搜索国产男女视频| 国产高清不卡午夜福利| 毛片女人毛片| 在线观看av片永久免费下载| 秋霞在线观看毛片| 国产 一区精品| 成人二区视频| 男女下面进入的视频免费午夜| 99热这里只有精品一区| 日韩制服骚丝袜av| 国产精品麻豆人妻色哟哟久久 | 在线免费十八禁| 国内少妇人妻偷人精品xxx网站| 国产美女午夜福利| 国产亚洲5aaaaa淫片| 日本黄色片子视频| 26uuu在线亚洲综合色| 国产久久久一区二区三区| 九九久久精品国产亚洲av麻豆| 99久久成人亚洲精品观看| 亚洲国产精品专区欧美| 国产色爽女视频免费观看| 国产高清视频在线观看网站| 少妇的逼水好多| 丰满乱子伦码专区| 亚洲在久久综合| 亚洲欧美日韩卡通动漫| 美女脱内裤让男人舔精品视频| 99久久精品国产国产毛片| 国内精品美女久久久久久| 亚洲欧美中文字幕日韩二区| 欧美又色又爽又黄视频| 亚洲欧美精品综合久久99| 少妇丰满av| 亚洲不卡免费看| 国产私拍福利视频在线观看| 成人欧美大片| 成人漫画全彩无遮挡| 免费看光身美女| av卡一久久| 欧美日韩综合久久久久久| 亚洲va在线va天堂va国产| 大话2 男鬼变身卡| 在线免费观看不下载黄p国产| 日本与韩国留学比较| 晚上一个人看的免费电影| 久久精品久久久久久噜噜老黄 | 丰满人妻一区二区三区视频av| 久久久a久久爽久久v久久| 高清av免费在线| 欧美高清成人免费视频www| 九九热线精品视视频播放| 欧美高清成人免费视频www| 日本免费a在线| 久久久久久久久久久免费av| 日日摸夜夜添夜夜爱| 欧美日韩综合久久久久久| 久久久色成人| 国产亚洲5aaaaa淫片| 99久国产av精品| 久久亚洲精品不卡| 一级爰片在线观看| 一级毛片电影观看 | 男女国产视频网站| 日韩,欧美,国产一区二区三区 | 中文天堂在线官网| 久久久国产成人精品二区| 日韩精品有码人妻一区| 精品久久久噜噜| 九九热线精品视视频播放| 特级一级黄色大片| 日韩欧美精品免费久久| 成人毛片60女人毛片免费| 韩国av在线不卡| www日本黄色视频网| 国产在视频线在精品| 亚洲熟妇中文字幕五十中出| 久久久欧美国产精品| 免费观看性生交大片5| 国产老妇女一区| 国产亚洲av嫩草精品影院| 久久久久久九九精品二区国产| 建设人人有责人人尽责人人享有的 | 欧美性感艳星| 国产精品1区2区在线观看.| 日本欧美国产在线视频| 人人妻人人澡欧美一区二区| 99久久人妻综合| 长腿黑丝高跟| 欧美激情国产日韩精品一区| 一级毛片我不卡| 边亲边吃奶的免费视频| 女人被狂操c到高潮| 亚洲欧美成人综合另类久久久 | 欧美性感艳星| 在线a可以看的网站| 男人和女人高潮做爰伦理| 亚洲激情五月婷婷啪啪| 亚洲国产成人一精品久久久| 国产高清视频在线观看网站| av专区在线播放| 亚洲内射少妇av| 小蜜桃在线观看免费完整版高清| 99国产精品一区二区蜜桃av| 亚洲国产高清在线一区二区三| 午夜激情福利司机影院| 国内揄拍国产精品人妻在线| 精品国内亚洲2022精品成人| 国产精品女同一区二区软件| 国产高清不卡午夜福利| 国产精品一区www在线观看| 亚洲欧美日韩无卡精品| av黄色大香蕉| 亚洲最大成人av| 网址你懂的国产日韩在线| 99久国产av精品国产电影| 国产亚洲5aaaaa淫片| 别揉我奶头 嗯啊视频| 床上黄色一级片| 国产午夜精品论理片| videossex国产| 久久热精品热| 亚洲人成网站在线播| 欧美精品国产亚洲| 国产成人freesex在线| 日本一二三区视频观看| 自拍偷自拍亚洲精品老妇| 99久久成人亚洲精品观看| 色综合站精品国产| h日本视频在线播放| 中文乱码字字幕精品一区二区三区 | 日韩精品有码人妻一区| 久久精品熟女亚洲av麻豆精品 | 久久国内精品自在自线图片| 日日啪夜夜撸| av黄色大香蕉| 最近视频中文字幕2019在线8| 女人久久www免费人成看片 | 看非洲黑人一级黄片| 午夜精品一区二区三区免费看| 欧美性感艳星| 日本黄色视频三级网站网址| 国产精品国产三级国产专区5o | av专区在线播放| 亚洲av熟女| 午夜福利网站1000一区二区三区| 极品教师在线视频| 高清av免费在线| www.av在线官网国产| 麻豆成人午夜福利视频| 少妇丰满av| 一级毛片aaaaaa免费看小| 久久99热这里只频精品6学生 | 亚洲高清免费不卡视频| 亚洲激情五月婷婷啪啪| 色尼玛亚洲综合影院| 有码 亚洲区| 女人久久www免费人成看片 | 男女下面进入的视频免费午夜| 久久精品熟女亚洲av麻豆精品 | 久久国内精品自在自线图片| 欧美日韩在线观看h| 99热这里只有是精品50| 在线观看美女被高潮喷水网站| 亚洲国产高清在线一区二区三| 欧美丝袜亚洲另类| 97超视频在线观看视频| 麻豆成人av视频| 美女cb高潮喷水在线观看| 欧美日韩在线观看h| 国产一区有黄有色的免费视频 | 日韩高清综合在线| 国产精品福利在线免费观看| 亚洲av成人精品一区久久| 日本爱情动作片www.在线观看| 国产精品一区二区性色av| 晚上一个人看的免费电影| 国产成人福利小说| 亚洲成色77777| 韩国av在线不卡| 美女黄网站色视频| 国产成人freesex在线| 精品一区二区三区视频在线| 日韩精品有码人妻一区| 国产成人午夜福利电影在线观看| 日韩欧美精品免费久久| 国产精品无大码| 啦啦啦观看免费观看视频高清| 欧美zozozo另类| 久久热精品热| 级片在线观看| 一级毛片久久久久久久久女| 国产精品一区二区性色av| 一卡2卡三卡四卡精品乱码亚洲| 变态另类丝袜制服| 欧美最新免费一区二区三区| 国产亚洲一区二区精品| 国产男人的电影天堂91| 国产精品.久久久| 一级黄片播放器| 亚洲精品乱久久久久久| 国内精品一区二区在线观看| 51国产日韩欧美| 国产成人免费观看mmmm| 亚洲在久久综合| 国产人妻一区二区三区在| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美在线乱码| 插阴视频在线观看视频| 日本午夜av视频| 小蜜桃在线观看免费完整版高清| 一本久久精品| 欧美日韩精品成人综合77777| 久久这里有精品视频免费| 亚洲国产最新在线播放| 91av网一区二区| 欧美潮喷喷水| 午夜老司机福利剧场| 日本色播在线视频| 午夜视频国产福利| 春色校园在线视频观看| 黄片wwwwww| kizo精华| 1024手机看黄色片| 免费播放大片免费观看视频在线观看 | 国产精品综合久久久久久久免费| 在线播放国产精品三级| 午夜亚洲福利在线播放| 日韩人妻高清精品专区| 丝袜喷水一区| 亚洲国产精品成人综合色| 只有这里有精品99| 欧美97在线视频| 好男人视频免费观看在线| 村上凉子中文字幕在线| 国产欧美日韩精品一区二区| 一边摸一边抽搐一进一小说| 哪个播放器可以免费观看大片| 赤兔流量卡办理| 国产亚洲精品久久久com|