• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    OrganometaIIic L-AIanine Cadmium Iodide CrystaIs for OpticaI Device Fabrication

    2023-01-13 01:56:26KathiravanVaiyapuriThangaveISubramaniAshokKumarRajamaniMuthuLakshmiThangaveISatheeshKumarGanesanSeIvarajanPaIanisamyKumaresavanjiMaIaiveIusamy

    Kathiravan Vaiyapuri | ThangaveI Subramani | Ashok Kumar Rajamani | Muthu Lakshmi ThangaveI | Satheesh Kumar Ganesan | SeIvarajan PaIanisamy | Kumaresavanji MaIaiveIusamy

    Abstract—Single crystals of L-alanine cadmium iodide (LACI) were grown by the slow evaporation technique at room temperature.A single-crystal X-ray diffraction (SXRD) model was used to evaluate the crystal structure of the as-grown LACI crystal.The energy dispersive X-ray (EDX) analysis and ultraviolet-visible-near infrared (UV-vis-NIR)transmittance studies were carried out,and the results reveal the presence of elements in the title compound.From the transmittance data,the optical bandgap as a function of photon energy was estimated,and the different optical constants were calculated.A fluorescence study was performed for the LACI crystal.Thermogravimetric and differential thermal analyses have also been studied to investigate the thermal property of the LACI crystal.The efficiency of the second harmonic generation (SHG) of the title crystal was investigated.The magnetic and electrical properties were estimated by the vibrating sample magnetometer (VSM) analysis and impedance study,respectively.

    1.Introduction

    Semi-organic non-linear optical (NLO) crystals are used for various applications,such as frequency conversion,frequency doubling,frequency tripling,and optical switching.Amino acid-based semi-organic crystals have good exposure as conceivable possible second-order NLO materials.Photonic crystals are used in image processing techniques.These materials show NLO impacts,and thus there is a tremendous requirement for high-quality single crystals[1]-[3].Much work has gone into combining amino acids with interesting inorganic materials to create better materials that can compete with conventional inorganic materials,like niobates,borates,and potassium dihydrogen phosphate (KDP)[4],[5].The advancement of science in a few areas of the modern world has been cultivated through the production of single crystals.Because of the higher NLO coefficient,which favors mechanical and thermal stability and a high degree of chemical inertness,inorganic materials in combination with amino acids are widely used in various applications.In recent years,researchers are focusing their efforts on discovering new artificial NLO materials in a single-crystal form,which have high optical transparency,physico-chemical solid properties,high laser damage thresholds,and high efficiency of the second harmonic generation (SHG)[6],[7].Since they include both the proton-donor carboxyl acid (-COO) and the proton-acceptor amino (-NH2) groups,amino acid-based organic materials are fascinating for NLO applications[8].The existence of dipole gives amino acids some unusual characteristics,such as sub-atomic chirality,which ensures acentric structures,and the non-appearance of unequivocally shaped bonds,which results in wide visible (vis) and ultraviolet (UV)ranges.The zwitterionic nature of the molecule makes crystals easier to work with.

    L-alanine is an excellent organic NLO substance belonging to the amino acid category,with a melting point of 297 °C and belonging to the orthorhombic crystal structure with the space group of P212121.With a molecular weight of 89.09 g/mol,L-alanine is one of the smallest chiral naturally-occurring amino acids[9],[10].Many researchers have carried out studies on L-alanine complex crystals[11]-[18].By using the slow evaporation process,L-alanine is combined with cadmium iodide to produce L-alanine cadmium iodide (LACI) crystals.This paper is focused on the growth and characterization of the LACI crystal.

    2.ExperimentaI Procedure: CrystaI Growth

    LACI was made by combining L-alanine and cadmium iodide in a 3:1 molar ratio in double-distilled water.A magnetic stirrer was used to continuously stir the prepared solution for 6 h at room temperature (30oC).The solution was then filtered using the Whatman filter paper,and it was kept in the growth vessel covered with a perforated sheet.Due to slow evaporation,spontaneous nucleation resulted in tiny seed crystals with excellent transparency.In the solution,a defectfree seed crystal was suspended and allowed to evaporate at room temperature.Following completion of the nucleation and growth processes,monomers from the mother solution were collected at the seed-crystal locations,resulting in large single crystals.After a 21-day growing period,LACI crystals were harvested through slow solvent evaporation.Fig.1 illustrates the picture of the as-grown LACI crystal.

    Fig.1.As-grown LACI crystal.

    3.ResuIts and Discussion

    3.1.SingIe-CrystaI X-Ray Diffraction (SXRD) AnaIysis

    With the support of a Bruker Kappa Apex-II diffractometer,the SXRD test was performed on the as-grown LACI crystal.It belongs to the orthorhombic structure with the space group of P212121,according to the findings of the SXRD investigation.The values of lattice parameters are given in Table 1.

    3.2.Energy Dispersive X-Ray (EDX or EDAX)AnaIysis

    The EDX analysis was carried out by using the Vega 3 Tescan scanning electron microscope.The recorded EDX spectrum of the LACI crystal is depicted in Fig.2,which confirms the existence of the title compound.The presence of the elements including carbon (C),oxygen (O),nitrogen (N),cadmium (Cd),and iodide (I) in different proportions is indicated by the respective peaks.The weight and atomic percentages of these elements in the LACI crystal are given in Table 2.It is mentioned here that the atomic percent is based on the number of atoms in a sample,and the weight percent is based on the mass or atomic weight of the elements in the sample.It is possible that the atomic percent can be converted into the weight percent and vice versa.

    Table 1: Values of lattice parameters of the LACI crystal

    Fig.2.EDX spectrum of the LACI crystal.

    Table 2: Weight and atomic percentages of different elements in the LACI crystal

    3.3.Linear OpticaI Studies and ReIevant Constants

    3.3.1.UV-vis-Near Infrared (UV-vis-NIR) Transmission Spectrum Studies

    The linear optical properties of the LACI crystal were analyzed for studying the UV-vis-NIR optical transmission.Fig.3 (a) shows the measured transmittance spectrum of the LACI crystal in the wavelength range of 190 nm to 1100 nm using the Perkin Elmer Lambda 35 UV-visible spectrometer.The title compound has maximum transmittance of 94% in the vis and infrared (IR) regions,with a lower cut-off wavelength of 240 nm.

    Fig.3.Investigation of optical parameters: (a) UV-vis-NIR spectrum and (b) Tauc’s plot of the LACI crystal.

    The optical absorption coefficient (α) can be determined by

    whereTdenotes the transmittance andddenotes the crystal thickness.

    Using the values ofαand the Tauc’s relation in (2),the optical bandgap energy (Eg) can be calculated:

    wherehis the Planck’s constant,νis the frequency,andBis a constant[19].Heren=1/2 or 3/2 for a natural transformation,depending on whether the transition is permitted or prohibited in a quantum mechanical context.Similarly,for indirect permitted and prohibited transitions,n=2 or 3.In direct transitions,there will be a single linear region;in indirect transitions,there will be two linear regions.Fig.3 (b) shows Tauc’s plot of the LACI crystal and a single linear region is observed here.Hence,the LACI crystal can be considered as the direct bandgap material[19].The bandgap energy of the LACI crystal was calculated from the linear part of Tauc’s plot by plotting (αhν)2versus photon energy (hν).Extrapolating the linear portion of the plot to intercept at the photon energy (hν) axis yields the value ofEgas 5.97 eV.The high transmittance in the vis region and defectless concentration in the as-grown crystal are verified by the large bandgap of the LACI crystal[20].As a result,the LACI crystal with a large optical bandgap may be a good candidate for actual applications,such as UV tunable lasers and NLO devices.

    3.3.2.Determination of Optical Constants

    For the applications of NLO crystals,measuring the refractive index (n) is important for frequency doubling experiments and calculating optical parameters.The following theoretical formulae were used to measure the other miscellaneous optical constants.

    The extinction coefficient (k) can be calculated by[21]

    whereλis the wavelength of radiation.The reflectance (R) and refractive index (n) of the as-grown LACI crystal are obtained from the following relations[21]:

    From Fig.4,it is clear that the extinction coefficient (k) and reflectance (R) strongly depend on photon energy in the higher-value range.The internal energy of the system is determined by the absorption coefficient,and the amount of light that reaches the materials is determined by the refractive index (n).

    The refractive index (n) of a substance specifies how much light is bent or refracted as it enters.Since the internal performance of the system is determined by incident photon energy (hν),one may achieve the desired material for fabricating optoelectronic devices by carefully tailoring the value and tuningEgof the material.The change inndenotes that the LACI crystal could cause a normal dispersion behavior in the material,as shown in Fig.4 (c).Due to its high optical clarity and low refractive index in the UV-vis-NIR area,LACI is an excellent material for antireflection coatings in solar thermal devices and NLO applications.

    Fig.4.Determination of optical constants: (a) extinction coefficient (k),(b) reflectance (R),(c) refractive index (n),and(d) optical conductivity (σop) versus incident photon energy (hν) for the LACI crystal.

    When a material is irradiated with light,its photoresponse of optical conductivity (σop) is related to the refractive index (n) and the speed of light (c) in the following way[22]:

    For the LACI crystal,Fig.4 (d) depicts the variation of optical conductivity (σop) as a function of photon energy.As indicated by (6),the optical conductivity of a material depends onα,which is dependent on the wavelength.Hence,the optical conductivity relates to photon energy.

    The optical conductivity of the LACI crystal remains constant up to 5.97 eV,and a steep increase of the optical conductivity is noticed.The high magnitude of optical conductivity (1012s-1) of the LACI crystal confirms the high photoresponse of the material.This property enhances the material’s suitability for information processing and computer device applications.

    The relationship for the electrical conductivity(σele) with the optical conductivity (σop) and absorption coefficient (α) can be expressed as[23]

    As shown in Fig.5,the electrical conductivity of the LACI crystal varies with photon energy.The electrical conductivity decreases as photon energy increases.Equation (7) indicates that the electrical conductivity depends on the optical conductivity and the wavelength of radiation.The low electrical conductivity value demonstrates the dielectric nature of the material.

    Fig.5.Electrical conductivity as a function of photon energy for the LACI crystal.

    Fig.6.Fluorescence spectrum of the LACI crystal.

    3.4.FIuorescence Studies

    The fluorescence emission spectrum of the LACI crystal was recorded using a Perkin Elmer LS 45 fluorescence spectrophotometer,and the result ranging from 490 nm to 560 nm is shown in Fig.6.A peak is observed at 530 nm in the emission spectrum,indicating the emission of green fluorescence.Hence,the as-grown crystal is suitable for optoelectronic devices[24].

    3.5.NLO Studies

    The Kurtz and Perry method was employed to study the SHG behavior of the crystal[25].In this process,an Nd:YAG laser (λ=1064 nm) with a pulse length of 6 ns was passed through the as-grown sample.The output laser with green emission at the wavelength of 532 nm was achieved,confirming the SHG behavior of the crystal.Therefore,it has the ability to be used in frequency conversion.For the input energy of 0.64 J,a 19-mV SHG signal for the LACI crystal was obtained.For the same input energy,the standard KDP crystal generated an SHG signal of 35 mV.As a result,the SHG efficiency of the as-grown LACI crystal is 0.54 times higher than that of the standard KDP crystal.

    3.6.ThermaI Properties

    The thermal analysis is an effective method for determining the thermal stability of the crystal[26].The thermogravimetric analysis (TGA) and differential thermal analysis (DTA) techniques were used in this investigation.The experiment was carried out in the temperature range of 27 °C to 600 °C at a moderate heating rate of 10 K/min in the nitrogen atmosphere using the NETZCHSTA449F3 simultaneous TGA/DTA analyzer.For the measurement,a sample weighing 3.635 mg was taken.The thermogram of the LACI crystal is illustrated in Fig.7.

    It can be seen from the TGA curve that the loss begins at 235 °C.Dehydration induces the decomposition stage.However,no weight loss is observed in the temperature range of 0 to 235 °C.The lack of the weight loss in the LACI crystal up to 100 °C indicates the absence of a water molecule during the crystallization process.Hence,the title compound is stable up to 235 °C.In the DTA curve,the endothermic peak at 281 °C is observed.The sharpness of the endothermic peaks points out that the LACI crystal has a good degree of crystallinity[27].According to the finding,the LACI crystal is suitable for the fabrication of optoelectronic devices up to the temperature of 235 °C.

    Fig.7.TGA/DTA thermogram of the LACI crystal.

    3.7.Impedance AnaIysis

    The impedance was measured at room temperature using an impedance analyzer (Model: Versa STAT MC).In terms of the complex impedance (Z*),the frequency-dependent electrical property is expressed asZ′-jZ′,where j is the imaginary element;Z′andZ′are the real and imaginary components of the impedance,respectively,which are shown in Fig.8.

    Fig.8.Impedance analysis: (a) real (Z′) and (b) imaginary (Z′) parts of impedance versus log ν for the LACI crystal at room temperature.

    The DC conductivity (σDC) of the crystal can be calculated by

    whereArepresents the crystal surface area andRbis the bulk resistance.Fig.9 shows the Nyquist plot of the LACI crystal.The DC conductivity of the LACI crystal was found to be 5.9631×10-6(Ω·m)-1at room temperature.A single semicircular arc is obtained from Fig.9,and this semicircle demonstrates that the electrical properties of the material are primarily determined by bulk effects[28],which yieldsRb=8447 Ω.

    Fig.9.Nyquist plot for the LACI crystal.

    3.8.Vibrating SampIe Magnetometer (VSM)AnaIysis

    The applied field dependence of magnetization is measured for the LACI crystal using VSM at room temperature (Lakeshore model 7404),and the result is shown in Fig.10.When the applied field is increased,the magnetization increases sharply,and at the higher field,the magnetization values decrease.These results exhibit that the sample is ferromagnetic at the lower applied field and diamagnetic at a higher field.Such a hysteresis behavior indicates that the diamagnetic property is reduced in the LACI crystal and induces a shortrange ferromagnetic order.Magnetism in transition metal halides,such as cadmium iodide,is caused by the angular momentum of partially filled d-orbitals.The interaction with the coordinating anions splits the five d-orbitals into a variety of energy levels in an octahedral coordination.Hund’s rule indicates that the d-orbital electrons initially fill the levels singly,with their spins parallel.Along with the spin,electrons in levels have orbital angular momentum.As a result,the LACI crystal exhibits magnetism and hysteresis behaviors[29].

    Fig.10.Magnetization versus magnetic field for the LACI crystal.

    We have estimated the saturation magnetization(Ms),retentivity (Mr),coercivity (Hc),and squareness ratio (Mr/Ms) from the hysteresis curve,and the obtained values are displayed in Table 3.The value of the squareness ratio near 0.5 confirms a shortrange ferromagnetic order in the LACI crystal with a larger grain size.

    Table 3: Magnetic parameters of the LACI crystal

    4.ConcIusion

    The slow evaporation technique was used to grow an optically excellent LACI crystal at room temperature.The lattice parameter values were determined using the SXRD study.The various elements presented in the LACI crystal were identified using the EDAX analysis.From the UV-vis-NIR transmittance study,the bandgap energy was found to be 5.97 eV.The optical constants,like the extinction coefficient,reflectance,refractive index,optical conductivity,and electrical conductivity,as a function of photon energy were also calculated from the transmittance data,confirming its suitability for optical device fabrication.The fluorescence spectrum ensures that the crystal has the emission of green fluorescence.The improved Kurtz-Perry powder technique was used to observe the NLO property of the LACI crystal using green radiation with the Nd:YAG laser as a source.The thermal analysis reveals that the sample is thermally stable and has a high degree of crystallinity.The DC conductivity of the as-grown LACI crystal was calculated from the Nyquist plot.The coercivity and retentivity of the LACI crystal were measured from the hysteresis curve as 154.667 Oe and 2.3056×10-7emu/g,respectively.Based on our findings,the LACI crystal appears to be a good candidate for NLO systems due to their excellent optical quality,moderate thermal stability,and increased SHG performance.

    AcknowIedgment

    The authors are grateful for the support from the research centers including the Sophisticated Analytical Instruments Facility (SAIF),Indian Institute of Technology (IIT),Madras;the Archbishop Casimir Instrumentation Centre (ACIC),St.Joseph’s College,Tiruchirappalli;the National College Instrumentation Facility (NCIF),National College,Tiruchirappalli;Alagappa University,Karaikudi.The authors would like to acknowledge the support extended to this research by Abraham Panampara Research Centre (APRC),Sacred Heart College,Tirupattur;the Central Instrumentation Facility (CIF),Pondicherry University,Pondicherry;Indian Institute of Science (IISC),Bangalore for their full-fledged help in carrying out the characterization measurement.

    DiscIosures

    The authors declare no conflicts of interest.

    韩国高清视频一区二区三区| 黑丝袜美女国产一区| 18禁动态无遮挡网站| av视频免费观看在线观看| 久热这里只有精品99| 精品免费久久久久久久清纯 | 天天操日日干夜夜撸| 亚洲免费av在线视频| 波多野结衣一区麻豆| 成人国产麻豆网| 日韩一卡2卡3卡4卡2021年| 在线观看三级黄色| av网站在线播放免费| 亚洲欧美清纯卡通| 国产乱人偷精品视频| 999久久久国产精品视频| 午夜福利,免费看| 1024视频免费在线观看| 国产片内射在线| 欧美日韩av久久| 国产又爽黄色视频| 国产精品久久久久久人妻精品电影 | 爱豆传媒免费全集在线观看| 日韩欧美精品免费久久| 中文字幕制服av| 十八禁网站网址无遮挡| 欧美日韩福利视频一区二区| 欧美少妇被猛烈插入视频| 久久久久网色| 久久婷婷青草| 久久久久久久久久久久大奶| 大片电影免费在线观看免费| 成年人午夜在线观看视频| 一个人免费看片子| 中文天堂在线官网| 国产高清国产精品国产三级| 亚洲精品中文字幕在线视频| av有码第一页| av片东京热男人的天堂| 咕卡用的链子| 精品一区二区三卡| 国产黄色免费在线视频| 国产精品女同一区二区软件| 久久久久久人人人人人| 99国产综合亚洲精品| 性少妇av在线| netflix在线观看网站| 久久人人97超碰香蕉20202| 九草在线视频观看| 极品人妻少妇av视频| 国产免费视频播放在线视频| av线在线观看网站| 狠狠婷婷综合久久久久久88av| e午夜精品久久久久久久| 亚洲欧美一区二区三区久久| 国产一区有黄有色的免费视频| 国产av码专区亚洲av| e午夜精品久久久久久久| 成年人午夜在线观看视频| 搡老岳熟女国产| 亚洲欧美精品自产自拍| www.熟女人妻精品国产| 在线观看www视频免费| 久久av网站| 超色免费av| 成人漫画全彩无遮挡| 亚洲精品第二区| 热99久久久久精品小说推荐| 两性夫妻黄色片| 久久久久久久久免费视频了| 成年av动漫网址| 看十八女毛片水多多多| 日韩中文字幕视频在线看片| 一区二区三区四区激情视频| 国产深夜福利视频在线观看| 大话2 男鬼变身卡| 精品一区在线观看国产| 久久精品久久久久久久性| 深夜精品福利| 亚洲天堂av无毛| 校园人妻丝袜中文字幕| 女人被躁到高潮嗷嗷叫费观| 欧美日韩综合久久久久久| 亚洲免费av在线视频| 老司机深夜福利视频在线观看 | 国产欧美日韩一区二区三区在线| 大陆偷拍与自拍| 十分钟在线观看高清视频www| 婷婷色综合www| 搡老岳熟女国产| 交换朋友夫妻互换小说| 黑人欧美特级aaaaaa片| 免费黄网站久久成人精品| 国产男女超爽视频在线观看| 大片电影免费在线观看免费| 日韩 亚洲 欧美在线| 久久天堂一区二区三区四区| 欧美日韩福利视频一区二区| 免费日韩欧美在线观看| 亚洲国产精品999| 欧美精品一区二区免费开放| 亚洲国产欧美网| 涩涩av久久男人的天堂| 色精品久久人妻99蜜桃| 国产免费视频播放在线视频| 久久狼人影院| 丝袜人妻中文字幕| 91精品国产国语对白视频| 国产乱人偷精品视频| 精品免费久久久久久久清纯 | 欧美精品亚洲一区二区| 亚洲精品美女久久av网站| 久久久久精品久久久久真实原创| av电影中文网址| 丝瓜视频免费看黄片| 日本欧美视频一区| 搡老岳熟女国产| 免费在线观看完整版高清| 伦理电影大哥的女人| 中文天堂在线官网| 精品一区二区免费观看| 久久影院123| 欧美国产精品va在线观看不卡| 狠狠精品人妻久久久久久综合| 午夜福利一区二区在线看| 老司机影院毛片| 日韩大码丰满熟妇| 国产成人免费观看mmmm| 久久久久久久精品精品| 亚洲欧美一区二区三区国产| 丝袜喷水一区| 看十八女毛片水多多多| 亚洲人成电影观看| 中文精品一卡2卡3卡4更新| 亚洲,一卡二卡三卡| 一边摸一边做爽爽视频免费| 欧美在线黄色| 男女之事视频高清在线观看 | 久久免费观看电影| 国精品久久久久久国模美| 国产爽快片一区二区三区| 精品国产一区二区三区久久久樱花| 在线观看三级黄色| 亚洲精品在线美女| 欧美日韩一区二区视频在线观看视频在线| 青春草亚洲视频在线观看| 三上悠亚av全集在线观看| 人体艺术视频欧美日本| 久久久精品94久久精品| 蜜桃国产av成人99| 久久99一区二区三区| 中国国产av一级| 999久久久国产精品视频| 黄频高清免费视频| 天美传媒精品一区二区| 亚洲国产精品国产精品| 一级,二级,三级黄色视频| 日本爱情动作片www.在线观看| 亚洲精品一区蜜桃| 亚洲精品自拍成人| 热re99久久国产66热| 国产免费又黄又爽又色| 免费高清在线观看视频在线观看| 欧美乱码精品一区二区三区| 久久天堂一区二区三区四区| 最新在线观看一区二区三区 | 中文字幕亚洲精品专区| 久久99一区二区三区| 亚洲情色 制服丝袜| 亚洲图色成人| 只有这里有精品99| 久久精品亚洲熟妇少妇任你| 国产在线免费精品| 国产精品欧美亚洲77777| 飞空精品影院首页| 老鸭窝网址在线观看| 日韩成人av中文字幕在线观看| 涩涩av久久男人的天堂| 这个男人来自地球电影免费观看 | 国产成人精品无人区| 9色porny在线观看| 国产xxxxx性猛交| 国产精品国产三级专区第一集| 少妇猛男粗大的猛烈进出视频| 日本欧美视频一区| 亚洲欧美成人综合另类久久久| 色婷婷久久久亚洲欧美| 黄色一级大片看看| 丰满乱子伦码专区| 国产日韩欧美亚洲二区| 香蕉国产在线看| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久人人做人人爽| 亚洲七黄色美女视频| svipshipincom国产片| 久久久久久人人人人人| 国产免费福利视频在线观看| 91精品伊人久久大香线蕉| 亚洲国产看品久久| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 国产成人精品无人区| 亚洲精品久久午夜乱码| 久久精品aⅴ一区二区三区四区| 观看av在线不卡| 免费日韩欧美在线观看| 国产一区二区三区综合在线观看| 爱豆传媒免费全集在线观看| 亚洲专区中文字幕在线 | 久久久久久免费高清国产稀缺| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产色婷婷电影| 黑人巨大精品欧美一区二区蜜桃| 久久精品亚洲av国产电影网| av女优亚洲男人天堂| 在线天堂中文资源库| 一级片'在线观看视频| 黄色 视频免费看| 国产成人精品久久久久久| 亚洲情色 制服丝袜| tube8黄色片| 如日韩欧美国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 深夜精品福利| 男女高潮啪啪啪动态图| 巨乳人妻的诱惑在线观看| 欧美人与性动交α欧美精品济南到| 热99国产精品久久久久久7| 91精品三级在线观看| 色综合欧美亚洲国产小说| 国产成人欧美| 午夜日本视频在线| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品999| 国产一区亚洲一区在线观看| 亚洲精品一区蜜桃| av福利片在线| 热re99久久精品国产66热6| 国产伦人伦偷精品视频| 大片免费播放器 马上看| 蜜桃在线观看..| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽人人片av| 精品国产露脸久久av麻豆| 黄片播放在线免费| 欧美97在线视频| 免费在线观看黄色视频的| 免费日韩欧美在线观看| 岛国毛片在线播放| 天堂8中文在线网| 国产乱人偷精品视频| 亚洲精品,欧美精品| 欧美国产精品va在线观看不卡| 欧美激情极品国产一区二区三区| 欧美久久黑人一区二区| 亚洲国产毛片av蜜桃av| 亚洲美女视频黄频| 纯流量卡能插随身wifi吗| 日韩一本色道免费dvd| 亚洲国产欧美网| 亚洲男人天堂网一区| 亚洲国产欧美在线一区| 久久久久久久国产电影| 中文欧美无线码| 超碰成人久久| 伦理电影大哥的女人| 中国国产av一级| 日本欧美视频一区| 亚洲av成人精品一二三区| a 毛片基地| 五月开心婷婷网| 亚洲欧洲日产国产| 91成人精品电影| 久久精品亚洲av国产电影网| a级毛片黄视频| 九草在线视频观看| 我的亚洲天堂| 午夜福利一区二区在线看| 日日撸夜夜添| 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久久久久婷婷小说| 99久久综合免费| 80岁老熟妇乱子伦牲交| 久久这里只有精品19| 在线 av 中文字幕| 亚洲人成77777在线视频| 国产人伦9x9x在线观看| 欧美 日韩 精品 国产| 黑丝袜美女国产一区| 亚洲国产精品一区三区| 男人添女人高潮全过程视频| 人人妻人人澡人人看| 亚洲精品第二区| 欧美激情极品国产一区二区三区| 国产男女内射视频| 亚洲国产毛片av蜜桃av| 99热网站在线观看| 如何舔出高潮| 国产精品国产三级专区第一集| 日韩免费高清中文字幕av| 91精品三级在线观看| 亚洲av男天堂| 欧美日韩亚洲高清精品| 青草久久国产| 亚洲欧美精品综合一区二区三区| 香蕉丝袜av| 在线观看国产h片| 久久人人97超碰香蕉20202| 久久女婷五月综合色啪小说| 亚洲精品久久久久久婷婷小说| 男女之事视频高清在线观看 | 久久这里只有精品19| 一本大道久久a久久精品| 精品人妻一区二区三区麻豆| 1024视频免费在线观看| 久久午夜综合久久蜜桃| 激情视频va一区二区三区| 亚洲中文av在线| 精品午夜福利在线看| 天堂俺去俺来也www色官网| 亚洲av日韩精品久久久久久密 | av免费观看日本| www日本在线高清视频| 日本黄色日本黄色录像| 午夜久久久在线观看| 在线观看www视频免费| 亚洲欧美精品自产自拍| 黑人欧美特级aaaaaa片| 十八禁高潮呻吟视频| 永久免费av网站大全| 精品一区二区三区av网在线观看 | 久久精品熟女亚洲av麻豆精品| 亚洲av国产av综合av卡| 美女福利国产在线| a级片在线免费高清观看视频| 成人国产av品久久久| 久久精品国产a三级三级三级| a级毛片在线看网站| 国产精品免费大片| 欧美成人精品欧美一级黄| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品国产av蜜桃| 欧美日韩亚洲综合一区二区三区_| 精品久久蜜臀av无| 欧美成人午夜精品| 夫妻性生交免费视频一级片| 久久久久人妻精品一区果冻| 国产在线一区二区三区精| 一级片免费观看大全| 久久韩国三级中文字幕| 日韩一区二区视频免费看| 观看av在线不卡| 老司机在亚洲福利影院| 久久久国产精品麻豆| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 久久99一区二区三区| 校园人妻丝袜中文字幕| 丝袜喷水一区| 日本色播在线视频| 欧美 亚洲 国产 日韩一| 久久久久精品人妻al黑| 亚洲综合色网址| 晚上一个人看的免费电影| 亚洲欧美一区二区三区黑人| 久久久久人妻精品一区果冻| 波多野结衣av一区二区av| 日韩av在线免费看完整版不卡| 国产精品免费大片| 狠狠精品人妻久久久久久综合| 母亲3免费完整高清在线观看| 亚洲 欧美一区二区三区| 国产成人系列免费观看| 高清黄色对白视频在线免费看| av网站在线播放免费| 最近2019中文字幕mv第一页| 精品酒店卫生间| xxx大片免费视频| 侵犯人妻中文字幕一二三四区| 国产成人一区二区在线| 99精品久久久久人妻精品| 亚洲欧美清纯卡通| 精品一品国产午夜福利视频| 国产极品天堂在线| 日日爽夜夜爽网站| 亚洲国产毛片av蜜桃av| 电影成人av| 制服人妻中文乱码| 18禁动态无遮挡网站| 久久久国产精品麻豆| 国产精品人妻久久久影院| 高清欧美精品videossex| 日韩一区二区视频免费看| 亚洲熟女精品中文字幕| av卡一久久| 乱人伦中国视频| 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 亚洲欧美中文字幕日韩二区| 欧美老熟妇乱子伦牲交| 国产精品无大码| 久久精品国产综合久久久| 极品少妇高潮喷水抽搐| 日韩一本色道免费dvd| 校园人妻丝袜中文字幕| 天天躁夜夜躁狠狠躁躁| 最近中文字幕2019免费版| 成年女人毛片免费观看观看9 | 久久久久久人妻| 最近中文字幕2019免费版| √禁漫天堂资源中文www| 麻豆精品久久久久久蜜桃| 精品免费久久久久久久清纯 | 日本wwww免费看| 老司机影院成人| 考比视频在线观看| 91国产中文字幕| 啦啦啦在线免费观看视频4| 亚洲精品一区蜜桃| 国产免费福利视频在线观看| 国产亚洲午夜精品一区二区久久| 美女大奶头黄色视频| 性高湖久久久久久久久免费观看| 亚洲欧洲国产日韩| 国产精品嫩草影院av在线观看| 成年动漫av网址| 国产精品无大码| 嫩草影院入口| 免费黄频网站在线观看国产| 1024视频免费在线观看| 国产99久久九九免费精品| 亚洲图色成人| 国产成人精品久久二区二区91 | 亚洲欧美清纯卡通| 成年动漫av网址| 国产精品偷伦视频观看了| 在线观看免费高清a一片| 亚洲国产精品999| 成人手机av| 亚洲国产最新在线播放| avwww免费| 在线观看免费午夜福利视频| 欧美人与性动交α欧美软件| 亚洲第一青青草原| 成人国产av品久久久| 国产精品一区二区在线不卡| 老熟女久久久| 日韩av不卡免费在线播放| 中文字幕高清在线视频| 欧美97在线视频| 亚洲熟女精品中文字幕| 我要看黄色一级片免费的| 国产av一区二区精品久久| 国产 一区精品| 美国免费a级毛片| 久久久欧美国产精品| 精品国产一区二区久久| 久久久久精品性色| 国产一区二区三区综合在线观看| 一本色道久久久久久精品综合| 97精品久久久久久久久久精品| 午夜福利免费观看在线| 激情五月婷婷亚洲| 亚洲精品国产av蜜桃| 国产成人精品无人区| 欧美日韩视频高清一区二区三区二| 亚洲成人免费av在线播放| 欧美黑人欧美精品刺激| 色视频在线一区二区三区| 中文字幕人妻丝袜一区二区 | 亚洲精品一区蜜桃| 日本av免费视频播放| 亚洲国产精品成人久久小说| av有码第一页| 亚洲av电影在线观看一区二区三区| 男女午夜视频在线观看| 欧美日韩福利视频一区二区| 性色av一级| 久久99精品国语久久久| 亚洲五月色婷婷综合| 日韩av不卡免费在线播放| 大片免费播放器 马上看| 欧美老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 91成人精品电影| 一级毛片 在线播放| 精品亚洲成国产av| 性少妇av在线| 精品亚洲成国产av| 极品人妻少妇av视频| 久久久久久免费高清国产稀缺| 大话2 男鬼变身卡| 国产老妇伦熟女老妇高清| 亚洲第一区二区三区不卡| 嫩草影院入口| 久久精品人人爽人人爽视色| 精品一区二区三区av网在线观看 | 欧美 亚洲 国产 日韩一| 久久国产精品大桥未久av| 午夜91福利影院| 国产成人精品在线电影| 国产视频首页在线观看| 国产乱人偷精品视频| 日韩不卡一区二区三区视频在线| 亚洲熟女毛片儿| 欧美日本中文国产一区发布| 精品久久蜜臀av无| 精品亚洲乱码少妇综合久久| 菩萨蛮人人尽说江南好唐韦庄| 高清在线视频一区二区三区| 超色免费av| 国产精品99久久99久久久不卡 | 午夜福利视频精品| 国产av一区二区精品久久| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看www视频免费| 亚洲精品,欧美精品| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o | 欧美精品亚洲一区二区| 电影成人av| 免费黄色在线免费观看| 汤姆久久久久久久影院中文字幕| 亚洲精品第二区| 大香蕉久久成人网| 国产成人欧美| 午夜日本视频在线| 2021少妇久久久久久久久久久| 在线天堂中文资源库| 久久97久久精品| videosex国产| 国产免费一区二区三区四区乱码| 亚洲人成77777在线视频| 人妻人人澡人人爽人人| 丝袜美腿诱惑在线| xxxhd国产人妻xxx| 欧美黄色片欧美黄色片| 又粗又硬又长又爽又黄的视频| 亚洲国产毛片av蜜桃av| 国产男人的电影天堂91| 久热这里只有精品99| 色综合欧美亚洲国产小说| 日本欧美视频一区| 夫妻午夜视频| 亚洲,欧美精品.| 久久97久久精品| 免费高清在线观看日韩| 最近手机中文字幕大全| 精品国产一区二区三区久久久樱花| 午夜福利影视在线免费观看| 黄频高清免费视频| 欧美日韩av久久| 大香蕉久久成人网| 久久久久久久国产电影| 一级毛片 在线播放| 亚洲第一av免费看| 国产男女内射视频| 宅男免费午夜| 中文字幕av电影在线播放| 色网站视频免费| 国产片特级美女逼逼视频| 又大又爽又粗| 欧美成人精品欧美一级黄| 国产麻豆69| 搡老岳熟女国产| 国产人伦9x9x在线观看| 日韩,欧美,国产一区二区三区| 毛片一级片免费看久久久久| 国产精品av久久久久免费| 男人爽女人下面视频在线观看| 亚洲精品日韩在线中文字幕| 亚洲成人一二三区av| 精品国产一区二区久久| 一级爰片在线观看| 国产成人啪精品午夜网站| 亚洲,欧美精品.| 久久韩国三级中文字幕| 成年美女黄网站色视频大全免费| 国产黄色视频一区二区在线观看| 久久精品亚洲av国产电影网| 中文字幕亚洲精品专区| 最近最新中文字幕免费大全7| 精品国产一区二区三区四区第35| 亚洲欧洲精品一区二区精品久久久 | kizo精华| 卡戴珊不雅视频在线播放| 黄频高清免费视频| 亚洲五月色婷婷综合| 看非洲黑人一级黄片| 波多野结衣av一区二区av| 久久久精品94久久精品| 女人爽到高潮嗷嗷叫在线视频| 免费观看人在逋| 最近的中文字幕免费完整| 欧美人与性动交α欧美精品济南到| 亚洲少妇的诱惑av| 欧美国产精品一级二级三级| 亚洲在久久综合| 欧美日韩国产mv在线观看视频| 亚洲av欧美aⅴ国产| 婷婷成人精品国产| 免费不卡黄色视频| 成年动漫av网址| 午夜免费鲁丝| 一级毛片黄色毛片免费观看视频| 男人爽女人下面视频在线观看| 两性夫妻黄色片| 国产乱人偷精品视频| 亚洲欧洲日产国产| 欧美日本中文国产一区发布| 婷婷色综合www| 这个男人来自地球电影免费观看 | 久久久久精品久久久久真实原创| 国产色婷婷99| 久久久久久久精品精品|