• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    IMPULSIVE EXPONENTIAL SYNCHRONIZATIONOF FRACTIONAL-ORDER COMPLEX DYNAMICALNETWORKS WITH DERIVATIVE COUPLINGS VIAFEEDBACK CONTROL BASED ON DISCRETE TIME STATE OBSERVATIONS*

    2023-01-09 10:57:44RuihongLI李瑞鴻HuaiqinWU武懷勤
    關(guān)鍵詞:進(jìn)德

    Ruihong LI (李瑞鴻)Huaiqin WU(武懷勤)*

    School of Science,Yanshan University,Qinhuangdao 066001,China E-mail : ruihongli2020@163.com; huaiqinwu@gysu.edu.cn

    Jinde CAO(曹進(jìn)德)

    School of Mathematics,Southeast Uniuersity,Nanjing 210096,China Yonsei Frontier Lab,Yonsei University,Seoul 03722, Korea E-mail : jdcao@seu.edu.cn

    Many practical systems are often suddenly impacted by external instantaneous disturbance,which makes the state of system abruptly change at a discrete time. This phenomenon can be described by impulse effects. Because impulsive effects are significant for understanding the dynamical behaviors of most real-world complex networks, some researchers have incorporated impulsive effects into CDNs [11-14]. In [11], global power synchronization conditions were acquired by introducing the concept of a log average impulsive interval for impulsive CDNs with a proportional delay. Yogambigai et al. [13] investigated impulsive synchronization for Markovian jumping CDNs with hybrid coupling by utilizing a pinning control. A novel lemma was presented in [14] to ensure the synchronization in fixed-time of impulsive CDNs.

    Furthermore,many practical networks,such as communication networks,signal processing,etc, can be modeled via multiple weighted CDNs; for some relevant studies, see [15-18]. A novel hybrid controller was designed in [16] to obtain the fixed time stochastic synchronization conditions for semi-Markov switching CDNs with multiple weights. In[18], Jia et al. addressed the global robust finite-time synchronization for FCDNs under asynchronous switching topology by using a non-fragile controller.

    As we know, the coupling term describes the relationship between a given state and other states. Until now, the main coupling forms have modeled, such as nonlinear coupling [19],intermittent coupling [20], derivative coupling [21], and so on. General state coupling represents the systems coupled at time t, which describes the spatial position of the current system,while derivative coupling denotes the current subsystem state and the derivative state of the other subsystems coupled at a given time, which is regarded as the velocity of information transmission among different subsystems. For example, Tang et al. [22] discussed the exponential synchronization for delay neural networks with derivative couplings and cluster-tree directed topology by applying an impulsive pinning control strategy. Reference [23] considered the finite time passivity and synchronization for CDNs with derivative couplings. Meanwhile,[26] concentrated on the exponential synchronization for CDNs with derivative couplings and a proportional delay. However, in the above results [21-26], the derivative couplings are only considered in integer-order systems. Because the characteristics and advantages of fractional calculus, it is worth introducing derivative couplings into FCDNs.

    On the other hand, in many papers, coupling patterns are active at all times, which causes a great quantity of waste. If coupling among CDNs occurs at discrete moments, the problems mentioned above can be effectively avoided. In [27], the authors researched exponential synchronization of nonidentical neural networks with leakage delays and parametric uncertainties by employing an impulsive couplings controller. In [28], the synchronization of complex networks with disconnected topology was investigated via an impulsive couplings controller. Yang et al. [29] applied an impulsive couplings controller and discussed the global synchronization of multiple recurrent neural networks with time delays.

    Due to the actual situation, very few complex networks can achieve synchronization by adjusting system parameters. Therefore, suitable control strategies have been proposed to synchronize the CDNs while the number of parameters are large and the CDNs structure is more complex. Over the last several decades, some control methods were proposed [32-36].Feedback control, which is a conventional control scheme, is directly adopted or combined with other control methods. Commonly, feedback control always assumes that the observation of states are continuous,but this may be impractical and costly. Consequently,Mao[37]proposed a feedback control based on discrete time state observations(FCDSO), in which the states are only observed in discrete time. In view of this improvement in feedback control,in[38],authors specified mean-square asymptotic stability conditions for multi-group models with multiple dispersal via the designed FCDSO. Xu et al. [39]established the synchronization criterion with regard to multi-link impulsive FCDNs by equipping FCDSO. The work [40] was dedicated to solving the synchronization issue for stochastic coupled systems with time-varying coupling via FCDSO. To the best of our knowledge, there have been no studies of the synchronization of FCDNs with derivative couplings and impulsive couplings via FCDSO.

    With the motivations stated above, this article focuses on the global exponential synchronization of FCDNs with derivative couplings and impulse effects via FCDSO. The main contributions and novelties of this paper are highlighted as follows:

    (1)Global exponential synchronization is first considered for FCDNs with a multi-fractional derivative and multi-impulsive coupling by applying FCDSO.

    (2) A key lemma (Lemma 5) is developed.

    (3) A new FCDSO is designed in order to achieve the synchronization objective.

    (4) The global exponential synchronization conditions are derived in term of LMIs.

    The rest of this article is organized as follows: in Section 2, we give some basic definitions and lemmas. In Section 3, the model of FCDNs with derivative couplings and linear impulses is presented, meanwhile, the corresponding controller is designed. In Section 4, a key lemma and exponential synchronization criterion with regard to FCDNs with derivative couplings and impulse effects are proposed. Section 5 gives two simulink examples to verify the effectiveness of the main results. Finally, a conclusion is provided in Section 6.

    Table 1 Notations

    2 Preliminaries

    In this section, some basic definitions and lemmas are given.

    Definition 2.1 ([41]) The Caputo fractional order derivative of f(t)∈Cn([0,+∞),R)is defined as

    where Nζ(t0,t) represents the number of impulsive times ζ.

    Remark 2.10 According to the definition of G, it is obvious that G is a symmetry seminegative definite matrix. Meanwhile, Ψ is a positive definite matrix. Then the matrix ((INnd(G?Ψ))is a positive definite matrix and λmin(INn-d(G?Ψ))=1,λmax(INn-d(B?Ψ))≥1.

    where φi> 0 is a controller gain, and Υ(t) = [tσ]σ ([·] is an integer-valued function) denotes the duration between two continuous observations.

    Remark 2.12 It is worth noting that, while σ →0, the designed discrete controller(2.3)will degenerate into a continuous feedback controller.

    Let the state error be ei(t)=xi(t)-s(t), the error dynamical system can be described by

    holds, then systems (2.1) and (2.2) are said to be exponentially synchronized.

    Furthermore, the compact forms of (2.4) can be expressed as

    3 Main Results

    3.1 Synchronization of FCDNs with derivative couplings and linear impulses

    In this subsection,the exponential synchronization conditions are proposed for FCDNs with derivative couplings and linear impulses under feedback control based on discreet time state observations. To do this, we develop a useful lemma to establish the relationship between a discrete time observation term and a continuous term.

    The proof is complete. □

    Theorem 3.2 Under Assumption 2.1,if there exist matrix φ>0,and constant ω >0 such that the inequalities

    3.2 Synchronization of FCDNs with multi-derivative couplings and impulsive couplings

    In this subsection,global exponential synchronization is investigated for FCDNs with multiderivative couplings and impulsive couplings, and the sufficient condition is presented in the form of LMIs.

    Consider FCDNs with multi-derivative couplings and impulsive couplings, whose dynamics are described by

    Remark 3.5 Due to the complexity of the actual situation, it is not enough to present state coupling only at all times. Derivative couplings and impulsive couplings should also be considered. Relevant studies were obtained with regard to CDNs with derivative couplings and impulsive couplings in [21-26] and [27-31], however, the above theoretical results focused on integer-order systems. In this paper,we introduce derivative couplings and impulsive couplings into FCDNs, and this makes the model of FCDNs more general.

    Remark 3.6 The feedback control approach based on continuous time state observations was adopted in the synchronization research on CDNs; see [47]. To reduce costs and save resources, a feedback control strategy based on discrete time observation was proposed to study the synchronization problem for complex systems [37-40]. Inspired by [39], in Theorems 1 and 2, we investigated the impulsive exponential synchronization for FCDNs with derivative couplings via FCDSO. The results obtained are meaningful and valuable.

    Remark 3.7 Owing to the fact that the feedback controller (3) is discrete, in the proof of Lemma 5, addressing the discrete items is challenging work. Analogous to [39], Lemma 5 establishes the relationship between the discrete time observations term e(Υ(t)) and the continuous term e(t). Hence, the designed discrete controller (3) is more effective.

    4 Simulation Results

    In this section, the theoretical analysis is illustrated by two simulation examples.

    Example 4.1 Consider the FCDNs with derivative couplings and impulse effects including three nodes. When t/=tk, the corresponding parameters are as follows:

    Figure 1 indicates that the dynamical system cannot achieve synchronization without a controller. To achieve global exponential synchronization,we establish the following parameters:Ta=3.125,σ =0.001,ω=0.15,τ =1,and a control gain matrix φ=[7.5,0,0;0,9.5,0;0,0,8.4].For these parameters,it is easy to verify that conditions(i)and(iii)are satisfied. The graph of synchronization errors is presented in Figure 2. It is shown that the curves of error e(t) reach zero; that is, the error system(2.4)achieves global exponential synchronization under feedback control based on discrete time state observations. Therefore, the correctness of Theorem 3.2 is verified by these simulation results.

    Figure 1 The trajectories of state x(t) and s(t),i,j =1,2,3; without controller

    Example 4.2 FCDNs with multiple derivatives and impulsive couplings containing 3 nodes are shown by

    where α=0.97, q =2, c1=0.012,c2=0.03,d1=.25,d2=0.84 and f(xi1(t))=0.7 sin(xi1(t)),f(xi2(t)) = 0.5 cos(xi2(t))),f(xi3(t)) = 0.3 tanh(xi3(t)). In addition, the coefficient matrices are summarized as A = [-1.9057,3.05,-2.595;-3.97,0.04,2.23;4.405,-2.79,-1.54],B1=[-3,1,2;2,-5,3;1,4,-5],and

    Figure 3 The trajectories of state xij(t) and sj(t),i,j =1,2,3 without controller

    Figure 4 The trajectories of synchronization error eij,i,j =1,2,3

    5 Conclusion

    This article has discussed the global exponential synchronization issue for FCDNs with derivative couplings subject to impulse effects. Considering the designed feedback control scheme based on discrete time state observations, a significant lemma has been derived, establishing the connection between discrete and continuous time observations terms. By the Lyapunov stability theory and important fractional-order inequality, exponential synchronization criteria have been proposed in the form of LMIs. Finally, the efficacy of the presented results has been demonstrated by two simulation examples. A future research direction is to extend the results here to the synchronization for FCDNs with derivative couplings and timedelay via a fault-tolerant control strategy. In addition, it would be interesting to investigate the potential design of a fault-tolerant controller for when the topology structure of derivative couplings is nonlinear or discontinuous.

    猜你喜歡
    進(jìn)德
    O(t-β )-synchronization and asymptotic synchronization of delayed fractional order neural networks
    敢為天下先
    ——記首屆全國(guó)創(chuàng)新?tīng)?zhēng)先獎(jiǎng)獲得者曹進(jìn)德及其團(tuán)隊(duì)
    師生一起來(lái)“進(jìn)德”
    進(jìn)德與修業(yè)
    “逝者如斯夫”釋考
    蔡元培北大整風(fēng)
    21世紀(jì)(2010年11期)2010-04-29 08:39:09
    論德形
    久久精品综合一区二区三区| 直男gayav资源| 欧美丝袜亚洲另类| 国产精品野战在线观看| 亚洲成人av在线免费| 深夜a级毛片| 精品久久久久久久久av| a级毛片a级免费在线| 久久天躁狠狠躁夜夜2o2o| 欧美在线一区亚洲| 成年女人毛片免费观看观看9| 亚洲在线观看片| 欧美最新免费一区二区三区| 日韩制服骚丝袜av| 日韩成人av中文字幕在线观看 | 亚洲图色成人| 天天一区二区日本电影三级| 国产 一区精品| 国产一区二区激情短视频| 久久久久九九精品影院| 天堂影院成人在线观看| 亚洲电影在线观看av| 久久精品国产亚洲av香蕉五月| 69人妻影院| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩高清在线视频| 人妻夜夜爽99麻豆av| 美女黄网站色视频| 插阴视频在线观看视频| 久久久a久久爽久久v久久| 日韩精品中文字幕看吧| 亚洲欧美成人综合另类久久久 | 我的女老师完整版在线观看| 国产精品久久视频播放| 欧美国产日韩亚洲一区| 小说图片视频综合网站| eeuss影院久久| 日韩成人av中文字幕在线观看 | 久久久成人免费电影| 久久6这里有精品| 性欧美人与动物交配| 在线国产一区二区在线| 此物有八面人人有两片| 亚洲性夜色夜夜综合| 热99re8久久精品国产| 国产精品电影一区二区三区| 日韩人妻高清精品专区| 国产一区二区三区在线臀色熟女| 欧美3d第一页| 国产精品一区二区三区四区免费观看 | 久久精品国产自在天天线| 亚洲性夜色夜夜综合| 午夜爱爱视频在线播放| 99久久精品一区二区三区| 色哟哟哟哟哟哟| 亚州av有码| 成人无遮挡网站| 亚洲不卡免费看| 久久鲁丝午夜福利片| 无遮挡黄片免费观看| 最近视频中文字幕2019在线8| 可以在线观看的亚洲视频| 亚洲在线观看片| 国产一级毛片七仙女欲春2| 日日撸夜夜添| 99在线视频只有这里精品首页| 日本三级黄在线观看| 99久久九九国产精品国产免费| 18禁黄网站禁片免费观看直播| 一级毛片久久久久久久久女| 特大巨黑吊av在线直播| 在线观看66精品国产| 最新中文字幕久久久久| 久久久久国内视频| 国内精品久久久久精免费| 免费观看在线日韩| 91久久精品国产一区二区三区| 可以在线观看的亚洲视频| a级一级毛片免费在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲精品粉嫩美女一区| 国产麻豆成人av免费视频| 日日摸夜夜添夜夜添小说| 久久精品91蜜桃| 美女黄网站色视频| 午夜激情欧美在线| 国产探花极品一区二区| 国产精品久久久久久精品电影| 亚洲婷婷狠狠爱综合网| 欧美一级a爱片免费观看看| 午夜福利在线观看免费完整高清在 | 色吧在线观看| 别揉我奶头~嗯~啊~动态视频| 国内精品久久久久精免费| 免费在线观看影片大全网站| 我要看日韩黄色一级片| 校园春色视频在线观看| 亚洲专区国产一区二区| 国产成人福利小说| 色视频www国产| 久久久久久久亚洲中文字幕| 日本熟妇午夜| 国产乱人视频| 国产三级在线视频| 久久精品影院6| 18禁在线播放成人免费| 国产片特级美女逼逼视频| 麻豆精品久久久久久蜜桃| 内地一区二区视频在线| 国产精品亚洲美女久久久| 国产老妇女一区| 亚洲激情五月婷婷啪啪| 亚州av有码| 免费观看人在逋| 亚洲欧美清纯卡通| 色av中文字幕| 久久久久免费精品人妻一区二区| 日本成人三级电影网站| 成人特级av手机在线观看| 韩国av在线不卡| 亚洲,欧美,日韩| 久久精品国产自在天天线| 国模一区二区三区四区视频| 亚洲人成网站在线观看播放| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美精品免费久久| 99久久精品一区二区三区| 亚洲乱码一区二区免费版| 久久6这里有精品| 国产av一区在线观看免费| 亚洲欧美精品自产自拍| 国产精品女同一区二区软件| 高清毛片免费看| 国产亚洲精品久久久久久毛片| 免费高清视频大片| 免费看日本二区| 精品福利观看| 国产精品三级大全| 如何舔出高潮| 国产免费一级a男人的天堂| 久久久久久大精品| 欧美中文日本在线观看视频| 黄色日韩在线| 久久久久久久午夜电影| 一卡2卡三卡四卡精品乱码亚洲| 一级黄色大片毛片| 91久久精品国产一区二区三区| 久久精品国产99精品国产亚洲性色| 免费看光身美女| 久久久成人免费电影| 1024手机看黄色片| 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 最近在线观看免费完整版| 97超碰精品成人国产| 欧美日韩精品成人综合77777| 99riav亚洲国产免费| 成人综合一区亚洲| 亚洲精品成人久久久久久| 久久午夜福利片| 免费观看精品视频网站| 婷婷精品国产亚洲av在线| 亚洲七黄色美女视频| 欧美国产日韩亚洲一区| 免费看a级黄色片| 夜夜爽天天搞| 人妻丰满熟妇av一区二区三区| 国产乱人视频| 99riav亚洲国产免费| 99久久精品一区二区三区| 91av网一区二区| 中国美女看黄片| 国产激情偷乱视频一区二区| 国产伦精品一区二区三区视频9| 国内精品宾馆在线| 国产精品乱码一区二三区的特点| 国产精品久久久久久精品电影| 可以在线观看的亚洲视频| 日韩,欧美,国产一区二区三区 | 国产精品一区二区性色av| 国产精品一区二区三区四区久久| 99热6这里只有精品| 色综合色国产| 精品久久久久久久久av| 国内久久婷婷六月综合欲色啪| 三级国产精品欧美在线观看| 欧美激情在线99| 亚洲欧美日韩高清在线视频| 国产精品无大码| 精品久久久久久久末码| 日韩一区二区视频免费看| 精华霜和精华液先用哪个| 亚洲精品国产av成人精品 | 亚洲国产精品成人综合色| av在线老鸭窝| 自拍偷自拍亚洲精品老妇| 美女内射精品一级片tv| 国产精品电影一区二区三区| 丰满的人妻完整版| 欧美中文日本在线观看视频| 国产女主播在线喷水免费视频网站 | 国产久久久一区二区三区| 午夜福利高清视频| 国模一区二区三区四区视频| 特级一级黄色大片| 亚洲精品粉嫩美女一区| 免费黄网站久久成人精品| 亚洲成人久久性| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| 欧美日本亚洲视频在线播放| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久人妻蜜臀av| 日本色播在线视频| 国产真实乱freesex| 国产成人freesex在线 | 国产精品一区二区三区四区免费观看 | 午夜福利成人在线免费观看| 亚洲电影在线观看av| 日韩欧美免费精品| 啦啦啦韩国在线观看视频| 日本色播在线视频| 最近2019中文字幕mv第一页| 亚洲国产高清在线一区二区三| av在线天堂中文字幕| 一本精品99久久精品77| eeuss影院久久| 在线免费十八禁| 伦理电影大哥的女人| 九色成人免费人妻av| 人妻久久中文字幕网| 三级国产精品欧美在线观看| 日韩欧美精品免费久久| 色综合色国产| 免费观看人在逋| 午夜精品一区二区三区免费看| 国产精品无大码| 1024手机看黄色片| 国产视频一区二区在线看| 国产精品精品国产色婷婷| 国产在视频线在精品| av中文乱码字幕在线| 高清毛片免费观看视频网站| 黄色一级大片看看| 欧美一区二区亚洲| 精品久久久久久久人妻蜜臀av| 日韩制服骚丝袜av| 99久久久亚洲精品蜜臀av| 狠狠狠狠99中文字幕| 日韩一区二区视频免费看| 99久久精品热视频| 成年女人毛片免费观看观看9| 日韩欧美 国产精品| 免费搜索国产男女视频| 欧美人与善性xxx| 亚洲av成人av| 老师上课跳d突然被开到最大视频| 免费看a级黄色片| 午夜精品在线福利| 一级黄色大片毛片| 少妇猛男粗大的猛烈进出视频 | 久久精品人妻少妇| 老司机影院成人| 又黄又爽又免费观看的视频| 欧美一区二区国产精品久久精品| 国产久久久一区二区三区| 国产男靠女视频免费网站| 国产亚洲av嫩草精品影院| 两性午夜刺激爽爽歪歪视频在线观看| or卡值多少钱| 成人精品一区二区免费| 亚洲熟妇中文字幕五十中出| 国产色爽女视频免费观看| 亚洲精品日韩av片在线观看| 精品人妻熟女av久视频| 欧美日韩一区二区视频在线观看视频在线 | 日韩三级伦理在线观看| 亚洲图色成人| 在线观看一区二区三区| 干丝袜人妻中文字幕| 国产免费一级a男人的天堂| 精品久久久久久久末码| 亚洲av五月六月丁香网| 免费大片18禁| 中文资源天堂在线| 久久久久久久午夜电影| 欧美潮喷喷水| 亚洲熟妇中文字幕五十中出| 99热这里只有是精品50| 午夜a级毛片| 国产日本99.免费观看| 国产极品精品免费视频能看的| 久久6这里有精品| 国产精品不卡视频一区二区| 国产精品爽爽va在线观看网站| 日本一本二区三区精品| 婷婷六月久久综合丁香| 午夜福利成人在线免费观看| 欧美日韩精品成人综合77777| 99热6这里只有精品| 色哟哟哟哟哟哟| 97热精品久久久久久| 久久精品国产亚洲av涩爱 | 在线免费观看不下载黄p国产| 成人特级黄色片久久久久久久| 欧美zozozo另类| 国产精品人妻久久久久久| 精品午夜福利在线看| 亚洲不卡免费看| 日本色播在线视频| 久久草成人影院| 久久欧美精品欧美久久欧美| 好男人在线观看高清免费视频| 人人妻人人澡人人爽人人夜夜 | 可以在线观看毛片的网站| 亚洲综合色惰| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩精品成人综合77777| 亚洲成a人片在线一区二区| 12—13女人毛片做爰片一| 亚洲精品久久国产高清桃花| 成人亚洲欧美一区二区av| 亚洲aⅴ乱码一区二区在线播放| 欧美人与善性xxx| or卡值多少钱| 亚洲国产日韩欧美精品在线观看| 97在线视频观看| 中文字幕久久专区| 天堂动漫精品| 99热精品在线国产| 精品久久久久久久久av| 午夜精品一区二区三区免费看| 99热网站在线观看| 在线播放国产精品三级| 亚洲av.av天堂| 成年av动漫网址| 国产一区二区三区av在线 | 搡老熟女国产l中国老女人| 99在线人妻在线中文字幕| 亚洲av成人精品一区久久| 91麻豆精品激情在线观看国产| 99热这里只有精品一区| 少妇丰满av| 老司机午夜福利在线观看视频| 亚洲精品一区av在线观看| 99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 亚洲最大成人手机在线| 国产成人精品久久久久久| 性插视频无遮挡在线免费观看| 少妇高潮的动态图| 91久久精品国产一区二区成人| 日韩,欧美,国产一区二区三区 | 国产一区二区激情短视频| 亚洲三级黄色毛片| АⅤ资源中文在线天堂| 青春草视频在线免费观看| 久久中文看片网| 国内久久婷婷六月综合欲色啪| 亚洲欧美成人综合另类久久久 | 99热这里只有是精品在线观看| 日本免费一区二区三区高清不卡| 一进一出抽搐动态| 亚洲真实伦在线观看| 一级黄片播放器| 日韩人妻高清精品专区| 久久精品国产亚洲网站| 最好的美女福利视频网| 成人二区视频| 一级a爱片免费观看的视频| 亚洲精品456在线播放app| 日产精品乱码卡一卡2卡三| 最近的中文字幕免费完整| ponron亚洲| 亚洲国产精品成人久久小说 | 国产一区二区在线av高清观看| 99热这里只有是精品50| 哪里可以看免费的av片| 国产av麻豆久久久久久久| 男女边吃奶边做爰视频| 赤兔流量卡办理| 国产精品三级大全| 国产亚洲精品av在线| 99九九线精品视频在线观看视频| 国产伦一二天堂av在线观看| 校园人妻丝袜中文字幕| 黄色配什么色好看| videossex国产| 在线观看免费视频日本深夜| 一本一本综合久久| 老熟妇仑乱视频hdxx| 成人av在线播放网站| 久久热精品热| 狂野欧美白嫩少妇大欣赏| 此物有八面人人有两片| 又爽又黄无遮挡网站| 2021天堂中文幕一二区在线观| 色视频www国产| 少妇人妻一区二区三区视频| 欧美成人免费av一区二区三区| 美女免费视频网站| 国产精品永久免费网站| 我的女老师完整版在线观看| 国产在线精品亚洲第一网站| 有码 亚洲区| 赤兔流量卡办理| 激情 狠狠 欧美| 中文资源天堂在线| 女人十人毛片免费观看3o分钟| 99久久九九国产精品国产免费| 毛片一级片免费看久久久久| 插逼视频在线观看| 久久久国产成人免费| 91午夜精品亚洲一区二区三区| 日本撒尿小便嘘嘘汇集6| 日产精品乱码卡一卡2卡三| 最新在线观看一区二区三区| 日韩中字成人| 国产乱人偷精品视频| 免费不卡的大黄色大毛片视频在线观看 | 久久午夜福利片| 亚洲av五月六月丁香网| 欧美日韩乱码在线| 亚洲成av人片在线播放无| 欧美日韩乱码在线| 欧美激情国产日韩精品一区| 国产一区二区三区在线臀色熟女| 午夜日韩欧美国产| 日韩成人av中文字幕在线观看 | 国产淫片久久久久久久久| 国内少妇人妻偷人精品xxx网站| 精品无人区乱码1区二区| 免费看a级黄色片| 如何舔出高潮| av免费在线看不卡| a级一级毛片免费在线观看| 欧美性感艳星| 国语自产精品视频在线第100页| 美女内射精品一级片tv| 人妻夜夜爽99麻豆av| 在线免费观看不下载黄p国产| 色在线成人网| 亚洲国产精品久久男人天堂| 97超视频在线观看视频| 午夜精品一区二区三区免费看| 欧美一区二区国产精品久久精品| 精品少妇黑人巨大在线播放 | 欧美性感艳星| 国产黄片美女视频| 免费观看的影片在线观看| 在线免费观看不下载黄p国产| 日韩一本色道免费dvd| 国产69精品久久久久777片| 18禁黄网站禁片免费观看直播| 亚洲图色成人| 99在线人妻在线中文字幕| 国产精品不卡视频一区二区| 卡戴珊不雅视频在线播放| 亚洲人成网站在线播放欧美日韩| 成人性生交大片免费视频hd| 国产一区二区三区av在线 | 国产高清不卡午夜福利| 老司机影院成人| 婷婷精品国产亚洲av在线| 亚洲av不卡在线观看| 一区福利在线观看| 亚洲欧美日韩高清在线视频| 欧美一区二区亚洲| 国产高清不卡午夜福利| 熟女人妻精品中文字幕| 五月伊人婷婷丁香| 十八禁国产超污无遮挡网站| 久久久久久国产a免费观看| 国产免费男女视频| 高清毛片免费观看视频网站| 日韩精品青青久久久久久| 久久精品国产99精品国产亚洲性色| 草草在线视频免费看| 日韩大尺度精品在线看网址| 亚洲av一区综合| 亚洲色图av天堂| 一本一本综合久久| 国产午夜精品久久久久久一区二区三区 | 亚洲最大成人中文| 禁无遮挡网站| 三级国产精品欧美在线观看| 女人被狂操c到高潮| 色综合亚洲欧美另类图片| 可以在线观看毛片的网站| 国产黄色小视频在线观看| 欧美区成人在线视频| 一进一出抽搐动态| 男人舔女人下体高潮全视频| 中文字幕久久专区| 日本免费a在线| av福利片在线观看| 国产淫片久久久久久久久| 欧美日韩在线观看h| 直男gayav资源| 九色成人免费人妻av| 精品少妇黑人巨大在线播放 | 99国产精品一区二区蜜桃av| 三级国产精品欧美在线观看| 免费看日本二区| 国产精品国产三级国产av玫瑰| 欧美最黄视频在线播放免费| а√天堂www在线а√下载| 亚洲色图av天堂| 国产淫片久久久久久久久| 精品人妻视频免费看| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久午夜电影| 国产白丝娇喘喷水9色精品| 高清毛片免费观看视频网站| av中文乱码字幕在线| 在线播放国产精品三级| 国产精品爽爽va在线观看网站| 一个人看的www免费观看视频| 别揉我奶头~嗯~啊~动态视频| 一级a爱片免费观看的视频| 国产精品一区二区免费欧美| 欧美一区二区亚洲| 你懂的网址亚洲精品在线观看 | 在现免费观看毛片| 成人三级黄色视频| 国产高清三级在线| 我要搜黄色片| 永久网站在线| 极品教师在线视频| 久久精品影院6| 成人高潮视频无遮挡免费网站| 一级毛片我不卡| 97碰自拍视频| 国内久久婷婷六月综合欲色啪| 国国产精品蜜臀av免费| 国产精品国产高清国产av| 最近在线观看免费完整版| 搡老岳熟女国产| 99热这里只有是精品50| 搡老妇女老女人老熟妇| 成年女人看的毛片在线观看| 成年女人毛片免费观看观看9| 精品午夜福利在线看| 日韩国内少妇激情av| 精品欧美国产一区二区三| 精华霜和精华液先用哪个| 大又大粗又爽又黄少妇毛片口| 日本免费a在线| 日本黄大片高清| 亚洲一区高清亚洲精品| 丰满人妻一区二区三区视频av| av在线亚洲专区| 国产亚洲av嫩草精品影院| 欧美日韩在线观看h| 亚洲在线观看片| av在线播放精品| 寂寞人妻少妇视频99o| 欧美成人免费av一区二区三区| 少妇的逼好多水| 99久久九九国产精品国产免费| 国产成人aa在线观看| 日韩制服骚丝袜av| 中文资源天堂在线| 亚洲av免费高清在线观看| 婷婷色综合大香蕉| 国产伦精品一区二区三区四那| 免费搜索国产男女视频| 国产精品久久久久久亚洲av鲁大| 中文在线观看免费www的网站| 俄罗斯特黄特色一大片| av.在线天堂| 性欧美人与动物交配| 久久人人爽人人爽人人片va| 成年版毛片免费区| 久久人人爽人人片av| 精品乱码久久久久久99久播| 日本熟妇午夜| 国产成人aa在线观看| 丰满的人妻完整版| 国产成人一区二区在线| 1024手机看黄色片| 久久亚洲精品不卡| 国产精品不卡视频一区二区| 毛片女人毛片| 日韩中字成人| 亚洲中文日韩欧美视频| 一级毛片我不卡| 国产 一区精品| 免费一级毛片在线播放高清视频| av卡一久久| 自拍偷自拍亚洲精品老妇| 淫妇啪啪啪对白视频| 日韩av在线大香蕉| 国产三级中文精品| 中文字幕人妻熟人妻熟丝袜美| 国产黄色小视频在线观看| 国产精品综合久久久久久久免费| 久久精品国产鲁丝片午夜精品| 一级毛片久久久久久久久女| 一区二区三区高清视频在线| 在线播放国产精品三级| 日本免费a在线| 天天躁夜夜躁狠狠久久av| 国产又黄又爽又无遮挡在线| 日日干狠狠操夜夜爽| 日韩精品青青久久久久久| 亚洲av成人精品一区久久| 色播亚洲综合网| 欧美又色又爽又黄视频| 久久久精品大字幕| 性插视频无遮挡在线免费观看| 日本与韩国留学比较| 欧美最黄视频在线播放免费| 久久午夜福利片| 亚洲精品日韩av片在线观看|