• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    O(t-β )-synchronization and asymptotic synchronization of delayed fractional order neural networks

    2022-08-25 08:50:28AnbalaganPRATAP
    關(guān)鍵詞:進(jìn)德

    Anbalagan PRATAP

    Department of Mathematics,Alagappa University,Karaikudi 630004,India

    E-mail: kapmaths gmail.com

    Ramachandran RAJA

    Ramanujan Centre for Higher Mathematics,Alagappa University,Karaikudi 630004,India

    B-mail: rajarchm2012@gmail.com

    Jinde CAO (曹進(jìn)德)廣

    School of Mathematics,Southeast University,Nanjing 211189,ChinaYonsei Frontier Lab,Yonsei University,Seouul 03722,South Korea

    E-mail : jdcao@seu.edu.cn

    Chuangxia HUANG(黃創(chuàng)霞)*

    Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,Changsha University of Science and Technology,Changsha 410114,China

    E-mail : cxiahauang@csust.edu.cn

    Jehad ALZABUT

    Department of Mathematics and General Sciences,Prince Sultan Uniuersity,Riadh 12435,Saudi Arabia

    E-mail : jalzabut@psu.edu.sa

    Ovidiu BAGDASAR

    Department of Electronics,Computing and Mathematics,University of Derbg,United Kingdom

    E-mail: ovidiubagdasargmail.com

    1 Introduction

    Over the past few years, many research areas such as control theory, stability theory,optimization, cryptography, secure communications, signal and image processing, have played a significant role in the study of neural networks and nonlinear dynamical systems [1–7]. The quantitative behavior of dynamical applications is an important step in the practical design[8–10]. Bidirectional associative memory (BAM), an expansion of auto-associate Hopfield neural networks, was first proposed by Bart Kosko [11], and contains twin layers, one a K-Layer and the other an L-layer. Between the two layers,the neurons are fully interconnected from K-layer to L-layer. This lays a good foundation for artificial intelligence,optimization,signal and image processing,and as such increasing attention has been paid to the dynamical behaviors of BAM neural networks, and some important results have been obtained; see [12–14].

    Recently,research on fractional-order dynamical systems has brought about numerous fruitful achievements;see[15–17,48,49]. As an electronic execution of a BAM neural system model,many scholars endeavored to update the typical capacitor fractional capacitor; this led to the development of the fractional order BAM neural network models (FOBAMNNs). Generally,time delays can impose complexity and restrictions in neural networks and may lead to instability, chaos and oscillation. Dynamical behaviors of time delayed FOBAMNNs have already become a hot research topic,and lots of scientific results have appeared in this area;see[18–22].

    For example, the non-fragile state estimator design of fractional order memristive BAM neural networks (FOMBAMNNs) with a parameter mismatch problem was investigated in[18]. By means of interval parameter techniques, nonsmooth analysis and Lyapunov theory,sufficient criteria were obtained in asymptotic stability for the considered BAM neural network models. In [19], by employing the appropriate Lyapunov function and Caputo fractional derivatives, the author demonstrated the global Mittag-Leffler stability and asymptotical ωperiodicity of fractional order BAM neural networks (FOBAMNNs). Based on the properties of Riemann-Liouville fractional derivatives, the fractional Barbalet lemma and the Lyapunov stability theory, some sufficient conditions were established in [21] to guarantee the global asymptotic stability of FOBAMNNs with impulsive effects and time delays. In [22], the problem on the stabilization of FOMBAMNNs was demonstrated. By utilizing the two different feedback control approaches, linear and partial feedback control, as well as the generalized Gronwall inequality and the properties of Caputo derivatives,the sufficient conditions were established to ensure the Mittag-Leffler stabilization condition for the considered FOMBAMNNs models.

    Synchronization, which means the dynamical behaviors of a coupled system that realizes convergence to the matching spatial state, has become an important research field. Many interesting research topics in neural networks and complex networks have made great progress(see [23–26]). There are many applications of synchronization,for example,secure communication, medicine, image processing, and so on. For fractional-order neural networks, researchers have discussed various types of synchronization; see [27–33]. For example, in [28], the author demonstrated several synchronization criteria by utilizing the suitable Lyapunov function, the Razumikhin method and the differential inclusion theory to ensure the O(t-β)-synchronization and adaptive Mittag-Leffler synchronization criterion in fractional order delayed memristive neural networks. In[30],the authors proposed the problem of memristive fractional order fuzzy neural networks with time delays. By employing some inequality skills and a suitable state feedback control scheme, the set of sufficient conditions was presented to ensure the finite time stability and finite time synchronization. For more on the significant research taking place regarding fractional order synchronization in BAM neural networks, see [27, 31, 32] and references therein. In [31], the problem of finite time Mittag-Leffler synchronization of memristive FBAMNNs was addressed with the aid of a simple linear feedback controller, some inequality techniques, and a suitable Lyapunov functional approach. The authors of [33] developed multiple variable delayed impulsive FBAMNNs by using linear delayed feedback control.

    On the one hand, during a particular period, signal propagation is distributed because the variety of axon sizes and lengths are too large. The significant attention has been paid to distributed delays in neural network dynamical systems; see, for instance, [34, 35]. In [34], the authors discussed the pinning synchronization of Riemann-Liouville sense fractional-order memristive complex-valued neural networks with both discrete and infinite distributed delays.By using the Lyapunov stability theory, a comparison theorem and a pinning control policy, several sufficient conditions were obtained to ensure the global asymptotical synchronization analysis of the considered neural network model. In[35],by using the adaptive feedback control law and Lyapunov theory, the author investigated the global asymptotic synchronization of fractional order complex valued neural networks with both discrete and infinite distributed delays.

    On the other hand, in many practical systems, many uncertain and external perturbations exist, which can damage synchronization’s dynamical performance. Taking account of this,many interesting results on the dynamics of neural networks with discrete, infinite distributed delays and nonlinear perturbations have recently been proposed; see [36–38]. These results are built in integer order cases. To the best of our knowledge, no one has yet investigated the fractional order cases, and in this paper, we make the first attempt to do so.

    The main objective of this article is thus to study the O(t-β) synchronization and asymptotic synchronization for fractional order BAM neural networks with discrete delays,distributed delays and non-identical perturbations. The main contributions of this research work are follows:

    1. The theoretical results and techniques can be extended to O(t-β) stability and the synchronization of both integer order and fractional-order neural networks.

    2. To obtain our synchronization results, O(t-β) synchronization and asymptotic synchronization definitions have been introduced, and a novel discontinuous state feedback controller has been designed.

    3. In light of these definitions and proposed controllers, sufficient criteria for several synchronization results are demonstrated theoretically.

    4. While existing results have not taken into consideration nonlinear perturbation and mixed time delays, our results fill this gap.

    2 Preliminaries

    At first, let us present some standing definitions, and we also state four lemmas in this section.

    Definition 2.1 ([39, 40]) The integral of fractional order β >0 for a function h(t) is defined as

    3 Main Results

    In this section, a new class of O(t-β)-synchronization and asymptotic synchronization are derived by employing a Mittag-Leffler function, a suitable Lyapunov functional, and fractional order derivative properties including the Riemann-Liouville and the Caputo-derivative.

    We choose the controllers χi(t) and θj(t) in response system (2.2) as follows:

    Here ηi, πi, ?j, εjare control gains.

    so the drive system(2.1)without infinite distributed delays realizes asymptotic-synchronization with response system (2.2) without infinite distributed delays under controller (3.1).

    Corollary 3.6 Assuming that the conditions (A1)–(A2) hold, then there exist n positive constants δi(i = 1,2,...,n) and m positive constants γj(j = 1,2,...,m) such that the condition of (3.16) holds, so the drive system (2.1) without external disturbances realizes asymptotic-synchronization with response system(2.2)without external disturbance under controller (3.15).

    Remark 3.7 This is the first time that O(t-β)-synchronization and asymptotic synchronization criterion for mixed time delayed BAM neural networks with a Caputo-fractional order have been investigated. In this work, fractional order, mixed time delays, nonlinear perturbations and a matrix element method have been taken into consideration; these results are very complicated and not easy to calculate. The main innovation of this paper is to extend and to overcome these complications. Our proposed model is more general and advanced.

    Remark 3.8 In view of Theorem 3.1, the O(t-β)-synchronization implies asymptotic synchronization.

    Remark 3.9 When β = 1, FBAMNNs model (2.1) degenerates into an asymptotic synchronization criterion for mixed time delayed BAM neural networks with nonlinear perturbation; these results do not exist in previous works.

    Remark 3.10 In Theorems 3.1 and 3.4, the sufficient condition that guarantees the O(t-β)-synchronization and asymptotic synchronization criteria of mixed time delayed Caputo fractional order BAM neural networks with nonlinear perturbations are established in the forms of the matrix element method. These results can be easily evaluated without utilizing a MATLAB LMI control toolbox.

    Remark 3.11 By using the results in FBAMNNs [31], infinite distributed time delay and nonlinear perturbation terms are added to FBAMNNs, and these results are established by means of the Razumikhin method, a new class of Lyapunov method, a novel discontinuous controller and an asymptotic expansion of Mittag-Leffler function. Moreover, a few outcomes in [31] are special cases of our results obtained in Theorem 3.4 when infinite distributed time delay and nonlinear perturbation terms are not considered in acquiring system(2.1). Therefore,our proposed model is more general and advanced than [31].

    4 Numerical Simulation

    Here, two numerical cases are provided to check the advantages of our synchronization results from the previous section.

    Therefore, all conditions of Theorem 3.1 hold. Hence system (2.1) realizes O(t-β) synchronization with system (2.2) under controller (3.1). The phase plots of state curves of the drive-response systems with control inputs are shown in Figure 1. Figure 2 depicts the time response of synchronization errors u1(t), u2(t),z1(t)and z2(t)of a system(4.2)that converges to zero, which confirms the effectiveness of O(t-β) synchronization results with the initial values k(t) = (0.6,-0.5)T, l(t) = (0.9,-0.5)Tand ?k(t) = (0.4,1.9)T, ?l(t) = (-1.2,0.5)T. By taking discrete delays, distributed delays and external disturbances into account, our main results rapidly lead to O(t-β)-synchronization for the above given parameters.

    Figure 1 Phase plot of drive and response system with control inputs

    Figure 2 Synchronization error signal of drive and response system with control inputs

    Figure 3 Chaotic behavior of drive and response system with control inputs

    Figure 4 Synchronization error signal of drive and response system with control inputs

    Therefore,the drive system(2.1)realizes asymptotic synchronization with response system(2.2)under controller(3.1)based on Theorem 3.4. The chaotic behavior of synchronization error curves of the drive-response systems with control inputs are shown in Figure 3. Figure 4 describes the time response of synchronization errors u1(t),u2(t),z1(t)and z2(t)of a system(4.2)that converges to zero, which confirms the effectiveness of asymptotic synchronization results with the initial values k(t) = (-1.2,1.5,2)T, l(t) = (-2,-4,2)Tand ?k(t) = (-4,2.5,-3)T,?l(t) = (0.5,1,1.5)T. By taking discrete delays, distributed delays and external disturbances into account, our main results rapidly lead to asymptotic synchronization for the above given parameters.

    5 Conclusion

    In this paper, several synchronization conditions of FBAMNNs with mixed time delays and nonlinear non-identical perturbations have been explored. By utilizing the proposed state feedback controller, fractional order derivative properties and a new kind of fractional order Lyapunov functional, we have demonstrated an algebraically sufficient condition for O(t-β)synchronization and the asymptotic synchronization of the considered FBAMNNs model. Two numerical examples have been given to show the effectiveness of our work.

    Compared with O(t-β) synchronization and asymptotic synchronization, the convergence speed of finite-time synchronization is optimal and predictable. Furthermore, our system has other advantages, such as better robustness and interference suppression features. Therefore,it is important to investigate finite-time synchronization of neural networks. Some researchers proposed finite-time synchronization neural networks with both integer-order and fractional cases; for example, the authors of [45] investigated the finite-time synchronization of integerorder time-delayed coupled neural networks via intermittent quantized control. The authors of[46]studied the finite-time synchronization of integer-order time-delayed fuzzy neural networks via non-chattering quantized control. The authors of [47] derived the finite-time synchronization analysis of fractional-order memristor-based neural networks with different fractional-order cases 0 <α <1 and 1 <α <2. Motivated by the above mentioned references, the proposed analysis method can be extended to investigate some other dynamical behavior analyses such as finite-time passivity, finite-time dissipativity, finite-time stability, finite-time-stabilization,finite-time synchronization,and so on for fractional-order non-identical fuzzy BAM neural networks with time delays via intermittent quantized control; we will consider these interesting issues in future work.

    猜你喜歡
    進(jìn)德
    IMPULSIVE EXPONENTIAL SYNCHRONIZATIONOF FRACTIONAL-ORDER COMPLEX DYNAMICALNETWORKS WITH DERIVATIVE COUPLINGS VIAFEEDBACK CONTROL BASED ON DISCRETE TIME STATE OBSERVATIONS*
    敢為天下先
    ——記首屆全國(guó)創(chuàng)新?tīng)?zhēng)先獎(jiǎng)獲得者曹進(jìn)德及其團(tuán)隊(duì)
    師生一起來(lái)“進(jìn)德”
    進(jìn)德與修業(yè)
    “逝者如斯夫”釋考
    蔡元培北大整風(fēng)
    21世紀(jì)(2010年11期)2010-04-29 08:39:09
    論德形
    涩涩av久久男人的天堂| av女优亚洲男人天堂| 国产乱来视频区| 97在线人人人人妻| 少妇高潮的动态图| 草草在线视频免费看| 国产成人精品婷婷| 简卡轻食公司| 97在线人人人人妻| 欧美xxⅹ黑人| 免费久久久久久久精品成人欧美视频 | 你懂的网址亚洲精品在线观看| 日韩中字成人| 91精品伊人久久大香线蕉| 热re99久久精品国产66热6| 国产在线男女| 亚洲真实伦在线观看| 国产精品秋霞免费鲁丝片| 校园人妻丝袜中文字幕| 欧美极品一区二区三区四区| 性高湖久久久久久久久免费观看| 日韩制服骚丝袜av| 最近手机中文字幕大全| 在线观看一区二区三区激情| 欧美最新免费一区二区三区| 七月丁香在线播放| 国产精品久久久久成人av| 久久精品国产a三级三级三级| 人妻制服诱惑在线中文字幕| 九九久久精品国产亚洲av麻豆| 欧美zozozo另类| 免费看av在线观看网站| 一个人看视频在线观看www免费| 汤姆久久久久久久影院中文字幕| 一级毛片久久久久久久久女| 女的被弄到高潮叫床怎么办| 国产午夜精品一二区理论片| 熟女av电影| 日日啪夜夜爽| av黄色大香蕉| 免费少妇av软件| 亚洲av中文字字幕乱码综合| 人妻制服诱惑在线中文字幕| 黄色日韩在线| 边亲边吃奶的免费视频| 国产精品无大码| 国产一区亚洲一区在线观看| 在线观看国产h片| 嫩草影院入口| 简卡轻食公司| 99热这里只有精品一区| 中文字幕久久专区| 亚洲欧美日韩东京热| 黄片无遮挡物在线观看| 亚洲欧美日韩卡通动漫| 高清在线视频一区二区三区| 亚洲av日韩在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲美女搞黄在线观看| 99视频精品全部免费 在线| 亚洲怡红院男人天堂| av卡一久久| 久久精品国产亚洲av天美| 久久久久久久久久久免费av| 97超视频在线观看视频| 国产美女午夜福利| 欧美+日韩+精品| 中文欧美无线码| 久久综合国产亚洲精品| 国产爽快片一区二区三区| 精品酒店卫生间| 男女下面进入的视频免费午夜| 日日摸夜夜添夜夜爱| 中文字幕制服av| 亚洲成色77777| 99热网站在线观看| 丝袜脚勾引网站| 国产伦精品一区二区三区四那| 交换朋友夫妻互换小说| 中文精品一卡2卡3卡4更新| 日韩亚洲欧美综合| 亚洲精品一二三| 自拍偷自拍亚洲精品老妇| 丰满迷人的少妇在线观看| 建设人人有责人人尽责人人享有的 | 高清黄色对白视频在线免费看 | 乱系列少妇在线播放| 80岁老熟妇乱子伦牲交| 精华霜和精华液先用哪个| 91在线精品国自产拍蜜月| 国产精品国产三级国产专区5o| 久久久久久久亚洲中文字幕| 国产男女超爽视频在线观看| 少妇的逼好多水| 熟女人妻精品中文字幕| 人妻一区二区av| 日本色播在线视频| 亚洲成人手机| 日韩一区二区视频免费看| 在线观看av片永久免费下载| 国产av国产精品国产| 免费黄网站久久成人精品| 免费av不卡在线播放| 99热网站在线观看| 在线免费观看不下载黄p国产| 久久毛片免费看一区二区三区| 2022亚洲国产成人精品| 欧美亚洲 丝袜 人妻 在线| 超碰av人人做人人爽久久| 国产一级毛片在线| 国产精品久久久久久久电影| 97在线视频观看| 国产乱来视频区| 日本黄色日本黄色录像| 亚洲怡红院男人天堂| 我要看黄色一级片免费的| 精品一区二区三卡| 欧美日韩在线观看h| 高清不卡的av网站| 在线亚洲精品国产二区图片欧美 | 日韩在线高清观看一区二区三区| 3wmmmm亚洲av在线观看| 毛片女人毛片| 国产在线男女| 少妇人妻 视频| 精品久久久精品久久久| 大又大粗又爽又黄少妇毛片口| 日韩av不卡免费在线播放| 国产精品女同一区二区软件| av在线app专区| 亚洲欧美精品自产自拍| 欧美日韩视频高清一区二区三区二| 久久久久久久大尺度免费视频| h日本视频在线播放| 最近最新中文字幕免费大全7| 国产老妇伦熟女老妇高清| 欧美变态另类bdsm刘玥| 一区在线观看完整版| 丰满少妇做爰视频| 赤兔流量卡办理| 91aial.com中文字幕在线观看| 国产成人a∨麻豆精品| 国产精品麻豆人妻色哟哟久久| 交换朋友夫妻互换小说| 少妇猛男粗大的猛烈进出视频| 少妇精品久久久久久久| 国产精品福利在线免费观看| 日韩免费高清中文字幕av| 精品视频人人做人人爽| 国产 一区精品| 欧美成人一区二区免费高清观看| 久久这里有精品视频免费| 91aial.com中文字幕在线观看| 六月丁香七月| 在线播放无遮挡| 久久精品国产自在天天线| 能在线免费看毛片的网站| 免费人成在线观看视频色| 亚洲精品,欧美精品| 啦啦啦视频在线资源免费观看| 新久久久久国产一级毛片| 欧美三级亚洲精品| 久久综合国产亚洲精品| 精品一区二区三卡| 日韩不卡一区二区三区视频在线| 国产黄色视频一区二区在线观看| 一个人看的www免费观看视频| 精品午夜福利在线看| 在线免费观看不下载黄p国产| 黄色配什么色好看| 亚洲一级一片aⅴ在线观看| 午夜老司机福利剧场| 欧美成人精品欧美一级黄| 最近的中文字幕免费完整| 国产精品一区www在线观看| 亚洲精品一区蜜桃| 久久av网站| 男女边摸边吃奶| 国产欧美另类精品又又久久亚洲欧美| 18禁裸乳无遮挡免费网站照片| 久热久热在线精品观看| 91精品一卡2卡3卡4卡| 中文字幕av成人在线电影| 免费久久久久久久精品成人欧美视频 | 国产精品人妻久久久影院| 亚洲国产最新在线播放| 高清在线视频一区二区三区| av天堂中文字幕网| 26uuu在线亚洲综合色| 2021少妇久久久久久久久久久| 欧美日本视频| 久久久久久伊人网av| 狂野欧美激情性bbbbbb| 九九在线视频观看精品| 成人漫画全彩无遮挡| 精品亚洲乱码少妇综合久久| 亚洲精品久久久久久婷婷小说| 国产成人a∨麻豆精品| 日韩一区二区视频免费看| 少妇被粗大猛烈的视频| 韩国av在线不卡| 国产精品一区二区在线观看99| 国产国拍精品亚洲av在线观看| 超碰97精品在线观看| 国产精品久久久久久久电影| 久久 成人 亚洲| 黄色欧美视频在线观看| 日韩伦理黄色片| a 毛片基地| 亚洲色图av天堂| 国产亚洲午夜精品一区二区久久| 国产亚洲av片在线观看秒播厂| 国产黄色免费在线视频| 中文乱码字字幕精品一区二区三区| 欧美+日韩+精品| 国产精品人妻久久久影院| 亚洲成人一二三区av| 亚洲欧美精品自产自拍| 久久午夜福利片| av视频免费观看在线观看| 亚洲欧美成人综合另类久久久| 日韩 亚洲 欧美在线| 亚洲中文av在线| 男女边吃奶边做爰视频| 亚洲人成网站高清观看| 一区在线观看完整版| 麻豆成人午夜福利视频| 人体艺术视频欧美日本| 日日摸夜夜添夜夜爱| 国产伦精品一区二区三区四那| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站 | 少妇裸体淫交视频免费看高清| 国产乱人偷精品视频| 一个人看的www免费观看视频| 亚洲一级一片aⅴ在线观看| 青春草国产在线视频| 色网站视频免费| 国产精品爽爽va在线观看网站| 日韩 亚洲 欧美在线| 80岁老熟妇乱子伦牲交| 三级国产精品欧美在线观看| 一级毛片电影观看| 亚洲av在线观看美女高潮| 亚洲av国产av综合av卡| 在线免费十八禁| 五月开心婷婷网| 一级毛片电影观看| 日韩视频在线欧美| 99久久中文字幕三级久久日本| 一级黄片播放器| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 欧美激情极品国产一区二区三区 | 伦精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91 | 看十八女毛片水多多多| 亚洲精品久久午夜乱码| 久久亚洲国产成人精品v| 日韩三级伦理在线观看| 亚洲国产精品国产精品| 日韩伦理黄色片| 在线免费观看不下载黄p国产| 黑丝袜美女国产一区| 成人漫画全彩无遮挡| 国产成人精品一,二区| 婷婷色综合大香蕉| 干丝袜人妻中文字幕| 交换朋友夫妻互换小说| 男人和女人高潮做爰伦理| 欧美激情极品国产一区二区三区 | 色综合色国产| 精品少妇久久久久久888优播| 美女中出高潮动态图| 日韩制服骚丝袜av| 成年av动漫网址| 日产精品乱码卡一卡2卡三| 一本一本综合久久| 国产av码专区亚洲av| 日本av手机在线免费观看| 精品一品国产午夜福利视频| 免费不卡的大黄色大毛片视频在线观看| 91精品国产九色| 男女边摸边吃奶| 久久国内精品自在自线图片| av天堂中文字幕网| 男男h啪啪无遮挡| 亚洲欧美成人精品一区二区| 免费av中文字幕在线| 免费黄频网站在线观看国产| www.色视频.com| 嘟嘟电影网在线观看| 永久免费av网站大全| 精品久久久久久久末码| 黄色配什么色好看| 99热6这里只有精品| 国产一区二区三区综合在线观看 | 久久婷婷青草| 国产一区二区三区av在线| 亚洲高清免费不卡视频| 久久婷婷青草| 国产成人91sexporn| 亚洲欧美日韩另类电影网站 | 国产伦精品一区二区三区视频9| 成年人午夜在线观看视频| 夜夜爽夜夜爽视频| 一区在线观看完整版| 水蜜桃什么品种好| 三级经典国产精品| 99九九线精品视频在线观看视频| 97在线人人人人妻| 亚洲欧美精品专区久久| 久久午夜福利片| 国产成人一区二区在线| 亚洲国产欧美在线一区| 插阴视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 直男gayav资源| 三级国产精品欧美在线观看| 国产精品福利在线免费观看| 国产精品无大码| 欧美zozozo另类| 亚洲图色成人| 亚洲欧美一区二区三区黑人 | 久久女婷五月综合色啪小说| 久久人人爽人人爽人人片va| 韩国高清视频一区二区三区| 看十八女毛片水多多多| 国产男女内射视频| 特大巨黑吊av在线直播| 男女免费视频国产| 免费观看性生交大片5| 又黄又爽又刺激的免费视频.| 91午夜精品亚洲一区二区三区| av国产精品久久久久影院| 一级爰片在线观看| av国产免费在线观看| 啦啦啦视频在线资源免费观看| 日本欧美视频一区| 成人黄色视频免费在线看| 精品一区二区三区视频在线| 国产成人freesex在线| 久久ye,这里只有精品| 人妻 亚洲 视频| 777米奇影视久久| 中文在线观看免费www的网站| 久久精品久久久久久噜噜老黄| 如何舔出高潮| 免费播放大片免费观看视频在线观看| 女的被弄到高潮叫床怎么办| 3wmmmm亚洲av在线观看| 蜜桃久久精品国产亚洲av| 亚洲成人中文字幕在线播放| 午夜精品国产一区二区电影| 99热国产这里只有精品6| 欧美日韩亚洲高清精品| 日韩不卡一区二区三区视频在线| 99热这里只有精品一区| 精品一区二区免费观看| 丝袜喷水一区| 大片电影免费在线观看免费| av专区在线播放| 日本猛色少妇xxxxx猛交久久| 国产色婷婷99| 精品久久国产蜜桃| 国产又色又爽无遮挡免| 国产精品精品国产色婷婷| kizo精华| 天美传媒精品一区二区| 人妻制服诱惑在线中文字幕| 久久青草综合色| 日本黄色日本黄色录像| 国产精品久久久久久av不卡| 国产男女超爽视频在线观看| 高清欧美精品videossex| 免费观看在线日韩| 精品久久久精品久久久| 亚洲在久久综合| 一级毛片电影观看| 如何舔出高潮| 久久久久久人妻| 99精国产麻豆久久婷婷| 日日摸夜夜添夜夜爱| h视频一区二区三区| 久久久久久伊人网av| 国产老妇伦熟女老妇高清| 十八禁网站网址无遮挡 | 2022亚洲国产成人精品| 亚洲va在线va天堂va国产| 高清视频免费观看一区二区| 丰满人妻一区二区三区视频av| 蜜桃亚洲精品一区二区三区| 高清黄色对白视频在线免费看 | 中文字幕精品免费在线观看视频 | 一区二区三区精品91| 国产片特级美女逼逼视频| 国产在线免费精品| 久久久精品94久久精品| 一个人看的www免费观看视频| 亚洲精品国产色婷婷电影| 国产精品不卡视频一区二区| 天美传媒精品一区二区| 网址你懂的国产日韩在线| 欧美成人一区二区免费高清观看| 亚洲欧美精品自产自拍| 狂野欧美白嫩少妇大欣赏| 日日啪夜夜撸| 蜜桃亚洲精品一区二区三区| 99久久精品热视频| 国产一区有黄有色的免费视频| 国产成人精品婷婷| 欧美高清成人免费视频www| 中国国产av一级| 99re6热这里在线精品视频| 国产av国产精品国产| 亚洲中文av在线| 国模一区二区三区四区视频| 1000部很黄的大片| 久久久久国产精品人妻一区二区| 国产一区二区三区av在线| 极品教师在线视频| 久久久久久伊人网av| 国产精品麻豆人妻色哟哟久久| 久久人人爽人人爽人人片va| 国产精品不卡视频一区二区| 高清不卡的av网站| 肉色欧美久久久久久久蜜桃| 久久久色成人| 午夜日本视频在线| 久热久热在线精品观看| 七月丁香在线播放| 国产伦精品一区二区三区四那| 舔av片在线| 伦精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 国产黄片美女视频| 大香蕉97超碰在线| 天天躁夜夜躁狠狠久久av| 成年免费大片在线观看| 在线观看一区二区三区| 99热这里只有是精品50| 成人影院久久| 色综合色国产| 日本欧美国产在线视频| 国产精品国产三级专区第一集| 嘟嘟电影网在线观看| 亚洲国产av新网站| 精品视频人人做人人爽| 欧美高清性xxxxhd video| 国产av精品麻豆| 亚洲av电影在线观看一区二区三区| 久久久久久久久久成人| av卡一久久| 免费观看av网站的网址| 久久久久国产精品人妻一区二区| 精品久久久久久久久亚洲| 伊人久久国产一区二区| 免费久久久久久久精品成人欧美视频 | 国产免费一级a男人的天堂| 97精品久久久久久久久久精品| 在线观看免费日韩欧美大片 | 99热这里只有是精品在线观看| 亚洲精品日韩av片在线观看| 又爽又黄a免费视频| 日本wwww免费看| 中文字幕制服av| 欧美+日韩+精品| 国产乱人视频| 精品久久久精品久久久| 黄色一级大片看看| 我要看日韩黄色一级片| 日韩电影二区| 国产一区亚洲一区在线观看| 老师上课跳d突然被开到最大视频| 国产一区二区在线观看日韩| 国产精品久久久久久精品古装| 亚洲激情五月婷婷啪啪| 国产精品久久久久久精品电影小说 | 久久精品人妻少妇| 久久久久精品性色| 高清黄色对白视频在线免费看 | 精品人妻熟女av久视频| 身体一侧抽搐| av不卡在线播放| 一级毛片黄色毛片免费观看视频| 97热精品久久久久久| 国产精品一区二区在线观看99| 久久 成人 亚洲| 少妇高潮的动态图| 国精品久久久久久国模美| 亚洲欧美日韩东京热| 国模一区二区三区四区视频| 久久精品人妻少妇| 熟妇人妻不卡中文字幕| 国产亚洲欧美精品永久| 高清视频免费观看一区二区| 一区二区三区乱码不卡18| 久久精品人妻少妇| 国产91av在线免费观看| 国产国拍精品亚洲av在线观看| 国产伦在线观看视频一区| 美女内射精品一级片tv| 日韩一本色道免费dvd| 在线亚洲精品国产二区图片欧美 | 成人国产麻豆网| 亚洲三级黄色毛片| 校园人妻丝袜中文字幕| 欧美三级亚洲精品| 欧美丝袜亚洲另类| 精品久久久久久电影网| 赤兔流量卡办理| 免费观看无遮挡的男女| 亚洲精品aⅴ在线观看| 免费看日本二区| 免费不卡的大黄色大毛片视频在线观看| 国产又色又爽无遮挡免| 久久午夜福利片| 日韩av不卡免费在线播放| 狠狠精品人妻久久久久久综合| 亚洲精品色激情综合| 欧美日本视频| 亚洲精品国产av成人精品| 欧美亚洲 丝袜 人妻 在线| 国产乱人偷精品视频| 激情五月婷婷亚洲| 免费av不卡在线播放| 久久精品夜色国产| 日本wwww免费看| 80岁老熟妇乱子伦牲交| 美女内射精品一级片tv| 亚洲精品日韩在线中文字幕| 日日啪夜夜爽| 搡老乐熟女国产| h日本视频在线播放| 国产 精品1| 精品国产乱码久久久久久小说| 国产淫语在线视频| 一二三四中文在线观看免费高清| 成人毛片60女人毛片免费| 成人二区视频| 又粗又硬又长又爽又黄的视频| 91精品一卡2卡3卡4卡| 一区二区三区乱码不卡18| 久久99精品国语久久久| 国产 一区 欧美 日韩| 在线观看国产h片| 黑丝袜美女国产一区| 国产乱来视频区| 国产成人91sexporn| 欧美日本视频| 99久久精品国产国产毛片| 国产黄频视频在线观看| 国产一区有黄有色的免费视频| 午夜免费鲁丝| 国产免费一级a男人的天堂| 纯流量卡能插随身wifi吗| 免费久久久久久久精品成人欧美视频 | 国产精品成人在线| 国产成人a区在线观看| 最近中文字幕高清免费大全6| 国产免费福利视频在线观看| 久久久久久久大尺度免费视频| 欧美精品国产亚洲| 女人久久www免费人成看片| 熟女人妻精品中文字幕| 九九久久精品国产亚洲av麻豆| 蜜桃在线观看..| 成人无遮挡网站| 国产精品成人在线| 夜夜爽夜夜爽视频| 卡戴珊不雅视频在线播放| 日韩人妻高清精品专区| 精品人妻一区二区三区麻豆| 国产综合精华液| 身体一侧抽搐| 成年av动漫网址| 日韩强制内射视频| 亚洲国产高清在线一区二区三| 啦啦啦啦在线视频资源| 中文精品一卡2卡3卡4更新| 看免费成人av毛片| 国产美女午夜福利| 国产精品一及| 国产精品99久久久久久久久| 亚洲国产色片| 国产精品秋霞免费鲁丝片| 日韩成人伦理影院| 国内精品宾馆在线| 日韩伦理黄色片| 国产成人午夜福利电影在线观看| 美女cb高潮喷水在线观看| 精品人妻视频免费看| 久久精品熟女亚洲av麻豆精品| 国产精品久久久久久av不卡| av在线观看视频网站免费| 久久国产精品男人的天堂亚洲 | 1000部很黄的大片| 国产久久久一区二区三区| 18禁在线播放成人免费| 亚洲欧美精品自产自拍| 国产爽快片一区二区三区| 久久影院123| 亚洲电影在线观看av| 亚洲av不卡在线观看| 黑人猛操日本美女一级片| 肉色欧美久久久久久久蜜桃| 午夜精品国产一区二区电影| 舔av片在线| 我的老师免费观看完整版| 久久久久久久久久久丰满| 日本av手机在线免费观看| 男女边摸边吃奶| 亚洲人成网站高清观看|