• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    a-LIMIT SETS AND LYAPUNOV FUNCTION FORMAPS WITH ONE TOPOLOGICAL ATTRACTOR *

    2023-01-09 10:57:32YimingDING丁義明YunSUN孫運(yùn)

    Yiming DING (丁義明)+Yun SUN(孫運(yùn))

    Center for Mathematical Sciences,School of Science,Wuhan University of Technology,Wuhan 430070,China E-mail : dinggm@whut.edu.cn; sungun@whut.edu.cn

    Definition 1.1 An indecomposable compact invariant set A ?X is called a topological attracting set if int(B(A)) /= ?, where B(A) = {x ∈X,ω(x) ?A} is its basin of attraction. A topological attractor is a topological attracting set which contains a dense orbit.

    From Definition 1.1, a topological attracting set A is indecomposable and invariant, and it attracts a non-empty open set. In what follows, we call A an attracting set for brevity.Note that an attracting set may admit empty interior (for example, an attracting fixed point).The basin of attraction follows from Milnor’s definition of metric attractor [21], and that A is indecomposable follows from Williams [27]. The attracting set A must be indecomposable,because the number of attracting sets may be large if A is decomposable. For instance, if attracting set can be decomposable,then the union of A and a repelling periodic orbit can also be an attracting set, so there will be too many attracting sets. A topological attractor contains a dense orbit, which indicates that f is topologically transitive on the topological attractor,and we call it an attractor for brevity.

    Denoting Afas the collection of all attracting sets of f, in this paper we shall consider a family of maps F. For f ∈F, f admits unique attractor A and satisfies the following two conditions:

    ? Basin condition: ?Ai,Aj∈Af, if int(B(Aj)△B(Ai))=?, then Aiand Ajare nested.

    ? Finiteness condition: ?M ∈AfA, #{E ∈Af,E ?M}<∞.

    For any f ∈F, f has only one topological attractor. The topological behaviors could be complicated when attractor is not unique. ?Ai,Aj∈Af, that Aiand Ajare nested implies that Ai?Ajor Aj?Ai. The basin condition indicates that(B(Aj)B(Ai))∪(B(Ai)B(Aj))is nowhere dense, which is used to prove that the attracting sets are nested; see Lemma 2.1 for details. The finiteness condition is a technical condition, which will be used to ensure the existence of maximal proper attracting set if f ∈F is not transitive. If f has only finite attracting sets, the finiteness condition is satisfied automatically. If f has infinite attracting sets,the finiteness condition implies that for any attracting set of f which is not the topological attractor, there are finite number of attracting sets of f which contain it. According to [9, 10,16],if f is either a topologically expansive Lorenz map,or a unimodal map without homterval,it admits unique topological attractor and satisfies those two conditions. It is interesting to know whether there exists continuous map in compact metric space with one topological attractor and violating the finiteness condition.

    Isolated invariant sets (see Definition 4.3) are singled out because they can be continued to nearby systems in a natural way, and in this sense they are stable objects. Conley [5]obtained the fundamental decomposition theorem of isolated invariant sets and extended it to Morse decomposition. Since then the Conley index theory had been studied extensively[2, 18, 20, 26]. Liu [20] studied the Conley index for random dynamical systems, and Wang[26] studied the shape Conley index in general metric spaces. Conley’s work focused on flow or homeomorphism,while we adapt the main ideas to a general continuous map. In this paper,we consider the topological behaviors of f ∈F on compact metric space X. We first introduce the A-R pair decomposition of X and obtain the leveled A-R pair decomposition of X,then use it to characterize α-limit set of each point. Observing that proper attracting set and corresponding repelling set could be intersected, but the interior is always disjoint, we prove that they are both isolated invariant sets when they are not intersected. In Section 4, we slightly modify the definition of Morse sets and obtain the weak Morse decomposition of X. Based on weak Morse decomposition, we construct a bounded Lyapunov function V(x), which can give a clear description of orbit behavior of each point in X except a meager set.

    The remain parts of the paper is organized as follows: we introduce leveled A-R decomposition of X in Section 2, and characterize the α-limit set of each point in Section 3. In Section 4,we introduce weak Morse sets and obtain a bounded Lyapunov function V(x) via weak Morse decomposition of X. Although we characterize the topological properties of α-limit sets of f ∈F, the metric properties of such sets are not clear. Under some regularity conditions, it is still unknown if the α-limit set is of (Lebesgue) measure zero. For maps with more than one attractor, the topological characterizations of α-limit sets are still unclear.

    2 Leveled A-R Pair Decomposition

    Conley [5] obtained the attractor-repeller pair decomposition of isolated invariant sets, but some sets may be decomposable even if they are not isolated invariant sets, such as the whole space X. For f ∈F, we first introduce the A-R pair decomposition of X. According to Definition 1.1, if A is an attracting set, then int(B(A)) /= ?. Let the dual repelling set of attracting set A be

    Notice that A and R may be intersected at the boundary, but the interior is always disjoint.Denote L:=A ∩R and (A,R) as an A-R pair decomposition of X, then

    Topological transitivity is a classical topological property. Let A be the unique attractor.Then f confined on A is topologically transitive, A is indecomposable and A contains a dense orbit. For any f ∈F, we first see whether it is topologically transitive on the X or not. If f is topologically transitive on X, then the whole compact space X is indecomposable and itself is a topological attractor. In this case, A=X, R=?.

    Lemma 2.1 Supposing that f ∈F, we have the following:

    (1) If f is not transitive on X, then it admits a maximal proper attracting set A1.

    (2)The proper attracting sets of f can be ordered as A1?A2?...?Am(0 ≤m ≤+∞).

    Case 1: If int(B(B?)) = ?, then there exists no attractor in B. Since each attracting set contains an attractor, there exists one attractor in AiB and AjB, respectively. Hence we obtain two different attractors, which contradicts with the uniqueness of attractor.

    Case 2: If int(B(B?)) /= ?, int(B(Ai) B(B?)) /= ?and int(B(Aj) B(B?)) = ?, then there exists one attractor in AiB and B respectively, which contradicts with the uniqueness of attractor.

    Case 3: If int(B(B?)) /= ?, int(B(Aj) B(B?)) /= ?and int(B(Ai) B(B?)) = ?, then there exists one attractor in AjB and B respectively, which contradicts with the uniqueness of attractor.

    Case 4: If int(B(B?))/=?, int(B(Ai)B(B?))/=?and int(B(Aj)B(B?))/=?, then there exists one attractor in AiB , AjB and B respectively, which contradicts with the uniqueness of attractor.

    Case 5: If int(B(B?)) /= ?, int(B(Ai)B(B?)) = ?and int(B(Aj)B(B?)) = ?, then both B(Aj)B(B?) and B(Ai)B(B?) are nowhere dense. Since B(B?) = B(Ai)∩B(Aj), then B(Ai)B(Aj)=B(Ai)B(B?) and int(B(Ai)B(Aj))=?. Similarly, int(B(Aj)B(Ai))=?.Hence(B(Aj)B(Ai))∪(B(Ai)B(Aj))is nowhere dense,which implies int(B(Aj)△B(Ai))=?.Applying the basin condition, we can obtain that Ai?Ajor Aj?Ai. Since Aiand Ajare different attracting sets, Ai?Ajor Aj?Aiholds.

    If f admits unique proper attracting set,then the maximal proper attracting set is attractor A. If f admits more than one proper attracting set,there exists a proper attracting set M ∈Afsuch that M ?A. By the finiteness condition, there are finite number of proper attracting sets which contain M. Let A1be the maximal proper attracting set which contains M. Given two proper attracting sets, we have proved that they are nested, and then all the proper attracting sets are nested. Hence A1is the maximal proper attracting set in Af.

    (2) If f is not topologically transitive on X, we can obtain a maximal attracting set A1?X,A1is compact under the induced topology and A1is invariant under f. Denote f1:= f|A1and Af1as the collection of all attracting sets of f1. If f confined on A1has more than one attractor, then f|Xalso has more than one attractor since A1?X, which contradicts with the uniqueness of attractor. According to the definition of attracting set, we can obtain Af1=AfX, i.e., Af1?Af, then the finiteness condition and basin condition obviously hold for f1. Hence f1∈F and(A1,f1)is a dynamical system. If f1is topologically transitive on A1,then A1is the unique attractor of f. If f1is not topologically transitive on A1, there exists a proper maximal attracting set A2?A1, and f2is also a map in F. In this way, if fm-1is not transitive on Am-1,one can obtain the maximal attracting set Amof the system(Am-1,fm-1).Then we obtain a cluster of attracting sets ordered as follows: X =A0?A1?A2?...?Am,and m might be infinite. □

    Let m be the level of dynamical system (X,f) if the process above can proceed m times consecutively. The level of(X,f)can be used to understand the relationship between attractor and attracting set. Denoting A0:=X, if m is finite, Amis the unique attractor since Amcan not be decomposed; if m is infinite, attractor is the intersection of all attracting sets.

    Definition 2.2 If the level of(X,f)is m,since each attracting set corresponds a repelling set, there exist m proper attracting sets and m corresponding repelling sets. And the set of all (Ai,Ri) (0 ≤i ≤m) is called the leveled A-R pair decomposition of X, denoted as

    {(A1,R1),(A2,R2),...,(Am,Rm)}.

    Example 2.3 Let f : I = [0,1] →I be an m-renormalizable topologically expansive Lorenz map and c be the critical point. We regard the critical point c as two points c+and c-, then f is continuous in some sense since f is topologically conjugate to a continuous map on symbolic space [17]. According to [10], define Rf to be the minimal renormalization map of f and define [a1,b1] to be the renormalization interval, then Rf confined on [a1,b1] is also an expansive Lorenz map. Suppose that E1is the minimal proper completely invariant closed set corresponds to the minimal renormalization, i.e., f(E)=f-1(E)=E. Putting

    3 α-Limit Set of Each Point

    We prove that proper repelling sets and proper α-limit sets are the same sets from different aspects, and we characterize the α-limit set of each point via leveled A-R pair decomposition of X. Notice that attracting set and repelling set may be intersected, hence we particularly describe the α-limit sets of intersection points.

    Lemma 3.1 Let f ∈F and the level of (X,f)is m. Then the following statements hold:

    (1) ?x ∈X, α(x) is a bi-invariant closed set of f.

    (2) Each proper repelling set is a proper bi-invariant closed set.

    (3) Each proper bi-invariant closed set is a proper α-limit set.

    then Riis a proper bi-invariant closed set. Notice that if there are m proper repelling sets of f, then the number of proper bi-invariant closed sets is exactly m.

    Proof (1) By Lemma 3.1, we know that proper repelling set and α-limit set of f are the same sets in different aspects. If the level of (X,f) is m, then f has exact m proper α-limit sets. It follows from the proof of Lemma 3.1 that all the α-limit sets are defined as Ri={x ∈X,orb(x)∩int(B(Ai))=?}, i=1,2,...m, and

    (2) If L=?, at first, we describe the set {x ∈X,α(x)=R1} where R1is the repelling set corresponding to the maximal attracting set A1.

    Claim α(x)=R1if and only if x ∈A0A1=X A1.

    By the proof of (1), R1is the minimal proper α-limit set of f. So α(x)?R1for all x ∈X.Denote fi:=f|Ai(0 ≤i ≤m) and D1=R2∩A1. For ?x ∈D1, x also belongs to R2and A1;because f(A1)=A1and orb(x)∩int(B(A2)) =?, we can obtain f(x)∈D1and f-1(x)∈D1.Hence D1is the minimal proper bi-invariant closed set of f1. It follows that D1∩R1=?and D1?R2. If x ∈X A1, i.e., x /∈A1, and as A1is invariant under f, for any n ∈N we have f-n(x)∩A1= ?, so α(x)∩A1= ?, which indicates α(x)∩D1= ?. Hence, α(x)R2and α(x)=R1.

    On the other hand,for any x ∈A1,since α(x,f1)=α(x,f)∩A1,we see that α(x)?α(x,f1).By the minimality of D1, α(x,f1) ?D1for all x ∈A1, so α(x)∩D1/= ?, which implies that α(x)/=R1for x ∈A1. The proof of the Claim is completed.

    For 0 ≤i ≤m, let Aibe the ith proper attracting set of f, let Ribe the corresponding repelling set, and let Dibe the minimal proper invariant closed set of fi. By the Claim we know that α(x)=R1if and only if

    For the case i = 2 ≤m, we consider the map f1. According to the Claim, we obtain that α(x,f2)?D2if and only if x ∈A1A2. It follows that α(x)=R2if and only if x ∈A1A2.

    Repeat the above arguments, we conclude that α(x)=Riif and only if

    If m <∞, and fmis topologically transitive on Am, α(x,fm)=Amfor all x ∈Am. Then we have that α(x,fm) ?α(x), and Am?α(x) for all x ∈Am. If α(x) /= X for any x ∈Am,then X α(x) is a bi-invariant open set since α(x) is proper bi-invariant closed, and there exists another attractor in X α(x), which contradicts with the unique attractor. Hence we can conclude that α(x)=X for all x ∈Am.

    Remark 3.2 If L /= ?, ?x ∈Li, we have either α(x) = Rior α(x) = Ri+1. In fact,according to Theorem A, if regard x ∈Ai, α(x) = Ri+1; if regard x ∈Ri, α(x) = Ri. In this way, the α-limit sets of points in meager set L can also be characterized.

    If m=0,then f is topologically transitive on X which implies that α(x)=X for any x ∈X,since X is the largest α-limit set, f admits exactly m+1 different α-limit sets.

    4 Lyapunov Function

    We first introduce the definition of isolated invariant set, and prove that both proper attracting set and proper repelling set are isolated invariant sets when they are not intersected.Then we define the weak Morse decomposition of X via leveled A-R pair decomposition and obtain a bounded Lyapunov function of f.

    Definition 4.1 (Franks & Richeson[12]) Let f ∈F and then f :X →X is a continuous map; for any set N ?X we define InvmN to be the set of x ∈N such that there exists an orbit segment {xn}m-m?N with x0= x and f(xn) = xn+1for n = -m,...,m-1. We will call a complete orbit containing x a solution through x. More precisely, if σ : Z →N is given by σ(n)=xnand x0=x and f(xn)=xn+1for all n,we will call σ a solution through x. We define InvN as Inv∞N, the set of x ∈N, such that there exists a solution σ with {σ(n)}∞-∞?N and with σ(0)=x.

    Note that from the definition it is clear that f(InvN)=InvN. The following basic property of InvN is trivial if f is one-to-one, and also holds for general continuous maps:

    Proposition 4.2(Franks&Richeson[12]) If f is a continuous selfmap on compact metric space X, and N is a compact subset of X, then

    Definition 4.3 A compact set N is called an isolating neighborhood if InvN ?intN.A set S is called an isolated invariant set if there exists an isolating neighborhood N with S =InvN.

    Suppose that m is the level of (X,f). Notice that Aiand Rimay be intersected, i.e.,Ai∩Ri/= ?(0 ≤i ≤m), but the interior is always disjoint. At this case, the isolating neighborhoods do not exist, so both Aiand Riare obviously not isolated invariant sets.

    For instance, suppose that f is an m-renormalizable topologically expansive Lorenz map or an m-renormalizable unimodal map without homtervals.According to Example 2.3, if m is infinite, then both Aiand Riare isolated invariant sets for any 1 ≤i <m; if m is finite,then both Aiand Riare isolated invariant sets for 1 ≤i ≤m-1, but Amand Rmmay be intersected.

    Conley put forward the decomposition of isolated invariant set that are consistent with concept of isolating neighborhood and obtained a Lyapunov function, which is called Conley’s fundamental decomposition theorem [5]. In fact, X is decomposable when f ∈F is not topologically transitive on X, but X is not an isolated invariant set since we can not find an isolating neighborhood N such that X ?intN. Hence,we slightly modify Conley’s fundamental decomposition theorem.

    Now, V(x) -V(fn(x)) = 0 if and only if h(fm(x)) -h(fm+n(x)) = 0 for all m ≥0, i.e.,h(fm(x))=a constant for all m ≥0. This implies that ω(x)∩(A∪R)=?,which contradicts with the definition of connecting orbits. Thus V(x)-V(fn(x))>0, and conclusion (3) holds.When A ∩R=?, this implies L=?and V(x) is defined on the whole space X. It is clear that g(x)and h(x)is continuous,hence V(x)is a continuous function, and conclusion(4)is verified.The proof is complete. □

    Conley[5]extented fundamental decomposition theorem to Morse decomposition via Morse sets, and emphasized that Morse sets are disjoint compact invariant sets. However, when Aiand Ri(0 ≤i ≤m) are intersected, Aiis clearly not an isolated invariant set, but Aimay still be decomposable. Hence we slightly modify the definition of Morse sets and obtain the weak Morse decomposition of X via leveled A-R decomposition. Observe that weak Morse decomposition of X is more delicate, and this is almost the same as Morse decomposition of isolated invariant set when Ai∩Ri=?for any 0 ≤i ≤m.

    Definition 4.6 A weak Morse decomposition of X is a collection of interior disjoint compact invariant sets, called weak Morse sets,

    Proof Observe that if m = 0, then MD= {M0= X} is the simplest weak Morse decomposition. When m = 1, the result MD= {M0= R1,M1= A1} is the same as Lemma

    Now, V(x) -V(fn(x)) = 0 if and only if h(fm(x)) -h(fm+n(x)) = 0 for all m ≥0, i.e.,h(fm(x)) =a constant for all m ≥0. This implies that ω(x)∩MD= ?, which contradicts with the definition of connecting orbits. Thus V(x)-V(fn(x))>0, and conclusion (4) holds.When L=?and V(x)is defined on X. It is clear that g(x)and h(x) is continuous,hence V(x)is a continuous Lyapunov function, and conclusion (5) is verified.

    As for(6),?x ∈XL,we can obtain a value V(x)∈[0,1]. If V(x)=0,x ∈MmL=AmL and x belongs to the attractor, then according to Theorem A, α(x) = X. If V(x) = 1/2j(0 ≤j ≤m-1), then x ∈MjL, and according to Theorem A,α(x)=Ri+1. Furthermore, all the points in X MDare divided into m different connecting orbits. If V(x)∈(1/2j+1,1/2j),0 ≤j ≤m-1, then x ∈Cj. By the definition of connecting orbit, α(x)=Ri+1. Hence we can characterize the α-limit set of each point in X L via V(x). □

    Let f be an m-renormalizable expansive Lorenz map or an m-renormalizable unimodal map without homtervals. If m is finite, Amis the topological attractor,and fmis topologically transitive on Am. According to Example 2.3, there exists possibility such that Am∩Rm/= ?,but the interior is always disjoint. If Am∩Rm/= ?, then V(x) of f is not continuous; if Am∩Rm=?, then V(x) of f is continuous.

    国产色爽女视频免费观看| 脱女人内裤的视频| 日本一本二区三区精品| 熟女少妇亚洲综合色aaa.| 色视频www国产| 久久精品国产99精品国产亚洲性色| 在线免费观看不下载黄p国产 | 免费在线观看影片大全网站| 日韩欧美 国产精品| 亚洲自拍偷在线| avwww免费| 黄片小视频在线播放| 色吧在线观看| 国产一区二区亚洲精品在线观看| 亚洲欧美一区二区三区黑人| 夜夜爽天天搞| 久久久久久国产a免费观看| 亚洲美女黄片视频| 波野结衣二区三区在线 | 人妻夜夜爽99麻豆av| 日本熟妇午夜| 日本在线视频免费播放| 色综合欧美亚洲国产小说| 亚洲第一电影网av| 啦啦啦韩国在线观看视频| 日韩欧美在线乱码| 一个人看视频在线观看www免费 | 亚洲aⅴ乱码一区二区在线播放| 老鸭窝网址在线观看| 欧美色视频一区免费| 无人区码免费观看不卡| 欧美日韩亚洲国产一区二区在线观看| 国内久久婷婷六月综合欲色啪| 天堂网av新在线| 色综合婷婷激情| 久久精品亚洲精品国产色婷小说| 伊人久久精品亚洲午夜| 熟女电影av网| 国产精品久久久久久亚洲av鲁大| 一区福利在线观看| 亚洲内射少妇av| 日韩欧美免费精品| 中国美女看黄片| 一进一出抽搐动态| 亚洲av不卡在线观看| 欧美大码av| 日韩欧美在线乱码| 男女下面进入的视频免费午夜| 一进一出好大好爽视频| 亚洲精品国产精品久久久不卡| 国产黄色小视频在线观看| a在线观看视频网站| 国产精品美女特级片免费视频播放器| 欧美丝袜亚洲另类 | 一个人免费在线观看的高清视频| 亚洲国产精品成人综合色| 欧美成狂野欧美在线观看| 夜夜夜夜夜久久久久| 黄色丝袜av网址大全| 亚洲中文日韩欧美视频| 国产毛片a区久久久久| 麻豆成人av在线观看| 国产爱豆传媒在线观看| 亚洲精品一区av在线观看| 一进一出好大好爽视频| av在线天堂中文字幕| 日本 欧美在线| 国产成人aa在线观看| 欧美另类亚洲清纯唯美| 看黄色毛片网站| 亚洲成av人片在线播放无| 精品不卡国产一区二区三区| 97碰自拍视频| 国产蜜桃级精品一区二区三区| 国产精品一区二区三区四区久久| АⅤ资源中文在线天堂| 欧美性感艳星| 国产亚洲精品久久久com| 亚洲人与动物交配视频| 人妻久久中文字幕网| 国产高清三级在线| 一区二区三区国产精品乱码| 在线播放无遮挡| 一本综合久久免费| 国产黄片美女视频| 成人特级黄色片久久久久久久| 国产三级中文精品| 久久久久久久久大av| 听说在线观看完整版免费高清| 男女视频在线观看网站免费| 成人av在线播放网站| 成人亚洲精品av一区二区| 看免费av毛片| 欧美不卡视频在线免费观看| 91久久精品电影网| 最好的美女福利视频网| 黄片小视频在线播放| 51午夜福利影视在线观看| 久久午夜亚洲精品久久| 亚洲欧美精品综合久久99| 国产伦精品一区二区三区四那| 国产精品99久久99久久久不卡| av天堂在线播放| 五月玫瑰六月丁香| 亚洲aⅴ乱码一区二区在线播放| bbb黄色大片| 精品久久久久久久久久久久久| 亚洲成av人片在线播放无| 动漫黄色视频在线观看| 一级a爱片免费观看的视频| АⅤ资源中文在线天堂| 夜夜爽天天搞| 色视频www国产| av专区在线播放| 麻豆成人av在线观看| 亚洲国产精品sss在线观看| 日本精品一区二区三区蜜桃| 女人十人毛片免费观看3o分钟| 18禁黄网站禁片午夜丰满| 国产高清videossex| 国产色婷婷99| 亚洲在线观看片| 精品久久久久久久人妻蜜臀av| 在线国产一区二区在线| 999久久久精品免费观看国产| 亚洲成人中文字幕在线播放| 国产精品自产拍在线观看55亚洲| www.www免费av| 一级黄片播放器| 日本黄色片子视频| 性欧美人与动物交配| 99久久成人亚洲精品观看| 两个人看的免费小视频| 日韩国内少妇激情av| 人妻夜夜爽99麻豆av| 久久婷婷人人爽人人干人人爱| 成年女人永久免费观看视频| 亚洲黑人精品在线| 非洲黑人性xxxx精品又粗又长| 欧美大码av| 久久久久国产精品人妻aⅴ院| 亚洲精品亚洲一区二区| 88av欧美| 亚洲国产精品成人综合色| 国产视频内射| 国产精品野战在线观看| 国产精品久久久久久久电影 | 国产精品久久视频播放| 蜜桃亚洲精品一区二区三区| 成人欧美大片| 久久精品91蜜桃| 一a级毛片在线观看| 乱人视频在线观看| 熟女人妻精品中文字幕| 人妻丰满熟妇av一区二区三区| 精品福利观看| av中文乱码字幕在线| 国产av不卡久久| 一边摸一边抽搐一进一小说| 中出人妻视频一区二区| 黄片小视频在线播放| 亚洲黑人精品在线| 欧美中文日本在线观看视频| 丁香六月欧美| 身体一侧抽搐| 久久中文看片网| 亚洲黑人精品在线| 桃色一区二区三区在线观看| 国产激情偷乱视频一区二区| 亚洲国产高清在线一区二区三| 国产主播在线观看一区二区| 搡老妇女老女人老熟妇| 精品无人区乱码1区二区| 成人欧美大片| 国产99白浆流出| 成人一区二区视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国内少妇人妻偷人精品xxx网站| 午夜免费观看网址| 亚洲黑人精品在线| 老司机福利观看| 欧美乱色亚洲激情| 亚洲精品一区av在线观看| 欧美一区二区国产精品久久精品| 18禁黄网站禁片午夜丰满| 国产av一区在线观看免费| 99久久九九国产精品国产免费| www日本黄色视频网| 欧美性猛交╳xxx乱大交人| 一级黄片播放器| 亚洲中文日韩欧美视频| 久久久久久人人人人人| 亚洲熟妇熟女久久| 日本一二三区视频观看| 黄色丝袜av网址大全| 在线观看66精品国产| 丰满的人妻完整版| 欧美成人一区二区免费高清观看| 亚洲国产中文字幕在线视频| www日本在线高清视频| 欧美av亚洲av综合av国产av| 久久久久久大精品| 麻豆成人午夜福利视频| 亚洲在线观看片| 国产一级毛片七仙女欲春2| 高清日韩中文字幕在线| 亚洲五月天丁香| 日本三级黄在线观看| 一个人看的www免费观看视频| 美女大奶头视频| 听说在线观看完整版免费高清| 中文字幕精品亚洲无线码一区| 麻豆一二三区av精品| 午夜福利高清视频| 亚洲精品粉嫩美女一区| 在线观看免费午夜福利视频| 国产精品野战在线观看| 老熟妇仑乱视频hdxx| 亚洲av免费在线观看| www.www免费av| 国产又黄又爽又无遮挡在线| 午夜两性在线视频| 日韩欧美一区二区三区在线观看| 午夜福利在线观看吧| 欧美国产日韩亚洲一区| av天堂中文字幕网| 国产精品久久久人人做人人爽| 免费搜索国产男女视频| 国产久久久一区二区三区| 老司机在亚洲福利影院| 国产主播在线观看一区二区| 最近最新免费中文字幕在线| 国产在视频线在精品| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产亚洲av香蕉五月| 亚洲黑人精品在线| 国产精品 欧美亚洲| 婷婷精品国产亚洲av| 亚洲美女视频黄频| 夜夜爽天天搞| av黄色大香蕉| 亚洲一区二区三区色噜噜| 天堂动漫精品| 亚洲成av人片免费观看| 夜夜躁狠狠躁天天躁| 悠悠久久av| 露出奶头的视频| 久久精品国产99精品国产亚洲性色| 久久久久国产精品人妻aⅴ院| avwww免费| 在线观看午夜福利视频| 最近最新中文字幕大全电影3| 一区二区三区激情视频| 国产国拍精品亚洲av在线观看 | 国产伦精品一区二区三区四那| 又粗又爽又猛毛片免费看| 听说在线观看完整版免费高清| 欧美3d第一页| 婷婷亚洲欧美| 精品国产美女av久久久久小说| 午夜免费激情av| 高潮久久久久久久久久久不卡| 久久精品人妻少妇| 极品教师在线免费播放| 美女高潮的动态| 少妇熟女aⅴ在线视频| 丰满的人妻完整版| 真人一进一出gif抽搐免费| 午夜视频国产福利| 亚洲乱码一区二区免费版| 69人妻影院| 久久久久精品国产欧美久久久| 成年女人看的毛片在线观看| 久久精品影院6| xxxwww97欧美| 成人国产综合亚洲| 久久精品国产清高在天天线| 久久久国产成人免费| 亚洲国产欧美网| 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 午夜久久久久精精品| 欧美日韩黄片免| 成年女人永久免费观看视频| 国产97色在线日韩免费| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 一本久久中文字幕| 国内精品久久久久精免费| 国产极品精品免费视频能看的| 亚洲精品影视一区二区三区av| 很黄的视频免费| 亚洲最大成人中文| 婷婷六月久久综合丁香| 久久午夜亚洲精品久久| 亚洲中文日韩欧美视频| 91av网一区二区| 在线观看午夜福利视频| 亚洲av成人精品一区久久| 好男人电影高清在线观看| 欧美日韩乱码在线| 欧美日韩亚洲国产一区二区在线观看| 国产亚洲精品久久久久久毛片| 亚洲内射少妇av| 成人鲁丝片一二三区免费| 亚洲国产精品合色在线| 国产精品一及| 亚洲人与动物交配视频| 老司机深夜福利视频在线观看| 久久久成人免费电影| 真人一进一出gif抽搐免费| 中文资源天堂在线| 午夜福利欧美成人| 成人无遮挡网站| 国产精品野战在线观看| 亚洲成人中文字幕在线播放| 最后的刺客免费高清国语| 看免费av毛片| 日韩欧美国产一区二区入口| 一夜夜www| 日本三级黄在线观看| 日本黄大片高清| 精品久久久久久久毛片微露脸| 欧美3d第一页| 一个人看的www免费观看视频| 波多野结衣高清作品| 久久久久性生活片| 又黄又粗又硬又大视频| 婷婷六月久久综合丁香| 精品一区二区三区视频在线 | 极品教师在线免费播放| 国产精品永久免费网站| 日韩人妻高清精品专区| 亚洲av一区综合| 天堂影院成人在线观看| 日韩精品青青久久久久久| 91久久精品国产一区二区成人 | 国产精品影院久久| 女人十人毛片免费观看3o分钟| 久久久精品大字幕| 欧美日本亚洲视频在线播放| 午夜福利在线观看吧| 波多野结衣巨乳人妻| 国内揄拍国产精品人妻在线| 精品熟女少妇八av免费久了| 久久久久国产精品人妻aⅴ院| 亚洲国产欧洲综合997久久,| 久久久国产成人精品二区| 亚洲成人免费电影在线观看| 乱人视频在线观看| 99久久成人亚洲精品观看| 久久精品人妻少妇| 亚洲精华国产精华精| 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 亚洲国产色片| 欧美激情久久久久久爽电影| www.999成人在线观看| 欧美丝袜亚洲另类 | 法律面前人人平等表现在哪些方面| 亚洲成人久久性| 91久久精品国产一区二区成人 | 久久久久亚洲av毛片大全| 天天躁日日操中文字幕| 中文字幕av在线有码专区| 99久久精品热视频| 很黄的视频免费| 欧美日韩综合久久久久久 | 国产伦精品一区二区三区四那| 欧美bdsm另类| av女优亚洲男人天堂| 国产毛片a区久久久久| 国产亚洲欧美在线一区二区| 亚洲男人的天堂狠狠| 国产精品综合久久久久久久免费| 丝袜美腿在线中文| 成人精品一区二区免费| 免费av毛片视频| 夜夜夜夜夜久久久久| 精品国产超薄肉色丝袜足j| 性色av乱码一区二区三区2| 啦啦啦观看免费观看视频高清| 色噜噜av男人的天堂激情| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 亚洲国产欧美人成| 欧美国产日韩亚洲一区| 久久国产精品影院| 五月玫瑰六月丁香| 亚洲精品456在线播放app | 久久精品91无色码中文字幕| 一级毛片高清免费大全| 国产精品香港三级国产av潘金莲| 日韩有码中文字幕| 成年版毛片免费区| 天天添夜夜摸| 真实男女啪啪啪动态图| 国产精品香港三级国产av潘金莲| 51国产日韩欧美| 亚洲专区国产一区二区| 欧美性感艳星| 99精品在免费线老司机午夜| 99久久精品热视频| 色视频www国产| 亚洲成人久久性| 色精品久久人妻99蜜桃| 国产熟女xx| 一二三四社区在线视频社区8| 99久国产av精品| 日韩人妻高清精品专区| 99riav亚洲国产免费| 中文字幕高清在线视频| 在线免费观看的www视频| 亚洲av不卡在线观看| 久久欧美精品欧美久久欧美| 久久性视频一级片| 欧美不卡视频在线免费观看| 国产精品自产拍在线观看55亚洲| 精品久久久久久久久久免费视频| 一a级毛片在线观看| 老司机午夜十八禁免费视频| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人综合色| 韩国av一区二区三区四区| 久久精品影院6| 天堂影院成人在线观看| av国产免费在线观看| 很黄的视频免费| 1000部很黄的大片| 一区二区三区免费毛片| 欧美绝顶高潮抽搐喷水| 午夜福利免费观看在线| 人妻丰满熟妇av一区二区三区| 亚洲美女视频黄频| 又爽又黄无遮挡网站| 国产乱人视频| 国产亚洲av嫩草精品影院| 黄色日韩在线| 国产三级黄色录像| 精品人妻一区二区三区麻豆 | 97碰自拍视频| 久久午夜亚洲精品久久| 亚洲专区国产一区二区| 亚洲欧美一区二区三区黑人| 成人精品一区二区免费| 国产高清视频在线观看网站| 国产久久久一区二区三区| 亚洲国产精品sss在线观看| 国产成人aa在线观看| 国产一区二区三区视频了| 欧美黑人巨大hd| 欧美乱码精品一区二区三区| 五月玫瑰六月丁香| 高清在线国产一区| 男人舔女人下体高潮全视频| 国产成人欧美在线观看| 国产一区二区三区视频了| 欧美xxxx黑人xx丫x性爽| 老司机深夜福利视频在线观看| a级毛片a级免费在线| 精品国内亚洲2022精品成人| 高清日韩中文字幕在线| 久久久久精品国产欧美久久久| 久久国产乱子伦精品免费另类| av女优亚洲男人天堂| 日本黄色视频三级网站网址| 午夜福利在线观看吧| 久久久久国产精品人妻aⅴ院| 亚洲av一区综合| 中文字幕av在线有码专区| 国产成人福利小说| 人妻丰满熟妇av一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲久久久久久中文字幕| 搡老岳熟女国产| 狂野欧美激情性xxxx| 日本五十路高清| 女警被强在线播放| 色哟哟哟哟哟哟| www.www免费av| 又紧又爽又黄一区二区| 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 狠狠狠狠99中文字幕| 欧美绝顶高潮抽搐喷水| 免费大片18禁| 在线观看舔阴道视频| 噜噜噜噜噜久久久久久91| 成人精品一区二区免费| 国产一区二区亚洲精品在线观看| 看免费av毛片| 长腿黑丝高跟| 看免费av毛片| 九色成人免费人妻av| 夜夜躁狠狠躁天天躁| 日本精品一区二区三区蜜桃| 国产高清三级在线| 黄片小视频在线播放| 久久国产精品人妻蜜桃| 亚洲激情在线av| 99久久成人亚洲精品观看| www.色视频.com| 欧美国产日韩亚洲一区| 男人舔女人下体高潮全视频| 国产v大片淫在线免费观看| 无遮挡黄片免费观看| 夜夜夜夜夜久久久久| 日本与韩国留学比较| 国产日本99.免费观看| 国产精品影院久久| av片东京热男人的天堂| 国产午夜精品久久久久久一区二区三区 | 深夜精品福利| 国产精品一区二区免费欧美| 亚洲国产欧洲综合997久久,| 亚洲国产精品久久男人天堂| 国产精品香港三级国产av潘金莲| 久久久国产成人精品二区| 午夜影院日韩av| 欧美3d第一页| 精华霜和精华液先用哪个| 国内精品久久久久久久电影| 国内少妇人妻偷人精品xxx网站| 操出白浆在线播放| 97碰自拍视频| 夜夜夜夜夜久久久久| 精品久久久久久,| 亚洲第一欧美日韩一区二区三区| 美女大奶头视频| 亚洲av电影不卡..在线观看| 亚洲美女视频黄频| 精品久久久久久久久久久久久| 宅男免费午夜| 高潮久久久久久久久久久不卡| 哪里可以看免费的av片| 怎么达到女性高潮| 国产精品三级大全| 久久久久久久久中文| 天天添夜夜摸| 国产免费男女视频| 日韩av在线大香蕉| 欧美日韩精品网址| 日韩高清综合在线| 日本黄色视频三级网站网址| 最近在线观看免费完整版| 久久久久久九九精品二区国产| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久亚洲av鲁大| 美女高潮的动态| 在线观看一区二区三区| 在线播放国产精品三级| 午夜免费观看网址| 欧美一级a爱片免费观看看| 变态另类丝袜制服| 日日摸夜夜添夜夜添小说| 丰满乱子伦码专区| 久久精品亚洲精品国产色婷小说| 91久久精品国产一区二区成人 | www.色视频.com| 夜夜躁狠狠躁天天躁| 久久久久久国产a免费观看| 香蕉久久夜色| 免费人成视频x8x8入口观看| 国产精品1区2区在线观看.| 日本一二三区视频观看| 国产高清视频在线播放一区| 亚洲欧美激情综合另类| 成人三级黄色视频| 内地一区二区视频在线| 免费av毛片视频| 人妻丰满熟妇av一区二区三区| 琪琪午夜伦伦电影理论片6080| netflix在线观看网站| 性色av乱码一区二区三区2| 网址你懂的国产日韩在线| 日韩欧美精品免费久久 | 亚洲精品一区av在线观看| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影| 久久久久久久亚洲中文字幕 | 国产黄色小视频在线观看| 网址你懂的国产日韩在线| 国产亚洲av嫩草精品影院| 大型黄色视频在线免费观看| 日本黄色片子视频| 久久精品夜夜夜夜夜久久蜜豆| 午夜久久久久精精品| 有码 亚洲区| 成人永久免费在线观看视频| 日韩av在线大香蕉| 亚洲电影在线观看av| 国产精品美女特级片免费视频播放器| 日本与韩国留学比较| 尤物成人国产欧美一区二区三区| 麻豆国产97在线/欧美| 岛国在线观看网站| 国产精华一区二区三区| 91久久精品电影网| 狂野欧美激情性xxxx| 他把我摸到了高潮在线观看| 天堂网av新在线| 听说在线观看完整版免费高清| 欧美不卡视频在线免费观看| 久久九九热精品免费| 91字幕亚洲| 色综合欧美亚洲国产小说| 黄片小视频在线播放| 少妇的逼水好多| 欧美日韩乱码在线| 中文亚洲av片在线观看爽| 最近在线观看免费完整版| 最好的美女福利视频网| 国产精品 欧美亚洲| 亚洲内射少妇av| 一个人看视频在线观看www免费 |