• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metabolism and thermoregulation between Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (S. ellioti)

    2011-12-25 06:39:46LUOYingYUTaiLinHUANGChengMingZHAOTongLIHanHuaLIChangJian
    Zoological Research 2011年4期
    關(guān)鍵詞:基礎(chǔ)代謝率代謝率產(chǎn)熱

    LUO Ying, YU Tai-Lin, HUANG Cheng-Ming, ZHAO Tong, LI Han-Hua, LI Chang-Jian

    (1. Department of Life Science and Chemistry, University of Science and Engineering, Yongzhou 425600, China; 2. College of Life Science, Guangxi Normal University, Guilin 541004, China; 3. Institute of Zoology, the Chinese Academy of Sciences, Beijing 100101, China)

    Metabolism and thermoregulation between Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (S. ellioti)

    LUO Ying1, YU Tai-Lin2,*, HUANG Cheng-Ming3,*, ZHAO Tong2, LI Han-Hua2, LI Chang-Jian1

    (1. Department of Life Science and Chemistry, University of Science and Engineering, Yongzhou 425600, China; 2. College of Life Science, Guangxi Normal University, Guilin 541004, China; 3. Institute of Zoology, the Chinese Academy of Sciences, Beijing 100101, China)

    To understand metabolic adaptations, the basal metabolic rate (BMR) of Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (Syrmaticus ellioti) were investigated. Metabolic rate (MR), body temperature (Tb) and thermal conductance (C) were determined in both species at a temperatrue range of 5 ? 35 ℃, respectively. Oxygen consumption was measured with a closed circuit respirometer. The thermal neutral zones (TNZ) were 24.5 ? 31.6℃, and 23.0 ?29.2 ℃, respectively. With a temperature range of 5 ? 35 ℃, Mrs Hume’s Pheasant and Elliot’s Pheasant could maintained stable Tbat a mean of (40.47±0.64) and (40.36±0.10) ℃, respectively. Mean BMRs within TNZs were (1.36±0.84) mLO2/(g·h) for Mrs Hume’s Pheasant and (2.03±0.12) mLO2/(g·h) for Elliot’s Pheasant, which were 77% and 86% of the expected value based on their body mass, respectively. Thermal conductance of Mrs Hume’s Pheasant and Elliot’s Pheasant were (0.12±0.01) and (0.17±0.01) mLO2/(g·h·℃), below the lower critical temperature, respectively, which were 119% and 124% of the expected value based on their body mass, respectively. The ecophysiological characteristics of these species were low metabolic rate, high body temperature, and high thermal conductance, which allow both species to better adapt to the warmer climate environment in south China.

    Syrmaticus humiae;Syrmaticus ellioti; Body temperature; Basal metabolic rate; Thermal conductance

    Metabolism is one of the most basic animal characteristics, going with energy flowing and information communion in the course of substance metabolism. Metabolism is a major factors in all life processes, including energy utilization, and important part of life history (Williams & Tieleman, 2000). Bird metabolism affects distribution and abundance, which are considered major survival countermeasures (Weathers, 1997; Lovegrove, 2003). Basal metabolic rate (BMR) is the rate of energy transformation in a rested, awake and fasted state in the absence of thermal stress, and is the minimum metabolic rate of animals maintaining normal physiological function. It is important parameters of energy metabolism comparison (Jessen, 2001). The use of BMR as an index of energy expenditure has received a great deal of attention from environmental physiologists, ecophysiologists and comparative physiologists (Reynolds & Lee, 1996).

    Comparative physiological ecology is important for developing general rules about birds through comparison. Most basal rate variation in bird metabolism can be explained by the combined influences of body size, phylogeny, climate condition, activity and feeding habits (McNab, 2000; McKechnie & Wolf, 2004; Canterbury, 2002; Weathers, 1979). Comparing small birds from different habitats and with different habits highlights, the ecological significance of BMRs (Rezende et al, 2002) is shown. Take the small-sized birds living in cold environments as an example, though feather growth is limited due to body size, they can resist the cold by increasing heat production (Stokkan, 1992; Liknes et al, 2002); birds living in high latitude temperate zones remain active in winter, mainly through behavioral, formal and physiology mechanical changes (Corp et al, 1997); and birds retain hypothermia in tropical areas (Weathers, 1997).

    Mrs Hume’s Pheasant (Syrmaticus humiae) and Elliot’s Pheasant (Syrmaticus ellioti) are threatenedSymmaticus,Phasianidae,Galliformesspecies (Baillie et al, 2004), within Cenwanglaoshan Nature Reserve in China, they are National level protected animals (Zhang et al, 2003). In China, Mrs Hume’s Pheasant is only found in Yunnan and Guangxi provinces, but are also found in Northeast India, Northwest Thailand, and the west, north and east Burma. It is a typical species for the southwest subregion mountain areas of the Oriental Realm (Liu et al, 2008). Mrs Hume’s Pheasant mainly inhabit broad-leaved forest at an altitude of 780?1 800 m, mixed coniferous broad-leaved forest, scrub woodland, grassland and forest edge areas. It is omnivorous, mainly eating acorns, berries, seeds, roots, leaves, buds and other plant food. It also eats insects and other animalbased food, and occasionally targets cultivated crops at the forest edge (Mackinnon et al, 2000). Elliot’s Pheasant, a species peculiar to China, is distributed in Zhejiang, Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Guizhou provinces. It is a typical species of eastern hilly subregion in Central China of the Oriental Realm (Shi & Zheng, 1997). Elliot’s Pheasant mainly inhabit rugged mountains and the jungle of valleys at an altitude of 200 ? 1 500 m, more commonly in mixed coniferous broad-leaved forests. It can also be found in dense bamboo and understory. It is omnivorous, mainly eating plant leaves, stems, buds, flowers, fruits, seeds and other plant food crops, athough it also eats insects and other animal-based food (Mackinnon et al, 2000). While limited work has been done on habitat selection and artificial propagation of the two species, no research has been conducted on their energy metabolism. The purpose of this study was to measure the BMR of the two endangered species and research their adaptability to the warm wet climate of Southeast and Southwest China.

    1 Materials and Methods

    1.1 Animals

    Six Mrs Hume’s Pheasants (3 males, 3 females) and 6 Elliot’s Pheasants (3 males, 3 females) hatched in May 2010 were housed at the Biological Park of Guangxi Normal University. The birds were kept in a closed aviary (95.0 cm × 45.0 cm × 45.0 cm) where the temperature was maintained at approximately 38°C in the first two weeks of their life, and at approximately 35°C in the following two weeks. After one month of age, the birds spent most of the day in open aviaries (5.4 m×2.8 m×1.9 m) , which allowed free movement and feeding (food and water suppliedadlimbitum). The experiments were carried out in July 2010 when the birds were 80 days old, the mean body mass of Mrs Hume’s Pheasant and Elliot’s Pheasant were (398.83±22.93) g and (388.25±14.58) g, respectively.

    1.2 Metabolic trials

    Oxygen consumption was measured using a closed circuit respirometer (Górecki, 1975). Temperatures in a water bath inside the animal chambers were measured and maintained at a constant level (to ± 0.5 °C). Volume of the metabolic chamber was 5.8 L. Oxygen consumption rates were measured over a temperature range of 5 ? 35 °C, with each trial conducted 45 min after the animals had been in the metabolic chamber for 1 h to stabilize its environment. Food was removed 15 h before each test to minimize the heat increment of feeding and animals were weighed to the nearest ± 0.1 g. Both H2O and CO2were absorbed by silica gel and NaOH. Recording of oxygen consumption due to animal activity in the chamber were discarded when computing the metabolic rate of each individual. All measurements were made daily between 8:00 and 15:00. The metabolic rates (MR) of birds were measured in the rest phase under natural light conditions. The birds were wrapped with gauze to restrict their activities. Reading interval of O2consumption was 5 min. Two consecutive, stable and minimum recording were used to calculate metabolic rates as mLO2/(g·h). Body temperatures (Tb) of all individuals were recorded before and after each measurement, and Tbwas measured with a digital thermometer (Beijing Normal University Instruments Co.) in the cloaca at a depth of 1.5 cm. Body mass was measured before and after the experiments.

    1.3 Thermal conductance

    Over thermal conductance (C, mLO2/g·h·°C) was calculated at temperature below the thermal neutral zone using the formula as:

    Where MR is metabolic rate (mLO2/g·h), Tais ambient temperature (°C),Tbis body temperature (°C). This formula was suggested by Aschoff (1981) for calculating conductance at any givenTa.

    Aschoff & Pohl (1970) reviewed the BMRs of bird species, and obtained the allometric equations for birds. Expectation ration ofBMRandCpredicted by the appropriate equation of Aschoff & Pohl (1970 ) and Aschoff (1981), respectively, uses the following formulas:

    1.4 Statistics

    Data were analyzed using the SPSS11.5 statistical package. Differences between temperature treatments were determined by repeated measures ANOVA andP<0.05 is taken to be statistically significant. All results were expressed as mean±SE, and linear regression analysis was used to analyze the relationship between energetic parameters andTa.

    2 Results

    2.1 Mrs Hume’s Pheasant

    Mean Tbof Mrs Hume’s Pheasant ranged from a mean of (40.6±0.07) ℃ at 24.5 ℃ to (41.4±0.11) ℃ at 35 ℃. The Tbof Mrs Hume’s Pheasant remained almost constant from 5 to 35℃ Tas, with a mean value of (40.47±0.64) ℃ (Fig. 1a).

    Fig. 1 Changes in body temperature(a), metabolic rate(b) and thermal conductance(c) with ambient temperature in Mrs Hume’s Pheasant

    There was no significant difference for metabolic rates between 24.5 ℃ and 31.6 ℃ (Fig. 1b). The thermal neutral zone (TNZ) was from 24.5℃ to 31.6 ℃. Mean BMR was (1.36±0.84) mLO2/(g·h) (n= 24). Metabolic rates between 20 ℃ and 24.5 ℃ showed a significant difference (t= 4. 148,df= 28,P= 0.000<0.0001), with the difference between 31.6 ℃ and 35 ℃ also significant (t= 6.473,df= 28,P= 0.000<0.0001). The metabolism rate was variable at temperatures below 24.5℃ and dependent onTa.

    Thermal conductance (C) was calculated as (0.12± 0.01) mLO2/(g·h·℃) which was 119% of the predicted value by Aschoff (1981). Within and above the TNZ,Cincreased significantly withTa, and reached to (0.37± 0.03) mLO2/(g·h·℃) at 35 ℃ (Fig. 1c).

    2.2 Elliot’s Pheasant

    Elliot’s Pheasant maintained stableTbs withinTarange of 5 ? 35℃, at which the meanTbwas (40.36± 0.10) ℃ (Fig. 2a).

    Fig. 2 Changes in body temperature(a), metabolic rate(b) and thermal conductance(c) with ambient temperature in Elliot’s Pheasant

    There was no significant difference for metabolic rates between 23 and 29.2℃ (Fig. 2b). The thermal neutral zone (TNZ) was from 23 to 29.2 ℃. MeanBMRwas (2.03±0.12) mLO2/(g·h) (n= 18). Metabolic rates between 20 and 23 ℃ showed a significant difference (t= 4.690,df= 22,P= 0.000<0.0001), with the difference between 29.2 ℃ and 33 ℃ also significant (t= 3.407,df= 22,P= 0.03<0.05). Rate of metabolism was variable at temperature below 23℃ and dependent onTa.

    Thermal conductance (C) was calculated as (0.17± 0.01) mLO2/(g·h·℃), which was 124% of the predicted value by Aschoff (1981). Within and above the TNZ,Cincreased significantly withTa, and reached to (0.44± 0.06) mLO2/(g·h·℃) at 35 ℃ (Fig. 2c).

    3 Discussion

    3.1 Body temperature

    The samples collected in this experiment were relatively small. According to Zhao (2009), the body temperature of Mrs Hume’s Pheasant and Elliot’s Pheasant nestings changes with ages. Specifically at 60 days of age the body temperature of the two nestlings fluctuates, while after 60 days of age body temperature stabilizes close to the adult level. This shows that the ability of chemical thermoregulation of Mrs Hume’s Pheasant and Elliot’s Pheasant is developed to stablity level after being hatched for a certain age, usually about 60 days, which is consistent with previous studies onTragopan caboti(Li et al, 1993). Therefore, we measured the metabolites of 80-day-old Mrs Hume’s Pheasant and Elliot’s Pheasant.

    Fig. 3 Changes in body temperature with age in nestling of Mrs Hume’s Pheasant and Elliot’s Pheasant

    Compared with mammals, birds have relatively high Tbs, due to higher energy metabolism needed for bird flight (Prinzinger et al, 1991). Birds can usually maintain body temperature at 40 ? 42 ℃, and in the TNZ, most birds have a Tbof 38.4 ℃. In this study, the Tbs of Mrs Hume’s Pheasant (40.47 ℃) and Elliot’s Pheasant (40.36℃) were higher thanCrossoptilon mantchuricum(38.7℃) andLyruruste trix baikallensis(39.5 ℃)(Jia et al, 2003; Zhang et al, 2001), similar toCoturnix coturnix(41.5 ℃) andAcridotheres cristatellus(41.4 ℃)(Wang & Zhang, 1986; Lin et al, 2010), but lower thanErythrura gouldiae(42.7 ℃)(Burton & Weathers, 2003). This has great adaptive significance because the high Tbincreases the temperature difference between the body and their environments and increases the ability to dissipate heat in summer (McNab, 2000).

    3.2 Basal metabolic rate (BMR)

    Many factors affect basal metabolism in birds, such as body mass, climate condition, food habits, season, activity and feeding habits (AL-Mansour, 2004; Weathers, 1979; Liknes et al, 2002; McKechnie &Wolf, 2004; McNab, 1988). In this study, the BMR of Mrs Hume’s Pheasant and Elliot’s Pheasant were 77% and 86% of the expected value from Ashoff & Pohl (1970), respectively (Tab. 1). The BMRs of Mrs Hume’s Pheasant and Elliot’s Pheasant were lower thanPrunella rubeculoides(115%)(Deng & Zhang, 1990),Prunella montanella(168%)(Liu et al, 2004a), andFringilla montifringilla(135%)(Liu et al, 2004b); but close toErythrura gouldiae(81%)(Burton & Weathers, 2003),Estrida melpodaandChloebia gouldiae(82% and 80% respectively)(Marschall & Prinzinger, 1991), andPycnonotus sinensisandSturnus sericeus(79% and 90% respectively) (Zhang et al, 2006).Prunella rubeculoideslive in the Qinghai-Tibet Plateau, which experience an average summer temperature of 8.7 ℃;Prunella montanellaandFringillamontif ringillabreed in Siberia and other northern regions, whose heat regulation has obvious high altitudes and cold animals metabolic characteristics.Erythrura gouldiaelives in California and other hot and humid regions, where the average winter temperature is 24.4℃;Estrida melpodaandChloebia gouldiaelive in the humid tropical environment;Pycnonotus sinensisandSturnus sericeuslive mainly in the tropical south and southern subtropical monsoon zone of China, and exhibit energy metabolism characteristics typical of tropical birds. The lower BMR of tropical birds is an adaptation to heat stress and water maintenance (Williams & Tieleman, 2000; Tieleman et al, 2002). The BMRs of Mrs Hume’s Pheasant (77%) were lower than Elliot’s Pheasant (86%), which may relate to the geographical and latitudinal distribution of the two birds as generally a 1℃ increase with latitude causes a 1% higher average metabolic rate (Zhang et al, 2001). Mrs Hume’s Pheasant and Elliot’s Pheasant show characterisitcs of southern humid zone animals, with their lower metabolic levels a strategy for adapting to the environment. In addition, these two different experimental birds were able to maintain constant body temperatures, that is, when the ambient temperature increased, the body temperature did not increase. To maintain a constant body temperature in a high-temperature environment is one reason why the metabolic rate was relatively low (Rozman et al, 2003; Schleucher, 2002).

    Tab. 1 Parameters of energetics in Mrs Hume’s Pheasant and Elliot’s Pheasant

    3.3 Thermal neutral zone

    The thermal neutral zone (TNZ) is difineas as the range of temperatrues where production of surplus heat is sufficient to compensate for heat loss, without regulatory changes in metabolic heat production or evaporative heat loss (McNamara et al, 2004). In the TNZ, metabolic rate is independent of Taand animals can regulate temperature by controlling heat loss instead of metabolic heat production and evaporative heat regulation (Schmidt-Nielsen, 1997). This study showed that the TNZ for Mrs Hume’s Pheasant was 24.5 ? 31.6 ℃ and for Elliot’s Pheasant was 23.0 ? 29.2 ℃ (Tab. 1). The lower critical temperatures of both these special were higher thanCrossoptilon mantchuricum(20 ℃)(Jia et al, 2003),Lyruruste trix baikallensis(20 ℃)(Zhang et al, 2001),Bombycilla garrulusandEmberiza spodocephala(18 ℃and 20 ℃ respectively)(Li et al, 2005); and similar toCoturnix coturnix(25℃)(Wang & Zhang, 1986), but were lower thanErythrura gouldiae(31.7 ℃)(Burton & Weathers, 2003), andAlaemon alaudipes(32.7℃) (Tieleman et al, 2002). A birds’ high thermal conductance and high temperature can increases both lower and the upper critical temperatures, thus reducing evaporative water loss and reduce energy consumption (Burton & Weathers, 2003). Both Mrs Hume’s Pheasant and Elliot’s Pheasant had high thermal conductivity and narrow TNZ, which is conducive to the protection of water evaporation and loss and it is an adaptive characteristics to help survive in hot and humid environments.

    3.4 Thermal conductance

    Overall conductance depends on body weight because of the size dependent changes in the ratio of surfacevolume, and the dependence of plumage thichness on size (Aschoff, 1981). In the present study, conductance of Mrs Hume’s Pheasant and Elliot’s Pheasant were (0.12±0.01) mLO2/(g·h·℃) and (0.17±0.01) mLO2/ (g·h·℃) (Tab. 1), which were 119% and 124% of the expected (Aschoff, 1981) values respectively. As the birds were 80 days old in the experiment and were still in the long feathers period, insulation was relatively poor, and therefor heat dissipation and thermal conductivity were relatively high. In addition, thermal conductivity (C) of birds in tropical areas is relatively high but is relatively low for bird in cold regions (Weathers, 1997) . For Mrs Hume’s Pheasant and Elliot’s Pheasant, the high C observed in summer is adaptation to the hot environment as it is conductive for high heat dissipation to avoid overheating.

    In short, the ecological characteristics of Mrs Hume’s Pheasant and Elliot’s Pheasant are in accordance with the metabolic characteristics of southern birds, that is higher body temperature, lower metabolic rate, and higher thermal conductivity. They can better adapt to hot and humid environments through good physical and chemical regulation.

    Acknowledgements:We are grateful to Professor LIU Jin-Song of Wenzhou University for providing valuable suggestions and references during this experiment.

    AL-Mansour MI. 2004. Seasonal variation in basal metabolic rate and body composition within individual sanderling birdCalidris alba[J].J Biol Sci, 4: 564-567.

    Aschoff J. 1981. Thermal conductance in mammals and birds: its dependence on body size and circadian phase[J].Comp Biochem Physiol, 69A: 611-619.

    Aschoff J, Pohl H. 1970. Metabolism at rest of birds as function of time of day and body size[J].Ornithol, 111: 38-47.

    Baillie JEM, Hiltorr Taylor C, Stuart SN. 2004. 2004 IUCN Red List of Threatened Species: A Globe Species Assessment[M]. Switzerland: IUCN.

    Burton CT, Weathers WW. 2003. Energetics and thermoregulation of the Gouldian finchErythrura gouldiae[J].Emu, 103: 1-10.

    Canterbury G. 2002. Metabolic adaptation and climatic constraints on winter birds distribution[J].Ecology, 83: 946-957.

    Corp N, Goman ML, Speakman JR. 1997. Seasonal variation in the resting metabolic rate of male wood miceApodemus sylvaticusfrom two contrasting habitats 15km apart[J].J Comp Physiol, 167: 229-239.

    Deng HL, Zhang XA. 1990. Standard metabolic rate in several species of passerine birds in alpine meadow[J].Acta Zool Sin, 36(4): 377-384. (in Chinese)

    Górecki A. 1975. Kalabukhov-Skvortsov. Respirometer and Resting Metabolic Rate Measurement[M] // Grodziński W. IBP Handbook, No. 24: Methods for Ecological Energetics. Oxford: Blackwell, 309-313.

    Jessen C. 2001. Temperature Regulation in Humans and other Mammals[M]. New York: Springer - Verlag Berlin Heidelberg, 1-193.

    Jia F, Wu YF, Wu ML, Guo SB, An CL, Pang XB. 2003. Study on the resting metabolic rate (RMR) for the caged female brown eared pheasant (Crossoptilon mantchuricum)[J].Chn J Zool, 38(6): 52-56. (in Chinese)

    Li J, Li QF, Zheng GM. 1993. Studies on the resting metabolic rate of the yellow-bellied tragopan[J].Zool Res, 14(4): 341-345. (in Chinese)

    Li M, Liu JS, Han HL, Zhang HJ, Fang H. 2005. Metabolism and thermoregulation in waxwingsBombycilla garrulousand blackfaced buntingsEmberiza spodocephala[J].Zool Res, 26: 287-293. (in Chinese)

    Liknes ET, Scott SM, Swanson DL. 2002. Seasonal acclimatization in the American goldfinch revisited: to what extent do metabolic rates vary seasonally[J].Condor, 104: 548-557.

    Lin L, Wang LH, Liu JS. 2010. Metabolism and thermoregulation in Crested Mynas (Acridotheres cristatellus)[J].Chn J Zool, 45(5): 47-53. (in Chinese)

    Liu JS, Chen MR, Wang Y, Wang XH, Song CG. 2004a. Metabolic thermogenesis of Siberian accentor (Prunella montanella) [J].Zool Res, 25(2): 117-121. (in Chinese)

    Liu JS, Wang DH, Wang Y, Chen MH, Song CG, Sun RY. 2004b. Energetics and thermoregulation of theCarpodacus roseus,Fringilla montifringillaandAcanthis flammea[J].Acta Zool Sin, 50: 357-363.

    Liu Z, Zhou W, Zhang Q, Li JX, Ling N, Zhang RE. 2008. Selection and plant community characteristics of foraging sites for Hume’s Pheasant (Syramticus humiae) in Nanhua part of Ailaoshan National Nature Reserve[J].Zool Res, 29(6): 464-452. (in Chinese) Lovegrove BG. 2003. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum[J].J Comp Physiol, 173: 87-112.

    Mackinnon J, Phillipps, K, He FQ. 2000. A Field Guide toThirds of China[M]. Oxford University Press, 35: 15-30.

    Marschall U, Prinzinger R. 1991. Verleichende okophysiologie von funf prachtfinkenarten (Estrididae) [J].Fur Orni, 132: 319-323.

    McKechnie AE, Wolf BO. 2004. The allometry of avian basal metabolic rate: good predictions need good data[J].Physiol Biochem Zool, 77: 502-521.

    McNab BK. 1988. Food habits and the basal rate of metabolism in birds[J].Oecologia, 77: 343-349.

    McNab BK. 2000. The influence of body mass, climate, and distribution on the energetic of south pacific pigeons[J].Comp Biochem Physiol. 127A: 309-329.

    McNamara JM, Ekman J, Houston AI. 2004. The effect of thermoregulatory substitution on optimal energy reserves of small birds in winter[J].Oikos, 105: 192-196.

    Prinzinger R, Prebmar A, Schleucher E. 1991. Body temperature in Birds[J].Comp Biochem Physiol, 89: 499-506.

    Reynolds PS, Lee RM. 1996. Phylogenetic analysis of avian energetics Passerines and non-passerines do not differ[J].Am Nat, 147: 735-759.

    Rezende EL, Swanson DL, Novoa FF. 2002. Passerines versus nonpasserines: so far, no statistical differences in the scaling of avian energetics[J].J Exp Biol, 205: 101-107.

    Rozman J, Runciman D, Zann RA. 2003. Seasonal variation in body mass and fat of Zebra Finches in south-eastern Australia[J].Emu, 103: 11-19.

    Schleucher E. 2002. Metabolism, body temperature and thermal conductance of fruit-doves (Aves: Columbidae, Treronidae) [J].Comp Biochem Physiol,131: 417-428.

    Schmidt-Nieisen K, 1997. Animal Physiology [M]. 5th ed. London: Cambridge University Press. 169-214.

    Shi JB, Zheng GM. 1997. The seasonal changes of habitats of Elliot’s pheasant[J].Zool Res, 18(3): 275-283. (in Chinese)

    Stokkan KA. 1992. Energetics and adaptation to cold in ptarmigan in winter[J].Ornis Scandinavica, 22: 366-370.

    Tieleman BI, Willians JB, Buschur ME. 2002. Physiological adjustments to arid mesic environments in larks (Alaudidae) [J].Physiol Biochem Zool, 75: 305-313.

    Wang PC, Zhang P. 1986. Resting metabolic rates and homoeothermic level of different aged Eastern Ouill[J].J East China Normal Univ:Natural Science Ed, 4: 108-112. (in Chinese)

    Weathers WW. 1979. Climatic adaptation in avian standard metabolic rate[J].Oecologia, 42: 81-89.

    Weathers WW. 1997. Energetics and thermoregulation by small passerines of the humid, lowland tropics[J].Auk, 114: 341-353.

    Williams JB, Tieleman BI. 2000. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperature[J].J Exp Biol, 203(20): 3153-3159.

    Zhang LQ, Yang ZC, Wu YF, Li CQ, Sun RY. 2001. Study on the resting metabolic rate (RMR) of caged black grouse (Lyrurus tetrix baikallensis)[J].J Hebei Normal Univ:Nat Sci Ed, 25(3): 381-384. (in Chinese)

    Zhang YP, Liu JS, Hu XJ, Yang Y, Chen LD. 2006. Metabolism and thermoregulation in two species of passerines from south-eastern China in summer[J].Acta Zool Sin, 52(4): 641-647. (in Chinese)

    Zhang ZW, Ding CQ, Ding P, Zheng GM. 2003. The current status and a conservation strategy for species of Galliformes in China[J].J Biodiver Sci, 11: 414-421. (in Chinese)

    Zhao T. 2009. Comparison of Nestlings Growth betweenSyrmaticus elliotiandSyrmaticus humiaein Captivity[D]. Ph.D. College of Life Science, Guangxi Normal University. (in Chinese)

    籠養(yǎng)黑頸長尾雉和白頸長尾雉代謝產(chǎn)熱特征及體溫調(diào)節(jié)

    駱 鷹1, 庾太林2,*, 黃乘明3,*, 趙 彤2, 李漢華2, 李常健1

    (1.湖南科技學院 生命科學與化學工程系,湖南 永州425100; 2.廣西師范大學 生命科學學院,廣西 桂林541004; 3.中國科學院動物研究所,北京100101)

    采用封閉式流體壓力呼吸儀, 在5~35 ℃的環(huán)境溫度范圍內(nèi)測定了黑頸長尾雉(Syrmaticus humiae)和白頸長尾雉(Syrmaticus ellioti)的代謝率(MR)、熱傳導(C) 和體溫(Tb)等指標, 探討了其代謝產(chǎn)熱特征。結(jié)果顯示:黑頸長尾雉和白頸長尾雉的熱中性區(qū)(TNZ)分別為24.5~31.6 ℃和23.0~29.2 ℃。在5~35 ℃的溫度范圍內(nèi), 黑頸長尾雉和白頸長尾雉能保持穩(wěn)定的體溫, 分別為(40.47±0.64)和(40.36±0.10) ℃; 在熱中性區(qū)內(nèi), 黑頸長尾雉和白頸長尾雉的平均基礎(chǔ)代謝率(BMR)分別為(1.36±0.84)和(2.03±0.12 ) mLO2/(g·h),分別是體重預期值的77 %和86%。在下臨界溫度以下, 黑頸長尾雉和白頸長尾雉的最小熱傳導分別是(0.12±0.01)和(0.17±0.01) mLO2/(g·h·℃), 分別是體重預期值的119%和124%。這兩種鳥的生理生態(tài)學特征是:黑頸長尾雉和白頸長尾雉都具有較低的代謝率, 較高的體溫和熱傳導, 能較好地適應南方濕熱的氣候特征。

    黑頸長尾雉; 白頸長尾雉; 體溫; 基礎(chǔ)代謝率; 熱傳導

    Q959.725; Q958.112.4

    A

    0254-5853-(2011)04-0396-07

    2011-01-17;接受日期:2011-05-19

    駱鷹(1979-),男,講師,碩士研究生。研究方向:動物生理生態(tài)學

    10.3724/SP.J.1141.2011.04396

    date: 2011-01-17; Accepted date: 2011-05-19

    s: This research was funded by the National Natural Science Foundation of China (30760039), the Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China, and the projects of Science and Technology Bureau of Yongzhou, Hunan (201019)

    *Corresponding authors (通信作者), E-mail: yutail@163.com; cmhuang@ioz.ac.cn

    猜你喜歡
    基礎(chǔ)代謝率代謝率產(chǎn)熱
    中國人群代謝率數(shù)據(jù)庫的建立與應用
    世界建筑(2022年11期)2022-12-05 06:56:02
    人要活得“涼爽”
    知識窗(2022年6期)2022-07-08 23:40:36
    夜晚長時間開燈容易長胖
    工會博覽(2022年9期)2022-06-30 09:30:48
    中年“發(fā)福”別怪代謝率
    鋰動力電池電化學-熱特性建模及仿真研究
    森林工程(2020年6期)2020-12-14 04:26:52
    小氣候環(huán)境對肉雞能量代謝的影響研究進展
    幸福·婚姻版(2018年3期)2018-03-22 08:06:48
    解讀“大胃王”的秘密
    飲食科學(2016年10期)2016-11-19 08:50:29
    健康之家(2016年10期)2016-10-28 22:21:28
    云南不同地區(qū)大絨鼠體重、產(chǎn)熱和肥滿度的研究
    亚洲少妇的诱惑av| 日本黄色视频三级网站网址| 亚洲国产日韩欧美精品在线观看 | 国产精品秋霞免费鲁丝片| 美女高潮到喷水免费观看| 一二三四社区在线视频社区8| 国产精品,欧美在线| 国产免费av片在线观看野外av| 久热这里只有精品99| 亚洲精品在线观看二区| 涩涩av久久男人的天堂| 亚洲专区中文字幕在线| 日韩中文字幕欧美一区二区| 美女国产高潮福利片在线看| 国产精品免费视频内射| 欧美+亚洲+日韩+国产| 日本黄色视频三级网站网址| 亚洲国产欧美日韩在线播放| 成人av一区二区三区在线看| 亚洲成人久久性| 久久人人精品亚洲av| 91成人精品电影| 人人妻,人人澡人人爽秒播| 亚洲国产精品999在线| 在线观看一区二区三区| 美女午夜性视频免费| 婷婷六月久久综合丁香| 国产精品一区二区三区四区久久 | 麻豆久久精品国产亚洲av| 波多野结衣高清无吗| 亚洲电影在线观看av| 欧美不卡视频在线免费观看 | 男女下面插进去视频免费观看| 国产麻豆69| 丁香六月欧美| 亚洲精品一区av在线观看| 亚洲无线在线观看| av片东京热男人的天堂| 色播在线永久视频| 成人三级黄色视频| 母亲3免费完整高清在线观看| 亚洲成国产人片在线观看| 91在线观看av| 亚洲少妇的诱惑av| cao死你这个sao货| 国产人伦9x9x在线观看| 亚洲一区二区三区色噜噜| 欧美老熟妇乱子伦牲交| 麻豆国产av国片精品| 91老司机精品| 久久久久久人人人人人| 成人免费观看视频高清| 99久久精品国产亚洲精品| 国产成人精品久久二区二区免费| 在线视频色国产色| 国产精品久久久久久人妻精品电影| 精品午夜福利视频在线观看一区| 午夜激情av网站| 久热这里只有精品99| 最近最新免费中文字幕在线| 国产精品 欧美亚洲| 午夜激情av网站| 久久婷婷人人爽人人干人人爱 | 12—13女人毛片做爰片一| 国产一区二区三区综合在线观看| 很黄的视频免费| 色综合婷婷激情| 亚洲av成人不卡在线观看播放网| 精品免费久久久久久久清纯| 午夜成年电影在线免费观看| 精品不卡国产一区二区三区| 1024香蕉在线观看| 欧美日韩福利视频一区二区| 美国免费a级毛片| 无遮挡黄片免费观看| 免费观看人在逋| 久久精品国产99精品国产亚洲性色 | 亚洲精品国产区一区二| 国产一区二区激情短视频| 国产欧美日韩综合在线一区二区| 欧美绝顶高潮抽搐喷水| 少妇被粗大的猛进出69影院| 真人一进一出gif抽搐免费| 免费观看精品视频网站| 亚洲伊人色综图| 国产精品精品国产色婷婷| 欧美黄色淫秽网站| 777久久人妻少妇嫩草av网站| 丰满的人妻完整版| 69精品国产乱码久久久| 国产伦一二天堂av在线观看| 精品国产美女av久久久久小说| a在线观看视频网站| 我的亚洲天堂| 精品人妻1区二区| 香蕉丝袜av| 精品午夜福利视频在线观看一区| 黑人巨大精品欧美一区二区mp4| 1024香蕉在线观看| 免费在线观看黄色视频的| 99久久99久久久精品蜜桃| 午夜福利18| 叶爱在线成人免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲一区中文字幕在线| 亚洲精品美女久久久久99蜜臀| 国产欧美日韩一区二区精品| 色综合婷婷激情| 国产精品一区二区精品视频观看| 国产私拍福利视频在线观看| 性色av乱码一区二区三区2| 国产成人一区二区三区免费视频网站| 久久精品亚洲精品国产色婷小说| 一a级毛片在线观看| a级毛片在线看网站| 亚洲天堂国产精品一区在线| 国产精品影院久久| а√天堂www在线а√下载| 精品久久久久久成人av| 老司机靠b影院| 国产一区二区在线av高清观看| 亚洲男人天堂网一区| 黄片大片在线免费观看| 可以在线观看毛片的网站| 神马国产精品三级电影在线观看 | 久久天堂一区二区三区四区| 美女 人体艺术 gogo| 好看av亚洲va欧美ⅴa在| 国产精品久久久av美女十八| 禁无遮挡网站| 国产熟女xx| 亚洲国产毛片av蜜桃av| 日韩大码丰满熟妇| 丝袜美足系列| 丰满的人妻完整版| 国产麻豆成人av免费视频| 一本综合久久免费| 国产免费av片在线观看野外av| 亚洲成av人片免费观看| 免费在线观看视频国产中文字幕亚洲| 岛国视频午夜一区免费看| 日韩有码中文字幕| 成年版毛片免费区| 女生性感内裤真人,穿戴方法视频| 日本vs欧美在线观看视频| 美女国产高潮福利片在线看| 99国产精品免费福利视频| 精品国产一区二区久久| 国产精品1区2区在线观看.| 亚洲成av片中文字幕在线观看| 人人妻人人澡人人看| 国产精品亚洲美女久久久| 一区福利在线观看| 一进一出抽搐动态| 一级黄色大片毛片| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看| 亚洲美女黄片视频| 如日韩欧美国产精品一区二区三区| 久久国产亚洲av麻豆专区| 美女大奶头视频| 色精品久久人妻99蜜桃| 看免费av毛片| 欧美黑人精品巨大| 亚洲欧美激情综合另类| 精品一区二区三区视频在线观看免费| 日韩欧美免费精品| 九色国产91popny在线| 大型黄色视频在线免费观看| 人成视频在线观看免费观看| 久久 成人 亚洲| 日本欧美视频一区| 欧美日韩福利视频一区二区| 超碰成人久久| 中文字幕人妻丝袜一区二区| 色av中文字幕| 大型黄色视频在线免费观看| 丝袜人妻中文字幕| av电影中文网址| 神马国产精品三级电影在线观看 | 波多野结衣av一区二区av| 欧美黑人精品巨大| 制服丝袜大香蕉在线| 桃色一区二区三区在线观看| 首页视频小说图片口味搜索| 久久午夜综合久久蜜桃| 侵犯人妻中文字幕一二三四区| 88av欧美| 亚洲精品久久国产高清桃花| 正在播放国产对白刺激| netflix在线观看网站| 亚洲国产欧美日韩在线播放| 天堂动漫精品| 国产色视频综合| 99国产精品99久久久久| 99国产极品粉嫩在线观看| avwww免费| 国产伦人伦偷精品视频| 波多野结衣一区麻豆| 一级毛片女人18水好多| 欧美日本亚洲视频在线播放| 美女午夜性视频免费| 一个人观看的视频www高清免费观看 | 国产欧美日韩精品亚洲av| a在线观看视频网站| 亚洲男人的天堂狠狠| 欧美成人免费av一区二区三区| 国产精品国产高清国产av| 亚洲av成人不卡在线观看播放网| 欧美午夜高清在线| 亚洲人成77777在线视频| 黄片大片在线免费观看| √禁漫天堂资源中文www| 精品国产国语对白av| 精品国产超薄肉色丝袜足j| 久久欧美精品欧美久久欧美| 人成视频在线观看免费观看| 99久久精品国产亚洲精品| 亚洲国产欧美网| 久久国产精品影院| 男人舔女人的私密视频| 午夜影院日韩av| 久久久久久大精品| 国产熟女午夜一区二区三区| 9色porny在线观看| 国产精品乱码一区二三区的特点 | 可以免费在线观看a视频的电影网站| 国产高清videossex| 欧美成人午夜精品| 欧美一级a爱片免费观看看 | 久热爱精品视频在线9| 亚洲熟妇中文字幕五十中出| 久久久国产成人精品二区| 一边摸一边做爽爽视频免费| 国产av精品麻豆| xxx96com| 国产xxxxx性猛交| 一区在线观看完整版| 亚洲国产精品合色在线| av在线天堂中文字幕| 淫妇啪啪啪对白视频| 国产一区在线观看成人免费| 1024视频免费在线观看| 亚洲情色 制服丝袜| 欧美av亚洲av综合av国产av| 一边摸一边抽搐一进一小说| 亚洲午夜精品一区,二区,三区| videosex国产| 亚洲欧美日韩高清在线视频| 国产精品久久久久久精品电影 | 国产伦一二天堂av在线观看| 女性生殖器流出的白浆| 怎么达到女性高潮| 国产欧美日韩一区二区三| 桃色一区二区三区在线观看| 97碰自拍视频| 99精品久久久久人妻精品| 黄色成人免费大全| 狠狠狠狠99中文字幕| 精品久久久久久久人妻蜜臀av | 午夜福利成人在线免费观看| 好男人电影高清在线观看| 国产精品久久视频播放| 757午夜福利合集在线观看| 亚洲中文av在线| 欧美大码av| 巨乳人妻的诱惑在线观看| 国产极品粉嫩免费观看在线| 悠悠久久av| a级毛片在线看网站| 好看av亚洲va欧美ⅴa在| 一二三四社区在线视频社区8| 亚洲国产精品久久男人天堂| 国产真人三级小视频在线观看| 久久久精品国产亚洲av高清涩受| ponron亚洲| 高清毛片免费观看视频网站| 久久国产精品影院| 母亲3免费完整高清在线观看| 亚洲国产日韩欧美精品在线观看 | 人人妻人人澡人人看| 日本黄色视频三级网站网址| www.www免费av| 欧美绝顶高潮抽搐喷水| 亚洲av电影在线进入| 淫妇啪啪啪对白视频| 两个人免费观看高清视频| 亚洲免费av在线视频| 女人被躁到高潮嗷嗷叫费观| 真人一进一出gif抽搐免费| 黄色成人免费大全| 欧美日韩乱码在线| 成人永久免费在线观看视频| 成在线人永久免费视频| 精品久久久久久久人妻蜜臀av | √禁漫天堂资源中文www| 精品久久久久久,| 18禁黄网站禁片午夜丰满| 亚洲精品在线美女| 18美女黄网站色大片免费观看| 超碰成人久久| 一夜夜www| 91在线观看av| 精品久久久久久久毛片微露脸| 久久影院123| 久久精品aⅴ一区二区三区四区| 亚洲免费av在线视频| 亚洲全国av大片| tocl精华| 亚洲国产欧美日韩在线播放| 国产熟女午夜一区二区三区| 少妇粗大呻吟视频| 在线观看日韩欧美| 纯流量卡能插随身wifi吗| 黄片大片在线免费观看| 亚洲国产高清在线一区二区三 | 女警被强在线播放| 亚洲精品中文字幕在线视频| 国产亚洲av嫩草精品影院| 欧美精品亚洲一区二区| 亚洲精华国产精华精| 欧美精品啪啪一区二区三区| 欧美日韩乱码在线| 日韩国内少妇激情av| 亚洲性夜色夜夜综合| 日日爽夜夜爽网站| 女生性感内裤真人,穿戴方法视频| 久久人人爽av亚洲精品天堂| 午夜免费观看网址| 日韩欧美国产在线观看| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频 | 色av中文字幕| 亚洲精品在线观看二区| av片东京热男人的天堂| 亚洲成人精品中文字幕电影| 欧美中文日本在线观看视频| 久久国产乱子伦精品免费另类| 亚洲人成伊人成综合网2020| 99国产极品粉嫩在线观看| 国产麻豆成人av免费视频| 少妇粗大呻吟视频| 18禁黄网站禁片午夜丰满| 丝袜在线中文字幕| 精品熟女少妇八av免费久了| 18禁观看日本| 黄色片一级片一级黄色片| 欧美一区二区精品小视频在线| 精品欧美国产一区二区三| 亚洲成人免费电影在线观看| 成年人黄色毛片网站| 亚洲 欧美 日韩 在线 免费| 欧美成狂野欧美在线观看| 亚洲三区欧美一区| 欧美乱妇无乱码| 亚洲电影在线观看av| 黄片大片在线免费观看| 久久婷婷成人综合色麻豆| 国产色视频综合| 激情视频va一区二区三区| 久久久久国内视频| 一区二区三区激情视频| 制服诱惑二区| 99久久久亚洲精品蜜臀av| 久9热在线精品视频| 不卡一级毛片| 国产欧美日韩综合在线一区二区| 此物有八面人人有两片| 两人在一起打扑克的视频| 最好的美女福利视频网| 少妇的丰满在线观看| 久久国产乱子伦精品免费另类| e午夜精品久久久久久久| 国产亚洲精品第一综合不卡| 婷婷丁香在线五月| 久久精品aⅴ一区二区三区四区| 亚洲国产中文字幕在线视频| 日韩欧美一区二区三区在线观看| 亚洲天堂国产精品一区在线| 99国产精品免费福利视频| 亚洲欧美日韩高清在线视频| 琪琪午夜伦伦电影理论片6080| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 在线观看舔阴道视频| 大陆偷拍与自拍| 91九色精品人成在线观看| 免费看美女性在线毛片视频| 久久精品亚洲熟妇少妇任你| 母亲3免费完整高清在线观看| av免费在线观看网站| 免费看十八禁软件| 亚洲精品中文字幕在线视频| 热99re8久久精品国产| 国产精品久久久久久亚洲av鲁大| 欧美中文日本在线观看视频| av欧美777| 亚洲国产精品久久男人天堂| 亚洲男人天堂网一区| 高潮久久久久久久久久久不卡| 亚洲精品美女久久久久99蜜臀| 窝窝影院91人妻| 视频区欧美日本亚洲| 热re99久久国产66热| 国产一区二区三区在线臀色熟女| 欧美绝顶高潮抽搐喷水| 国产精品 国内视频| 一边摸一边做爽爽视频免费| 欧美人与性动交α欧美精品济南到| 国产精品综合久久久久久久免费 | 亚洲一区二区三区色噜噜| 国产熟女午夜一区二区三区| av天堂在线播放| 欧美中文日本在线观看视频| 男女做爰动态图高潮gif福利片 | 久久婷婷人人爽人人干人人爱 | 国产精品自产拍在线观看55亚洲| 一本大道久久a久久精品| av视频在线观看入口| 午夜激情av网站| a在线观看视频网站| 一级毛片高清免费大全| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品99久久99久久久不卡| 亚洲五月天丁香| 一边摸一边做爽爽视频免费| 在线观看日韩欧美| 色在线成人网| 美女扒开内裤让男人捅视频| 欧美老熟妇乱子伦牲交| 久久人人爽av亚洲精品天堂| 午夜福利免费观看在线| 欧美国产精品va在线观看不卡| 国产精品 国内视频| 成人特级黄色片久久久久久久| 好男人在线观看高清免费视频 | 国产精品精品国产色婷婷| 两性午夜刺激爽爽歪歪视频在线观看 | 搡老岳熟女国产| 多毛熟女@视频| 人人妻人人爽人人添夜夜欢视频| 色综合婷婷激情| 一夜夜www| 久热爱精品视频在线9| 午夜精品在线福利| 波多野结衣高清无吗| 久久草成人影院| 日韩欧美一区二区三区在线观看| 欧美最黄视频在线播放免费| 少妇裸体淫交视频免费看高清 | 日韩欧美国产在线观看| 国产一区二区在线av高清观看| 精品久久久精品久久久| 色播亚洲综合网| 精品国产亚洲在线| aaaaa片日本免费| 成人三级黄色视频| 最新美女视频免费是黄的| 国产午夜精品久久久久久| 香蕉久久夜色| 1024视频免费在线观看| 午夜福利高清视频| 极品人妻少妇av视频| 一a级毛片在线观看| 两个人看的免费小视频| 久久久精品欧美日韩精品| 又黄又爽又免费观看的视频| 两性夫妻黄色片| 久久久久亚洲av毛片大全| 人妻久久中文字幕网| 亚洲,欧美精品.| 看片在线看免费视频| 精品国产乱码久久久久久男人| 九色亚洲精品在线播放| 欧美人与性动交α欧美精品济南到| 人人妻人人澡欧美一区二区 | 亚洲熟妇熟女久久| 午夜福利影视在线免费观看| 在线观看午夜福利视频| 嫩草影视91久久| 精品午夜福利视频在线观看一区| 岛国视频午夜一区免费看| 午夜日韩欧美国产| 母亲3免费完整高清在线观看| 不卡一级毛片| 性欧美人与动物交配| 久久婷婷人人爽人人干人人爱 | а√天堂www在线а√下载| 一边摸一边做爽爽视频免费| 精品一区二区三区四区五区乱码| 久久精品aⅴ一区二区三区四区| 日韩大尺度精品在线看网址 | 夜夜看夜夜爽夜夜摸| 国产成人av教育| 亚洲国产看品久久| 脱女人内裤的视频| 两个人视频免费观看高清| 成人特级黄色片久久久久久久| 人人妻人人澡人人看| av在线播放免费不卡| 国产精品一区二区免费欧美| 大陆偷拍与自拍| 国产精品1区2区在线观看.| 99香蕉大伊视频| 免费少妇av软件| 我的亚洲天堂| 18禁美女被吸乳视频| 夜夜看夜夜爽夜夜摸| 99久久精品国产亚洲精品| 两个人免费观看高清视频| 成人欧美大片| 色播亚洲综合网| 午夜视频精品福利| 亚洲av电影不卡..在线观看| 99在线人妻在线中文字幕| 又黄又粗又硬又大视频| 国产精华一区二区三区| 最好的美女福利视频网| 91大片在线观看| 极品教师在线免费播放| 黄网站色视频无遮挡免费观看| aaaaa片日本免费| 他把我摸到了高潮在线观看| 9191精品国产免费久久| 一级,二级,三级黄色视频| 18禁观看日本| 久久伊人香网站| 久久久国产精品麻豆| 国产精品98久久久久久宅男小说| 三级毛片av免费| 久久精品aⅴ一区二区三区四区| 国产精品野战在线观看| 最近最新中文字幕大全免费视频| 老汉色∧v一级毛片| 婷婷丁香在线五月| 黄色视频不卡| 午夜激情av网站| 99久久国产精品久久久| 婷婷六月久久综合丁香| 色播在线永久视频| 国产成人影院久久av| av天堂在线播放| 制服人妻中文乱码| 欧美激情高清一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 女人被躁到高潮嗷嗷叫费观| 欧美另类亚洲清纯唯美| 亚洲av日韩精品久久久久久密| 国产精品99久久99久久久不卡| 99久久国产精品久久久| 亚洲视频免费观看视频| 久久精品亚洲精品国产色婷小说| 欧美成狂野欧美在线观看| 免费少妇av软件| 国产精品电影一区二区三区| 老鸭窝网址在线观看| 男人舔女人的私密视频| 国产av一区在线观看免费| 国产精品自产拍在线观看55亚洲| 夜夜看夜夜爽夜夜摸| 成人国语在线视频| 亚洲成av片中文字幕在线观看| 亚洲最大成人中文| 欧美日韩福利视频一区二区| 久久婷婷人人爽人人干人人爱 | 视频在线观看一区二区三区| 最好的美女福利视频网| 我的亚洲天堂| 欧美在线一区亚洲| 欧美+亚洲+日韩+国产| 午夜久久久久精精品| 日本免费a在线| 黄色 视频免费看| 熟女少妇亚洲综合色aaa.| 色综合站精品国产| 精品少妇一区二区三区视频日本电影| 亚洲免费av在线视频| 国产精品一区二区三区四区久久 | 一进一出抽搐gif免费好疼| 欧美日韩亚洲国产一区二区在线观看| 久久久国产精品麻豆| 中文亚洲av片在线观看爽| 欧美中文日本在线观看视频| 啦啦啦 在线观看视频| 一级a爱视频在线免费观看| 夜夜夜夜夜久久久久| 免费高清视频大片| 欧美精品亚洲一区二区| 女人精品久久久久毛片| 老汉色av国产亚洲站长工具| av免费在线观看网站| 亚洲免费av在线视频| 亚洲精品美女久久av网站| 九色亚洲精品在线播放| 久久久久久亚洲精品国产蜜桃av| 国产一区二区三区综合在线观看| 亚洲欧美精品综合一区二区三区| 最新在线观看一区二区三区| 长腿黑丝高跟| 国产精品1区2区在线观看.| 最新在线观看一区二区三区| 黄色视频不卡| 亚洲人成网站在线播放欧美日韩| 欧美一级毛片孕妇| 成人免费观看视频高清| 亚洲 欧美 日韩 在线 免费| 国产亚洲欧美精品永久| 成在线人永久免费视频| 12—13女人毛片做爰片一| 伦理电影免费视频| 性色av乱码一区二区三区2| 亚洲 国产 在线| 国产精品一区二区免费欧美| 免费人成视频x8x8入口观看| 国产亚洲精品第一综合不卡|