• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly dispersed CoPx nanoparticles supported on carbon cloth for the enhanced catalytic performance of methanol electro-oxidation

    2022-12-07 12:29:10ZHANGJianyuanXINGShuangfengZHAOShichaoXIONGMiZHANGBianqinTONGXiliQINYongGAOZhe
    燃料化學(xué)學(xué)報(bào) 2022年10期

    ZHANG Jian-yuan,XING Shuang-feng,ZHAO Shi-chao,XIONG Mi,ZHANG Bian-qin,TONG Xi-li,QIN Yong,GAO Zhe,*

    (1. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China;2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)

    Abstract: Direct methanol fuel cell (DMFC) is a potential commercial fuel cell technology that is presently hindered by the expensive noble metal materials of the anode. Developing a method to obtain a uniformly dispersed metal phosphide catalyst with narrow size distribution is still a challenge. In this work,cobalt oxide was deposited on carbon cloth (CC) through atomic layer deposition (ALD),then cobalt phosphide was obtained after the phosphorization process. By changing the number of ALD-based ozone pulses (ALD-O3) for CC,the nucleation and growth modes of cobalt oxide (ALD-CoOx) on the CC were regulated,and CoPx nanoparticles with small particle size and uniform distribution were obtained. The optimized CoPx-based catalyst with 40 cycles of ALD-O3 treatment (CoPx/40-CC) exhibits excellent activity (153 mA/cm2) toward methanol electrocatalytic oxidation reaction in the alkaline solution,which is higher than the catalyst prepared by impregnation (Imp-CoPx/CC),although the CoPx loading of CoPx/40-CC is lower than that of Imp-CoPx/CC. The results indicate that the enhanced activity benefits from the small particle size and the uniform CoPx distribution,which promote the electron-transfer and mass transport kinetics of the methanol electro-oxidation process.

    Key words: atomic layer deposition;cobalt phosphide nanoparticles;methanol electrocatalytic oxidation reaction

    Considering the energy crisis and global warming caused by fossil fuel usage,direct methanol fuel cells(DMFCs) may serve as a potential green energy conversion technology,because methanol can be easily obtained,stored,and transported[1,2]. However,commercial catalysts such as platinum-based noble metal catalysts are expensive and easy to poison by CO,which considerably hinders the applications of DMFCs[3-7]. Therefore,it is essential to design high efficiency and low-cost electrocatalysts with long-term stability for the methanol electrocatalytic oxidation reaction (MOR) for the largescale commercialization of DMFCs in the future.

    Non-noble metal catalysts,such as oxides and alloys provide certain advantages because of the inexpensiveness and relatively non-toxicity,however,they are limited by their low activity[8-11]. Non-noble metal phosphide performance for the MOR offers promising electrocatalytic activity,owing to their specific electronic structure,long-term stability,and wide pH application range[8,12-16]. Recently,several methods have been reported for the fabrication of various nanostructures metal phosphides,such as nanoarrays,nanowall arrays,and hollow porous nanostructures to obtain a large surface area and potential electrocatalytic activity[17-19]. However,it is still a challenge to synthesize small and uniformly dispersed metal phosphide nanoparticles for high methanol electro-oxidation activity.

    Owning to the precisely control of the size/thickness and perfect uniformity[20-23],atomic layer deposition (ALD) is a powerful technique for depositing single atoms,nanoparticles,thin films,as well as catalytic materials at the atomic level[23-26]. In this work,ALD was introduced to synthesize CoOxnanoparticles on carbon cloth (CC),and then NaH2PO2was used as a phosphorization reactant to obtain CoPxnanoparticles.By controlling the number of ALD-O3pulses in the pretreatment process,the defect sites on the CC surface were modified. As a result,the nucleation and growth of the nanoparticles during ALD-CoOxsynthesis were tuned. For the MOR reaction,the CoPx-based catalyst with 40 cycles of ALD-O3treatment (CoPx/40-CC)presents the highest current density (153 mA/cm2)among all the catalysts prepared by ALD and impregnation. Catalytic activities also change with the number of ALD-O3pulses,resulting in volcano-like behavior. Detailed analyses suggest that the enhanced activity benefits from the small particle size and the uniform CoPxdistribution,which promote the electrontransfer and mass transport kinetics of the methanol electro-oxidation process.

    1 Experimental section

    1.1 Chemicals

    The ALD precursor of bis (cyclopentadienyl)cobalt (Cp2Co,98%) was obtained from Alfa Aesar,and the O3precursor was obtained by an ozone generator. The CC (WOS1011) was purchased from Cetech Co.,Ltd.,NaH2PO2was acquired from Shanghai Aladdin Bio-Chem Technology Co.,Ltd.,and cobaltous nitrate hexahydrate (Co(NO3)2·6H2O) was obtained from Sinopharm Chemical Reagent Co. ,Ltd.All chemical reagents were used as received,and all aqueous solutions were prepared using deionized water,which was produced by an ultrapure water system.

    1.2 Catalyst synthesis

    Before ALD,the raw CC was cut into 1 cm × 4 cm pieces and was then cleaned by ultrasonication for 30 min. Afterward,the samples were washed with deionized water and anhydrous ethanol three times,respectively. Finally,the CC pieces were dried in an oven at 80 °C for 1 h.

    The ALD process was carried out in a hot wall and closed chamber. In the first step,several cycles of O3pulses were used to treat the CC at 250 °C,with pulse,exposure,and purge times of 1,15 and 27 s,respectively. The samples were denoted asn-CC (nrefers to the number of ALD-O3cycles)[27]. Then,the CoOxnanoparticles were deposited onto the CC with the Cp2Co and O3precursors,which were denoted as CoOx/n-CC[28]. The reaction equation to form CoOxis as follows[29]:

    During the reaction process,the temperature of Cp2Co was maintained at 70 °C,accompanied by valving the parameters of pulse,exposure,and purge times of 0.5,16 and 25 s,respectively. In addition,the time for the corresponding O3precursor treatment was 0.1,12 and 30 s,respectively. Afterward,the CoOx/n-CC samples were added into the combustion boat with 0.5 g of NaH2PO2·H2O,then the temperature was increased from room temperature to 300 °C at 2 °C/min in the tubular furnace in an Ar atmosphere and finally maintained for 120 min. In the end,the samples were washed with deionized water and ethanol three times and dried in an oven at 80 °C for 30 min.

    Synthesis process for the impregnated sample,denoted as Imp-CoPx/CC,was as follows. The clean CC was soaked with 5.5% cobalt nitrate ethanol solution in a beaker and stirred for 30 min. Then,the sample was dried in the oven for 30 min and placed in a furnace,with a programmed heating rate of 2 °C/min from room temperature to 300 °C. Then the temperature was maintained for 180 min at 300 °C to obtain Imp-CoOx/CC. Finally,the Imp-CoOx/CC sample was used for the same phosphide process as the ALD samples.

    1.3 Materials characterization

    Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were collected using a JEOL-2100F microscope. For TEM analysis,the samples were physically crushed with scissors and a mortar,and then dispersed in ethanol solution to prepare a highly dispersed suspension. A small amount of liquid was dropped onto the microgrid and allowed to dry naturally at room temperature. X-ray diffraction(XRD) patterns were obtained using a Bruker D8 Advance X-ray diffractometer with CuKα radiation(λ= 1.540 nm),and 2θwas ranging from 5° to 90°. The X-ray photoelectron spectra (XPS) were obtained by an ES-300 photoelectron spectrometer (KRATOS Analytical) with AlKα excitation (1486.6 eV). Co and P content in the samples were determined by inductively coupled plasma optical emission spectrometry (ICP-OES) analysis (Thermo ICAP 6300),and the samples were annealed at 800 °C to remove the CC before ICP-OES analysis.

    1.4 Electrochemical measurements

    All electrochemical measurements were performed on a CHI760D electrochemical workstation(Shanghai,China). The conventional three-electrode system was equipped with a graphite rod electrode as the counter electrode and a saturated calomel electrode(SCE,saturated KCl solution with a salt bridge) as the reference electrode. For the self-supporting electrode,CoPx/n-CC or Imp-CoPx/CC on a glassy carbon electrode clip was used as the working electrode(0.50 cm × 1.0 cm). Cyclic voltammetry (CV) and chronoamperometric measurements were conducted in 1 mol/L methanol + 1 mol/L KOH solution to study the activity and stability of catalyst. Linear sweep voltammetry (LSV) measurements were performed in 1 mol/L KOH solution with or without the addition of 1 mol/L methanol to evaluate the MOR and the oxygen evolution reaction (OER). Electrochemical impedance spectroscopy (EIS) was measured at a potential of 1.48 V(vs RHE) in 1 mol/L methanol + 1 mol/L KOH solution in a frequency range from 10 kHz to 0.1 Hz.Additionally,all experiments were tested at (25 ± 2) °C,and the solutions were exposed to the air. The current densities are given in terms of geometrical area(mA/cm2).

    2 Results and discussion

    2.1 Characterization of catalysts

    Figure 1 shows a schematic of CoPx/n-CC preparation by ALD. The CC was treated with different cycles of O3pulses by ALD to achieven-CC,where n indicates the number of O3pulses. Then,then-CC samples were deposited through 200 ALD cycles of CoOxto obtain CoOx/n-CC. The CoOx/n-CC samples were further treated with NaH2PO2to synthesize CoPx/n-CC.

    The morphology and microstructure of the CoOx/n-CC catalysts were examined by TEM and HRTEM. As shown in Figure 2(a)-(c),the particle sizes of CoOx/10-CC,CoOx/40-CC,and CoOx/75-CC are 5.1,3.3 and 1.9 nm,respectively. The particle size of CoOxdecreases with an increasing number of ALDO3cycles. Additionally,the distribution of CoOxchanges with the number of ALD-O3cycles. The CoOxof CoOx/10-CC and CoOx/40-CC consist of particle films,while CoOxof CoOx/75-CC consists of dispersed particles. The measured lattice distances of CoOxin CoOx/40-CC are 0.209,0.286 and 0.246 nm (Figure 2(d)),which correspond with the (400),(220) and (311)planes of Co3O4,respectively.

    After the phosphorization reaction,CoPx/10-CC,CoPx/40-CC and CoPx/75-CC were synthesized,and the morphologies of these samples are shown in Figure 2(e)-(g). The particle sizes of CoPx/10-CC,CoPx/40-CC and CoPx/75-CC are 10.0,5.2 and 8.2 nm,respectively. The size of CoPxof CoPx/n-CC is larger than the corresponding cobalt oxide sample (CoOx/n-CC).CoOx/75-CC has the smallest CoOxparticle size among CoOx/10-CC,CoOx/40-CC and CoOx/75-CC,while CoPx/40-CC possesses the smallest particle size among CoPx/10-CC,CoPx/40-CC and CoPx/75-CC. The smallest CoOxparticles do not produce the smallest CoPxparticles after phosphorization. Additionally,CoPx/40-CC exhibits the most uniform dispersion and narrow size distribution among these catalysts. ICPOES analysis indicates that the loading amounts of CoPxin CoPx/10-CC,CoPx/40-CC and CoPx/75-CC are 0.79%,0.76% and 0.6%,respectively. Figure 2(h)presents the HRTEM of CoPx/40-CC,which shows that the measured lattice distances of CoPxare 0.247 and 0.254 nm,which correspond to the (111) and (200)CoP planes,respectively.

    The morphologies of the samples prepared by the impregnation method are shown in Figure 3(a) and (b).The CoOxsize of Imp-CoOx/CC is 10.7 nm,while the CoPxsize of Imp-CoPx/CC is 18.9 nm. No uniform nanoparticle distribution and morphology are observed in Imp-CoOx/CC and Imp-CoPx/CC and ICP-OES analysis indicates that the loading amount of CoPxis 3.2% for Imp-CoPx/CC.

    Figure 4 shows the X-ray crystal diffraction(XRD) spectra of CoPx/10-CC,CoPx/40-CC,CoPx/75-CC and Imp-CoPx/CC,where the peaks at 22.8° and 43.2° represent graphite carbon[30]. The peaks of Imp-CoPx/CC at 2θof 31.6° and 48.1° are designated as(011) and (211) facets of CoP (PDF#29-0497)[31].However,there are no obvious CoPxpeaks in the samples prepared by ALD (CoPx/10-CC,CoPx/40-CC,and CoPx/75-CC),owing to low content and/or high dispersion of CoPx.

    XPS was performed to analyze the surface chemical states of CoPx/10-CC,CoPx/40-CC,CoPx/75-CC,and Imp-CoPx/CC. For all samples,the peaks locate at 779.0 and 794.0 eV in the high-resolution spectrum(Figure 5(a)) are assigned to metallic Co 2p3/2and 2p1/2of CoPx,respectively[31,32]. An obvious peak at 781.4 eV is attributed to Co2+2p3/2of Imp-CoPx/CC;however,it is inconspicuous in CoPx/10-CC,CoPx/40-CC,and CoPx/75-CC[31]. This indicates that Imp-CoPx/CC contains more Co2+than the other samples. The high-resolution P 2pspectra are shown in Figure 5(b).The CoPx/10-CC,CoPx/40-CC,CoPx/75-CC and Imp-CoPx/CC have prominent peaks at 130.4,130.5,130.2 and 130.4 eV,which are ascribed to phosphide P 2p3/2,and the peaks at 131.0,131.3,131.0 and 131.2 eV are attributed to P 2p1/2[32]. P in CoPx/40-CC shows the highest binding energy of all the ALD samples. In all of the samples,the weak peak around 134 eV is assigned to the contamination of phosphate P on the catalyst surfaces[33].

    2.2 Electrochemical activity of the catalysts

    The electrocatalytic performances of the asprepared catalysts (CoPx/n-CC and Imp-CoPx/CC) for MOR were tested in 1 mol/L methanol + 1 mol/L KOH solution. The electrocatalytic activities of CoPx/n-CC(n= 0,10,20,30,40,50 and 75) and Imp-CoPx/CC were first studied by CV at a scan rate of 100 mV/s within a potential range of 1.068-1.868 (V vs RHE) in the 1 mol/L KOH and 1 mol/L methanol electrolyte. CoPx/40-CC shows the highest current density (153 mA/cm2at 1.7 V vs RHE) and the lowest overpotential (1.39 V at 10 mA/cm2) among all catalysts,revealing the highest electrooxidation activity of MOR (Figure 6(a)). Also,the current densities of the electrocatalysts at 1.7 V (vs RHE) in the positive sweep of the CV curves are summarized in Figure 6(b). With increasing ALD-O3cycles,the catalytic activities of CoPx/n-CC exhibit a volcano-like trend. In addition,CoPx/40-CC exhibits higher electroactivity than Imp-CoPx/CC (107 mA/cm2),although the CoPxloading of CoPx/40-CC (0.76%) is lower than that of Imp-CoPx/CC (3.2%). And CoPx/40-CC shows the excellent MOR electroactivity compared to other catalysts reported in the literatures (Table 1).

    Table 1 Comparison of the MOR performance of CoPx/40-CC with those of other catalysts reported in the literatures.

    For MOR kinetics,the electrochemical impedance spectroscopy (EIS) results of the MOR on the CoPx/n-CC and Imp-CoPx/CC electrodes are shown in Figure 6(c).The electron-transfer resistance of the MOR decreases when the ALD-O3cycle increases from 0 to 40 and then increases when the ALD-O3cycle increases from 40 to 75,which is consistent with the CV results shown above. CoPx/40-CC shows the lowest electron-transfer resistance,suggesting the best improvement of electron-transfer kinetics in all the electro-catalysts.CoPx/10-CC,CoPx/40-CC,CoPx/75-CC,and Imp-CoPx/CC were selected for Tafel analysis. As shown in Figure 6(d),the CoPx/40-CC electrode exhibits the lowest Tafel slope (163 mV/dec),indicating that CoPx/40-CC has low electron and mass transport barriers in the MOR process.

    To further investigate the catalytic performance of CoPx/40-CC,linear sweep voltammograms (LSVs)were measured at a scanning rate of 5 mV/s (Figure 6(e))in the absence/presence of 1 mol/L methanol in 1 mol/L KOH. CoPx/40-CC shows approximately 200 mV negative potential of MOR compared to the oxygen evolution reaction,revealing the favorable electrochemical response of CoPx/40-CC for the MOR and the increase of current is due to the addition of methanol. Furthermore,Figure 6(f) is CV curves of CoPx/40-CC at different scanning rates. The inset of Figure 6(f) shows that CoPx/40-CC exhibits a linear relationship between the current densities values at 1.7 V vs RHE and the square root of the potential scan rates,indicating that the MOR on the surface of this catalyst is a diffusion-controlled process.

    To investigate the stability of the four catalysts,CoPx/10-CC,CoPx/40-CC,CoPx/75-CC,and Imp-CoPx/CC,chronoamperometric (CA) measurements were conducted in 1 mol/L KOH and 1 mol/L methanol at 1.57 V (vs RHE) for a duration of 10000 s. The results are displayed in Figure 6(g). CoPx/40-CC exhibits the highest catalytic activity after 10000s among four samples.

    Finally,the electrocatalytic activities ofmCoPx/40-CC (mrefers to the number of ALD-CoOxcycles,m= 0,50,100,150,200,250 and 300) were studied by CV under the same conditions to investigate optimal Co loading. The CV curves (Figure 6(h)) and bar graph(Figure 6(i)) suggest that CoPx/40-CC (200 cycles of CoOx) is the best electrocatalyst for MOR,and the activities of these catalysts show volcano-like behavior.

    2.3 Discussion

    The results show that enhanced MOR catalytic performance of CoPx/n-CC can be obtained by changing ALD-O3cycles in CC pretreatment. The high catalytic activity of CoPx/40-CC nanocatalyst benefits from the small particle size and the uniform CoPxdistribution. The ALD-O3pretreatment produces oxygen containing functional groups on CC,which act as the nucleation sites of CoOx[37]. When the number of ALD-O3pulses is only 10,the nucleation sites on CC are insufficient. CoOxnanoparticles grow larger at these nucleation sites. With the increase of ALD-O3cycles,more nucleation sites on CC are obtained. The size of CoOxnanoparticles is decreased and the dispersion of CoOxnanoparticles on support is improved. During the phosphorization process,CoOxnanoparticles are transformed into CoPxnanoparticles,and the particles grow up. Due to the optimal dispersion of as-prepared CoOxparticles and the suitable interaction between the particles and support,after phosphorization,the CoPxnanoparticles of CoPx/40-CC exhibit small particle size and uniform distribution,which promote the electron-transfer and mass transport kinetics of MOR reaction.

    3 Conclusions

    In summary,ALD was used to pretreat CC with O3pulses and to deposit CoOxnanoparticles on CC. By optimizing the number of ALD-O3pulses,the nucleation and growth modes of CoOxwere regulated.After phosphorization,CoPxnanoparticles on CC with uniform dispersion and narrow size distribution were successfully prepared. The results show that the CoPx/40-CC nanocatalyst corresponds to an average CoPxnanoparticle size of 5.3 nm,and exhibits the best catalytic activity (153 mA/cm2at 1.7 V vs RHE) among all of the CoPx/n-CC and Imp-CoPx/CC synthesized in this work. The current density of the catalysts changes as a function of the ALD-O3pulse number and exhibits volcano-like behavior. Overall,ALD could provide an alternative approach for non-noble catalysts to enhance the catalytic performance of the MOR.

    久久久久久人人人人人| 色av中文字幕| 18禁观看日本| 久久伊人香网站| 色噜噜av男人的天堂激情| 亚洲欧美激情综合另类| 久久香蕉激情| 国产高清视频在线播放一区| 一二三四在线观看免费中文在| 日韩欧美在线二视频| 老司机午夜福利在线观看视频| 在线看三级毛片| 在线看三级毛片| 久久久久性生活片| 18禁黄网站禁片午夜丰满| 国产真实乱freesex| 成年人黄色毛片网站| 一本久久中文字幕| 色噜噜av男人的天堂激情| 色在线成人网| 女人高潮潮喷娇喘18禁视频| 午夜福利高清视频| 两个人的视频大全免费| 国产av麻豆久久久久久久| 国产成人精品久久二区二区免费| 欧美中文日本在线观看视频| 国产97色在线日韩免费| 亚洲精品国产一区二区精华液| 亚洲欧洲精品一区二区精品久久久| 国产高清videossex| 午夜久久久久精精品| 国内久久婷婷六月综合欲色啪| 伦理电影免费视频| 亚洲欧美日韩高清在线视频| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区免费观看 | 国产精品av久久久久免费| 91av网站免费观看| 一个人观看的视频www高清免费观看 | 亚洲色图av天堂| 久热爱精品视频在线9| 国产爱豆传媒在线观看 | 免费在线观看黄色视频的| 老司机午夜福利在线观看视频| 日韩欧美国产在线观看| 夜夜躁狠狠躁天天躁| 色综合婷婷激情| 欧美乱色亚洲激情| 国语自产精品视频在线第100页| 岛国在线观看网站| 女同久久另类99精品国产91| 亚洲专区国产一区二区| 在线观看66精品国产| 亚洲国产高清在线一区二区三| 午夜激情福利司机影院| 午夜老司机福利片| 又爽又黄无遮挡网站| 亚洲男人的天堂狠狠| 看免费av毛片| 日韩大尺度精品在线看网址| 亚洲国产日韩欧美精品在线观看 | 午夜亚洲福利在线播放| 亚洲国产精品成人综合色| 麻豆av在线久日| 国产精华一区二区三区| 18禁黄网站禁片午夜丰满| 亚洲免费av在线视频| 亚洲国产精品久久男人天堂| 一级毛片女人18水好多| 国产精品亚洲美女久久久| 成人高潮视频无遮挡免费网站| 国产乱人伦免费视频| 日本黄色视频三级网站网址| 欧美又色又爽又黄视频| 国产一区二区在线观看日韩 | 午夜激情福利司机影院| 美女扒开内裤让男人捅视频| 可以在线观看毛片的网站| 国产片内射在线| 成人欧美大片| 欧美 亚洲 国产 日韩一| 精品少妇一区二区三区视频日本电影| 全区人妻精品视频| 男人舔奶头视频| 国产亚洲精品第一综合不卡| 午夜a级毛片| 免费在线观看完整版高清| 动漫黄色视频在线观看| 天堂影院成人在线观看| 老鸭窝网址在线观看| 99在线人妻在线中文字幕| 国产精品综合久久久久久久免费| 亚洲午夜理论影院| 日本在线视频免费播放| 又大又爽又粗| 免费看十八禁软件| 亚洲精华国产精华精| 久久99热这里只有精品18| 又黄又粗又硬又大视频| 国产精品一区二区三区四区免费观看 | 18禁国产床啪视频网站| 亚洲成人国产一区在线观看| 免费高清视频大片| 观看免费一级毛片| 色综合欧美亚洲国产小说| √禁漫天堂资源中文www| 国产成人av激情在线播放| 中文字幕高清在线视频| 女人爽到高潮嗷嗷叫在线视频| 免费在线观看视频国产中文字幕亚洲| 国产乱人伦免费视频| 全区人妻精品视频| 男人舔女人的私密视频| 99国产极品粉嫩在线观看| 日韩成人在线观看一区二区三区| 中文字幕人妻丝袜一区二区| 51午夜福利影视在线观看| 欧美黑人巨大hd| 国产成人aa在线观看| 婷婷丁香在线五月| 中文字幕最新亚洲高清| 黄色毛片三级朝国网站| 欧美性长视频在线观看| 国产精品亚洲一级av第二区| 亚洲 欧美 日韩 在线 免费| 国产精品影院久久| 色噜噜av男人的天堂激情| 天堂√8在线中文| 香蕉丝袜av| av超薄肉色丝袜交足视频| 男插女下体视频免费在线播放| 非洲黑人性xxxx精品又粗又长| 成人三级做爰电影| 可以在线观看毛片的网站| 国产精品98久久久久久宅男小说| 黄色 视频免费看| 日韩精品免费视频一区二区三区| 天堂√8在线中文| 欧美黑人巨大hd| 99久久精品国产亚洲精品| 欧美日韩亚洲国产一区二区在线观看| 伦理电影免费视频| 国产99久久九九免费精品| 国产伦在线观看视频一区| 一级黄色大片毛片| 好男人电影高清在线观看| 午夜a级毛片| 亚洲中文av在线| 99国产精品一区二区蜜桃av| 桃红色精品国产亚洲av| 国产精品美女特级片免费视频播放器 | 最好的美女福利视频网| 日韩大尺度精品在线看网址| 男女那种视频在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲人成电影免费在线| 色综合欧美亚洲国产小说| 日日夜夜操网爽| 一本综合久久免费| 精品福利观看| 999久久久国产精品视频| 国产精品香港三级国产av潘金莲| 老汉色av国产亚洲站长工具| 色播亚洲综合网| 午夜精品久久久久久毛片777| 国产精品久久电影中文字幕| 99国产精品99久久久久| 成人特级黄色片久久久久久久| 在线视频色国产色| 国产成年人精品一区二区| 亚洲狠狠婷婷综合久久图片| 国产精华一区二区三区| 亚洲成a人片在线一区二区| 日本一本二区三区精品| 国产亚洲精品一区二区www| 精品国产亚洲在线| 午夜福利欧美成人| 国产av不卡久久| 在线观看午夜福利视频| 可以免费在线观看a视频的电影网站| 国产人伦9x9x在线观看| 欧美日韩国产亚洲二区| 男人舔奶头视频| 久久精品国产亚洲av香蕉五月| 嫩草影院精品99| 亚洲人成电影免费在线| 亚洲天堂国产精品一区在线| 国产精品亚洲美女久久久| 色哟哟哟哟哟哟| 欧美+亚洲+日韩+国产| 亚洲熟妇中文字幕五十中出| 亚洲精品中文字幕一二三四区| 亚洲成a人片在线一区二区| 怎么达到女性高潮| 国产亚洲精品久久久久久毛片| 最好的美女福利视频网| av有码第一页| 18美女黄网站色大片免费观看| 国产97色在线日韩免费| 欧美最黄视频在线播放免费| 亚洲色图av天堂| 日本五十路高清| 长腿黑丝高跟| 男插女下体视频免费在线播放| 午夜福利成人在线免费观看| 国产伦一二天堂av在线观看| 好男人电影高清在线观看| 1024香蕉在线观看| 一个人观看的视频www高清免费观看 | 午夜视频精品福利| 成人国产一区最新在线观看| av天堂在线播放| 黄色视频不卡| 好男人在线观看高清免费视频| 日韩大码丰满熟妇| xxxwww97欧美| 国产麻豆成人av免费视频| 蜜桃久久精品国产亚洲av| 天堂av国产一区二区熟女人妻 | 婷婷六月久久综合丁香| 麻豆国产97在线/欧美 | 成年女人毛片免费观看观看9| 看免费av毛片| 亚洲 欧美 日韩 在线 免费| 国产免费av片在线观看野外av| 99精品欧美一区二区三区四区| 波多野结衣高清作品| 精品免费久久久久久久清纯| 久久久久九九精品影院| 亚洲精品国产一区二区精华液| 中文字幕久久专区| 国产精品99久久99久久久不卡| 国产精品久久久av美女十八| 国产一区二区在线av高清观看| 这个男人来自地球电影免费观看| 成人三级做爰电影| 麻豆一二三区av精品| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产欧美人成| 1024手机看黄色片| 久久久久精品国产欧美久久久| 精品福利观看| 无遮挡黄片免费观看| 国产精品av久久久久免费| 亚洲成人久久爱视频| 亚洲欧洲精品一区二区精品久久久| 亚洲va日本ⅴa欧美va伊人久久| 好男人电影高清在线观看| 国产一区二区在线av高清观看| 毛片女人毛片| 丰满人妻熟妇乱又伦精品不卡| 激情在线观看视频在线高清| www日本黄色视频网| 久久人妻福利社区极品人妻图片| 成人手机av| 一卡2卡三卡四卡精品乱码亚洲| 日日爽夜夜爽网站| 亚洲国产高清在线一区二区三| av在线播放免费不卡| 欧美日韩乱码在线| 性欧美人与动物交配| 亚洲av片天天在线观看| 大型黄色视频在线免费观看| 欧美黄色片欧美黄色片| 久久久久九九精品影院| 久久午夜综合久久蜜桃| 麻豆成人av在线观看| av国产免费在线观看| 精品免费久久久久久久清纯| 精品午夜福利视频在线观看一区| 亚洲欧美精品综合久久99| 一级毛片高清免费大全| 日韩欧美 国产精品| 天堂√8在线中文| 国产av又大| 啦啦啦观看免费观看视频高清| 亚洲精品中文字幕在线视频| 日韩成人在线观看一区二区三区| 18禁国产床啪视频网站| videosex国产| 欧美黑人巨大hd| 久99久视频精品免费| 狂野欧美激情性xxxx| 成人精品一区二区免费| 午夜福利高清视频| 久久婷婷人人爽人人干人人爱| 少妇裸体淫交视频免费看高清 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成伊人成综合网2020| 亚洲av电影不卡..在线观看| 怎么达到女性高潮| 欧美性长视频在线观看| 亚洲熟女毛片儿| 成人av一区二区三区在线看| 999久久久国产精品视频| 美女午夜性视频免费| 一二三四社区在线视频社区8| 中文字幕熟女人妻在线| 国产成人影院久久av| 一进一出抽搐动态| 亚洲第一欧美日韩一区二区三区| 制服人妻中文乱码| 韩国av一区二区三区四区| 亚洲 欧美 日韩 在线 免费| 欧美在线黄色| 88av欧美| 狠狠狠狠99中文字幕| 欧美人与性动交α欧美精品济南到| 精品午夜福利视频在线观看一区| 国产成人精品久久二区二区免费| 免费无遮挡裸体视频| 国产爱豆传媒在线观看 | 午夜激情福利司机影院| 久久久久国产一级毛片高清牌| 精品久久久久久久久久久久久| 人人妻人人看人人澡| 小说图片视频综合网站| 99国产极品粉嫩在线观看| av在线播放免费不卡| 亚洲熟妇熟女久久| 18禁美女被吸乳视频| 国产精品一及| 国产成人啪精品午夜网站| 亚洲国产高清在线一区二区三| 变态另类丝袜制服| 久久婷婷人人爽人人干人人爱| 久久婷婷成人综合色麻豆| 国产欧美日韩精品亚洲av| 九九热线精品视视频播放| 久久中文看片网| 国产精品免费一区二区三区在线| 国产精品久久久久久精品电影| 美女午夜性视频免费| 男女下面进入的视频免费午夜| 日韩 欧美 亚洲 中文字幕| 久久精品影院6| 国产伦人伦偷精品视频| 嫁个100分男人电影在线观看| 后天国语完整版免费观看| 可以免费在线观看a视频的电影网站| 国产精品一区二区免费欧美| 日韩精品中文字幕看吧| 亚洲电影在线观看av| 好男人电影高清在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 在线观看日韩欧美| 法律面前人人平等表现在哪些方面| 正在播放国产对白刺激| 不卡av一区二区三区| 一区二区三区高清视频在线| 欧美+亚洲+日韩+国产| 88av欧美| cao死你这个sao货| 午夜精品久久久久久毛片777| 又爽又黄无遮挡网站| 久久久久精品国产欧美久久久| 中文字幕久久专区| 免费看日本二区| x7x7x7水蜜桃| 国内精品久久久久精免费| 亚洲人成网站在线播放欧美日韩| 国产又色又爽无遮挡免费看| 琪琪午夜伦伦电影理论片6080| 两性夫妻黄色片| 国产在线精品亚洲第一网站| 三级国产精品欧美在线观看 | 悠悠久久av| 欧美性猛交黑人性爽| 午夜老司机福利片| 久久精品影院6| 久久久久亚洲av毛片大全| 丰满的人妻完整版| 我要搜黄色片| 国模一区二区三区四区视频 | 欧美日韩福利视频一区二区| 亚洲人成网站高清观看| 精品久久久久久久末码| 一进一出抽搐动态| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 国产蜜桃级精品一区二区三区| 国产精品久久久久久人妻精品电影| 在线观看午夜福利视频| 国产单亲对白刺激| 日本在线视频免费播放| 久久香蕉精品热| 一进一出好大好爽视频| 亚洲一码二码三码区别大吗| 成人18禁在线播放| 亚洲自偷自拍图片 自拍| 在线观看一区二区三区| 久久久久久久精品吃奶| 国产伦人伦偷精品视频| 两人在一起打扑克的视频| 精品午夜福利视频在线观看一区| 制服人妻中文乱码| 99久久99久久久精品蜜桃| 国产成人av教育| 中出人妻视频一区二区| 高清在线国产一区| 亚洲熟女毛片儿| 免费av毛片视频| 欧美成人性av电影在线观看| 欧美中文日本在线观看视频| 99国产精品一区二区三区| 2021天堂中文幕一二区在线观| videosex国产| 日本一区二区免费在线视频| 精品久久久久久久人妻蜜臀av| 麻豆久久精品国产亚洲av| 亚洲国产欧美人成| 欧美黄色淫秽网站| 国产精品国产高清国产av| 国产av不卡久久| 亚洲人成电影免费在线| 波多野结衣巨乳人妻| 精品人妻1区二区| 露出奶头的视频| 日本一区二区免费在线视频| 色综合婷婷激情| 亚洲欧美一区二区三区黑人| 18美女黄网站色大片免费观看| 欧美久久黑人一区二区| 日韩欧美国产一区二区入口| 大型av网站在线播放| 高清在线国产一区| 神马国产精品三级电影在线观看 | 欧美中文日本在线观看视频| 亚洲人成网站在线播放欧美日韩| 亚洲中文av在线| 久久久久精品国产欧美久久久| 91字幕亚洲| 丝袜美腿诱惑在线| 欧美另类亚洲清纯唯美| 国产精品久久久久久久电影 | 亚洲av成人精品一区久久| 日韩精品青青久久久久久| 搡老妇女老女人老熟妇| 午夜福利成人在线免费观看| 精品一区二区三区视频在线观看免费| 久久精品综合一区二区三区| 精品久久蜜臀av无| 三级男女做爰猛烈吃奶摸视频| 变态另类丝袜制服| 中出人妻视频一区二区| 欧美三级亚洲精品| or卡值多少钱| 成人18禁在线播放| 国产爱豆传媒在线观看 | 人人妻人人看人人澡| 巨乳人妻的诱惑在线观看| 麻豆国产av国片精品| 国产亚洲精品av在线| 国产一区二区在线观看日韩 | 搞女人的毛片| 美女高潮喷水抽搐中文字幕| 老司机午夜十八禁免费视频| 欧美乱色亚洲激情| 十八禁网站免费在线| 国产片内射在线| 男人舔女人的私密视频| 日本 欧美在线| 搞女人的毛片| 久久久精品欧美日韩精品| 亚洲人成网站高清观看| 欧美在线黄色| 给我免费播放毛片高清在线观看| 中文字幕av在线有码专区| 久久婷婷人人爽人人干人人爱| x7x7x7水蜜桃| 少妇粗大呻吟视频| 岛国在线免费视频观看| 国产成人av激情在线播放| 18禁黄网站禁片免费观看直播| 国产成人一区二区三区免费视频网站| 一本大道久久a久久精品| 一二三四社区在线视频社区8| 免费看日本二区| 999久久久国产精品视频| 欧美成人一区二区免费高清观看 | 黄色毛片三级朝国网站| 欧美午夜高清在线| 久久久国产成人精品二区| 黄色成人免费大全| 免费电影在线观看免费观看| 99精品久久久久人妻精品| 激情在线观看视频在线高清| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久久久久久久| 久久精品人妻少妇| 中文字幕高清在线视频| 国产av一区二区精品久久| 很黄的视频免费| 精品国产亚洲在线| a级毛片在线看网站| 一本综合久久免费| 天堂√8在线中文| 久久久久国产一级毛片高清牌| 久热爱精品视频在线9| 欧美性猛交黑人性爽| 中文在线观看免费www的网站 | 成年人黄色毛片网站| 欧美精品啪啪一区二区三区| av有码第一页| 国产精品野战在线观看| 十八禁网站免费在线| 中文在线观看免费www的网站 | 啦啦啦韩国在线观看视频| 少妇被粗大的猛进出69影院| 国产日本99.免费观看| 夜夜看夜夜爽夜夜摸| 在线观看免费日韩欧美大片| 精品国产亚洲在线| 国产亚洲av嫩草精品影院| 精品福利观看| 两个人视频免费观看高清| 激情在线观看视频在线高清| 久久久久久久精品吃奶| 国产精品一区二区精品视频观看| 国产成人精品无人区| 91九色精品人成在线观看| 亚洲人成77777在线视频| 日日爽夜夜爽网站| 欧美黄色片欧美黄色片| 丰满人妻熟妇乱又伦精品不卡| 巨乳人妻的诱惑在线观看| 精品午夜福利视频在线观看一区| 一级a爱片免费观看的视频| 国产区一区二久久| 亚洲美女黄片视频| 女人被狂操c到高潮| 在线视频色国产色| 老司机午夜十八禁免费视频| 搡老岳熟女国产| 亚洲精品国产一区二区精华液| 国产一区二区在线观看日韩 | 亚洲美女黄片视频| www国产在线视频色| 色在线成人网| 亚洲一区高清亚洲精品| 村上凉子中文字幕在线| 老司机午夜十八禁免费视频| 日韩成人在线观看一区二区三区| 99久久国产精品久久久| 精品电影一区二区在线| 中文字幕精品亚洲无线码一区| 日韩精品青青久久久久久| 成年免费大片在线观看| 日韩成人在线观看一区二区三区| 久久草成人影院| 欧美黑人精品巨大| 国产激情久久老熟女| 丰满的人妻完整版| 日本一本二区三区精品| АⅤ资源中文在线天堂| 看免费av毛片| 舔av片在线| 成人永久免费在线观看视频| 免费看美女性在线毛片视频| 搞女人的毛片| 一个人观看的视频www高清免费观看 | 在线免费观看的www视频| www.熟女人妻精品国产| 国产精品免费一区二区三区在线| 黄色a级毛片大全视频| 久久精品国产清高在天天线| 级片在线观看| 亚洲精品色激情综合| 成人欧美大片| 欧美性猛交╳xxx乱大交人| 久久精品亚洲精品国产色婷小说| 90打野战视频偷拍视频| 国产午夜精品论理片| 国产成人精品久久二区二区91| 黑人操中国人逼视频| 女生性感内裤真人,穿戴方法视频| 日日夜夜操网爽| 国产一区二区三区在线臀色熟女| 精品国内亚洲2022精品成人| 琪琪午夜伦伦电影理论片6080| 国产伦在线观看视频一区| 亚洲aⅴ乱码一区二区在线播放 | a在线观看视频网站| 久久婷婷成人综合色麻豆| 麻豆成人午夜福利视频| 身体一侧抽搐| aaaaa片日本免费| 18禁黄网站禁片免费观看直播| 欧美国产日韩亚洲一区| 欧美午夜高清在线| 可以在线观看毛片的网站| 亚洲精品粉嫩美女一区| 一区二区三区国产精品乱码| 我要搜黄色片| 亚洲av五月六月丁香网| 午夜福利视频1000在线观看| 国产一区二区三区视频了| 亚洲成a人片在线一区二区| 一区福利在线观看| 正在播放国产对白刺激| АⅤ资源中文在线天堂| 国产伦一二天堂av在线观看| 最近最新中文字幕大全免费视频| 日韩精品中文字幕看吧| 男插女下体视频免费在线播放| 18禁观看日本| 国产v大片淫在线免费观看| 久久精品国产清高在天天线| 看片在线看免费视频| 国产精品av久久久久免费| 天天一区二区日本电影三级| 国产成人影院久久av| 久久婷婷成人综合色麻豆| 国产亚洲欧美98| 久久亚洲精品不卡|