• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NiMoO4納米線@ZnCo MOF(350)核殼結(jié)構(gòu)復(fù)合材料的制備及其析氧電催化性能

    2022-12-06 06:29:38魏學(xué)東喬雙燕
    關(guān)鍵詞:核殼材料科學(xué)電催化

    魏學(xué)東 劉 楠 喬雙燕

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,太原 030031)

    0 Introduction

    As resource and environmental issues become more and more prominent,sustainable clean energy has gradually become an alternative solution,among which hydrogen energy has attracted more and more attention due to its high efficiency,cleanliness,and recyclability[1-3].And water electrolysis is considered to be one of the most promising ways to produce hydrogen energy.However,due to the sluggish kinetics of the oxygen evolution reaction(OER),the reaction rate of water electrolysis is limited[4],therefore,it is necessary to design effective electrocatalysts to reduce the OER overpotential.So far,the most efficient electrocatalysts for OER are still noble metal catalysts such as RuO2and IrO2,but their high price and extremely scarce resources hinder their wide commercial application[5-6].Therefore,there is an urgent need to develop inexpensive and abundant non-noble metal OER electrocatalysts.MOFs have attracted extensive attention due to their rich structural diversity and large specific surface area[7-8].MOFs are gradually emerging as reliable templates or precursors for the preparation of metal-active nanomaterials and porous carbons and their composites[9].Researchers have done a lot of work on OER electrocatalysts using MOFs as direct templates or precursors to composite low-dimensional inorganic nanomaterials[10-13].For example,Mu and colleagues[14]reported a Mo-N/C@MoS2multifunctional electrocatalyst synthesized by vertically growing MoS2nanosheets encapsulated in a ZIF structure and then carbonized at high temperature.The hybrid structure exhibited excellent electrocatalytic activity and stability for hydrogen evolution reaction(HER),OER and oxygen reduction reaction(ORR).By direct annealing of reduced graphene oxide(rGO)-coated core-shell bimetallic zeolite imidazole framework,Chen et al.[15]developed a new material (Co@N-CNTs@rGO) with ultrafine Co nanoparticles coated on nitrogen-doped carbon nanotubes(N-CNTs).As-prepared Co@N-CNTs@rGO composite exhibited good HER electrocatalytic activity due to the uniform distribution of Co nanoparticles as well as the large specific surface area and abundant porosity.In electrolytes of 1 mol·L-1KOH and 0.5 mol·L-1H2SO4,the composite exhibited the overpotentials of only 108 and 87 mV at a current density of 10 mA·cm-2,respectively,outperforming most other reported Co-based electrocatalysts.Wang et al.[16]reported a novel N-doped carbon CoP particle/carbon nanotube composite(CNT-NC-CoP),which was developed by in situ nucleation and growth of ZIF67 nanoparticles on carbon nanotubes,which are then carbonized and phosphatized.The unique hierarchical structure endows the CNT-NC-CoP composite with a high specific surface area and abundant active sites.The ultra-low overpotential of 251 mV can be achieved at a current density of 10 mA·cm-2.Wan et al.[17]reported one-dimensional and two-dimensional porous Mo2C nanostructured electrocatalysts.Synthesized by coating one-dimensional MoO3nanowires and two-dimensional MoO3nanosheets with ZIF67 followed by high-temperature carbonization,the obtained Mo2C nanostructures exhibited low onset overpotentials of 25 and 36 mV in 0.1 mol·L-1HClO4and 0.1 mol·L-1KOH solutions,respectively,and small Tafel slopes of 40 and 47 mV·dec-1,respectively.The catalysts also showed excellent stability.

    Based on the above reports,we first synthesized NiMoO4nanowires(NWs)by a hydrothermal method,and then in situ grew a layer of ZnCo MOF nanocrystals on the NiMoO4NWs by room temperature liquid phase synthesis to form a coaxial core-shell structure.Then after a low-temperature heat treatment at 350℃(the sample was named NiMoO4NWs@ZnCo MOF(350)),it was found that except for a very small amount of Co3O4quantum dots new phase was inside the ZnCo MOF,the structure and morphology of the composite did not change significantly.The pyrolysis at lower temperatures promotes the generation of new phases,but also basically preserves the original framework structure of MOF,forming a new MOF core-shell structure with more abundant interfaces.The composite electrocatalyst was tested on an inert glassy carbon electrode in 1 mol·L-1KOH,and NiMoO4NWs@ZnCo MOF(350)had an overpotential of only 360 mV at a current density of 10 mA·cm-2and maintained good stability for 30 000 s.

    1 Experimental

    1.1 Material synthesis

    1.1.1 Preparation of NiMoO4NWs

    The preparation method of NiMoO4NWs was mainly referred to in the literature[18].1 mmol Ni(NO3)2·6H2O and 1 mmol sodium molybdate were dissolved in 25 mL of deionized water,and after it was completely dissolved,the solution was transferred to a 50 mL reactor,kept at 150℃for 6 h,and the product was collected by centrifugation,washed three times with C2H5OH and dried the precipitate in vacuum at 40℃.

    1.1.2 Preparation of NiMoO4NWs@ZnCo MOF composites

    10 mg NiMoO4NWs was dissolved in 20 mL methanol,sonicated at 100 kHz for 30 min,and then 38 mg Zn(NO3)2·6H2O and 112 mg Co(NO3)2·6H2O were dissolved in the above solution to form solution A,followed by 40 mg polyvinylpyrrolidone(PVP)and 300 mg of dimethylimidazole were dissolved in 10 mL of methanol to form solution B.Solution B was poured into the solution A,left standing at room temperature for 2 h,the product was collected by centrifugation and washed three times with methanol to precipitate.NiMoO4NWs@ZnCo MOF composites were obtained.

    1.1.3 Preparation of NiMoO4NWs@ZnCo MOF(350)

    NiMoO4NWs@ZnCo MOF was placed in a porcelain boat,and high-purity argon gas was first passed through the quartz tube for 1 h at room temperature to remove the residual air in the quartz tube,and then kept at 350℃for 3 h.NiMoO4NWs@ZnCo MOF(350)was prepared well.

    1.2 Structural characterization

    Structural characterizations were carried out on various large-scale analytical instruments.Among them,X-ray diffraction analysis(XRD)was performed on a Philips 1830 diffractometer equipped with a Cu Kα radiation source,a 2θ range of 5°-90°,a working voltage of 40 kV,a working current of 40 mA,and a speed of 20(°)·min-1.Using field emission scanning electron microscopy(FE-SEM,SU-8010)to analyze the surface topography of the samples at the operating voltage of 5.0 kV.Nanoscale microscopic topography could be analyzed on transmission electron microscopy(TEM,JEM-2100F)and high-resolution transmission electron microscopy(HRTEM)at an accelerating voltage of 200 kV.X-ray photoelectron spectroscopy (XPS)was obtained using a K-Alpha spectrometer equipped with an Al Kα X-ray source to analyze the surface chemical states and electronic states of various elements.

    1.3 Electrochemical performance test

    All electrochemical performance tests of the material samples were carried out with a three-electrode system(the material electrode was the working electrode,the platinum foil was the counter electrode,and the Ag/AgCl was the reference electrode).The test instrument used Shanghai Chenhua Electrochemical Workstation CHI660E.It mainly includes linear sweep voltammetry(LSV),Tafel slope,cyclic voltammetry,electric double layer capacitance(Cdl),chronoamperometry,etc.Among them,the scanning speed of OER catalytic performance tested by LSV was 10 mV·s-1,and the voltage range was 1-2 V(vs RHE);The current density of 10 mA·cm-2was used for stability test by chronopotentiometry,and the time was set to 12 h.

    2 Results and discussion

    2.1 Structure and morphology characterization

    Fig.1 is a schematic diagram of the synthesis process for NiMoO4NWs@ZnCo MOF(350)electrocatalyst.First,NiMoO4NWs were synthesized under hydrothermal conditions,and then 10 mg of the synthesized NiMoO4NWs were dissolved in a methanol solution of cobalt nitrate and zinc nitrate,and methanol solution dissolved with PVP and dimethylimidazole was added to it.The mixed solution was left at room temperature for 2 h,and the NiMoO4NWs@ZnCo MOF material was obtained by centrifugal washing,and the material was calcined at 350℃for 3 h in a high-purity argon flow to obtain the final NiMoO4NWs@ZnCo MOF(350)electrocatalyst.

    Fig.1 Schematic diagram of the preparation process of NiMoO4NWs@ZnCo MOF(350)

    As shown in Fig.2a,as-synthesized NiMoO4NWs@ZnCo MOF was tested on an electrochemical workstation and found that the overpotentials were 420 and 540 mV at current densities of 10 and 50 mA·cm-2,respectively.Which is superior to the electrocatalytic performance of NiMoO4NWs and ZnCo MOF monomer samples.Therefore,it is judged that the twophase interface enhances the electrocatalytic activity,and although the electrocatalytic activity of NiMoO4NWs@ZnCo MOF is not high,it is still a potential MOF composite.To further improve its electrical conductivity and electrochemical performance,NiMoO4NWs@ZnCo MOF was subjected to pyrolysis experiments at 350,450,550,and 650℃,respectively.And it was found that the samples had the smallest overpotential at 350℃ (349 mV at 10 mA·cm-2,470 mV at 50 mA·cm-2)in Fig.2b.So NiMoO4NWs@ZnCo MOF(350)was selected as the research object to systematically study the structure and electrochemical performance.

    Fig.2 (a)LSV plots of NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF;(b)LSV plots of the pyrolyzed NiMoO4NWs@ZnCo MOF at different temperatures

    Fig.3a shows the XRD patterns of as-synthesized NiMoO4,which is basically consistent with the NiMoO4·xH2O standard diffraction card(PDF No.13-0128).The XRD pattern showed that an inconsistent small peak at 13.56°existed in real synthetic samples[18-19].So it demonstrated the successful synthesis of NiMoO4NWs.It can be seen from Fig.3a that for the pure ZnCo MOF,the diffraction peaks are consistent with the diffraction peak positions and intensities of the ZnCo MOF crystals reported in the literature[20-21],and no impurity peaks were observed,indicating that the synthesized ZnCo MOF sample has higher crystallinity.For NiMoO4NWs@ZnCo MOF,except for the most diffraction peaks of ZnCo MOF,only a weaker peak of NiMoO4NWs appeared in the composite.The NiMoO4NWs monomer itself has strong crystallinity,which indicates the experimental fact that NiMoO4NWs were tightly coated by ZnCo MOF to form a coreshell structure.All the above results indicate the successful synthesis of the NiMoO4NWs@ZnCo MOF precursor.As shown in Fig.3b,NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF were pyrolyzed at 350℃,and it was found that compared with the precursor,the characteristic peaks of the monomers like NiMoO4NWs(350)and ZnCo MOF(350)can be well maintained,indicating that the thermal stability of the monomer sample is good,especially for the ZnCo MOF(350)which does not show a lot of coordination bond breakage and framework collapse.The intensity of its diffraction peaks decreased significantly compared with that before calcination.At 350℃,NiMoO4NWs@ZnCo MOF(350)obviously underwent a little pyrolysis,a small amount of new Co3O4phase(PDF No.43-1003)appeared in the composite,and the peaks of the NiMoO4NWs phase appeared at several positions and the intensity increased,indicating that a little pyrolysis caused the ZnCo MOF shell to become loose and porous,and the diffraction peaks of the NiMoO4NWs core appeared stronger.However,the composite sample still kept the framework structure of MOF unchanged,although the intensity of its diffraction peaks was greatly reduced.However,when the pyrolysis temperature was increased to 450℃according to XRD patterns in Fig.S1(Supporting information),the composite structure was basically destroyed,and it mainly evolved into another composite structure of a new NiMoO4(PDF No.45-0142)and CoO(PDF No.43-1004).In addition,the structure of pyrolyzed samples at 450,550,and 650℃was consistent and different from the pyrolyzed sample at 350℃,so the special structure of NiMoO4NWs@ZnCo MOF(350)determined its excellent catalytic activity.

    Fig.3 (a)XRD patterns of NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF;(b)XRD patterns of NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)

    The microscopic morphology is shown in Fig.4.It can be observed from Fig.4a that the morphology of NiMoO4NWs was uniform one-dimensional NWs,and the diameter of the NWs was about 50 nm.Then,after adding the methanol solution of 2-methylimidazole and PVP to the methanol suspension of NiMoO4NWs,Zn(NO3)2·6H2O and Co(NO3)2·6H2O,ZnCo MOF nanocrystals were found to grow rapidly and attach to NiMoO4NWs.On the surface of NiMoO4NWs,a composite electrocatalyst with ZnCo MOF wrapped around NiMoO4NWs was obtained.

    The SEM image of the composite electrocatalyst is shown in Fig.4c.It can be clearly observed that for the NiMoO4NWs@ZnCo MOF composite electrocatalyst,the growth of ZnCo MOF was strictly restricted to the surface of NiMoO4NWs,and a coating layer with relatively uniform thickness was formed.The SEM image in Fig.4b is the ZnCo MOF nanocrystals synthesized separately.ZnCo MOF exhibited a good dodecahedral crystal form,with uniform morphology,sharp edges and corners,and a smooth surface,and the particle size was about 400 nm.From the SEM image of NiMoO4NWs@ZnCo MOF(350)in Fig.4d,the morphology of the pristine ZnCo MOF was largely preserved,indicating that the MOF framework is not completely collapsed.The morphology change of the pyrolytic sample at 650℃was also studied in Fig.S2,and it was found that the structure collapse was aggravated,and the pyrolysis products of some ZnCo MOF precursors were aggregated.

    Fig.4 SEM images of(a)NiMoO4NWs,(b)ZnCo MOF,(c)NiMoO4NWs@ZnCo MOF,and(d)NiMoO4NWs@ZnCo MOF(350)

    To deeply explore the size,structure,and morphology of the synthesized electrocatalysts,TEM and HRTEM tests were carried out(Fig.5).Fig.5c is the TEM image of NiMoO4NWs@ZnCo MOF(350).Compared with NiMoO4NWs@ZnCo MOF in Fig.5a,the composite sample after pyrolysis well-maintained precursor morphologies of one-dimensional NWs before calcination.And the ZnCo MOF crystal shell appeared as uniformly dispersed nanoparticles without obvious agglomeration,which is because a little pyrolysis occurs during the calcination at 350℃,and the pore structure of MOF as a template and the gas generated after thermal decomposition also play a good role in inhibiting the crystal polymerization.Fig.5b is the HRTEM image of NiMoO4NWs@ZnCo MOF.It can be seen that the lattice fringes of NiMoO4NWs were clear,marked as the NiMoO4·xH2O phase with a lattice spacing of 0.299 nm,which is closely related to the ZnCo MOF phase.The interface was almost seamless.The high-resolution image of NiMoO4NWs@ZnCo MOF(350)in Fig.5d after pyrolysis showed a similar structure,but a small amount of Co3O4marked with a lattice spacing of 0.244 nm appeared at the local position of the ZnCo MOF pyrolysis phase,apparently,the structure is consistent with the XRD analysis results in Fig.3.The two-phase interface continues to behave as a tight connection,and there should be chemical bonds other than intermolecular forces.Further elemental mapping of NiMoO4NWs@ZnCo MOF(350)in Fig.5e-5l showed that C,N,O,Co,Zn,Ni,and Mo elements co-existed in the sample and exhibited an obvious coreshell structure.And the Zn and Co elements of ZnCo MOF were densely distributed on the longitudinal axis of the NWs and distributed on the shell of the coreshell structure,and the Ni and Mo elements of NiMoO4NWs were obviously distributed on the core of the coreshell structure.

    Fig.5 (a)TEM image and(b)HETEM image of NiMoO4NWs@ZnCo MOF;(c)TEM image,(d)HETEM image,(e)STEM image,and(f-l)elemental mappings of NiMoO4NWs@ZnCo MOF(350)

    In order to further characterize the valence states of elements in NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF(350)composites,the XPS spectra were detected and the peaks were fitted.As shown in Fig.6a,the characteristic peaks of Ni2p3/2and Ni2p1/2for NiMoO4NWs@ZnCo MOF were 855.5 and 873.1 eV,respectively,which can be assigned to Ni2+.For NiMoO4NWs@ZnCoMOF(350),the characteristic peak of Ni2+remained unchanged but shifted by 0.5 eV[22].As shown in Fig.6b,for NiMoO4NWs@ZnCo MOF,the Mo3d5/2peak and the Mo3d3/2characteristic peak of the Mo3d XPS spectrum were located at 232.2 and 235.3 eV,respectively,indicating the existence of Mo6+[23].For the pyrolyzed NiMoO4NWs@ZnCo MOF(350),the valence state of Mo6+was unchanged and shifted by 0.5 eV.In the XPS spectrum of Zn2p,the peaks at 1 021.2 and 1 044.3 eV were characteristic peaks of Zn2p3/2and Zn2p1/2,respectively(Fig.6c)[24],corresponding to the Zn2+in NiMoO4NWs@ZnCo MOF.While for NiMoO4NWs@ZnCo MOF(350),the characteristic peak of Zn2+was unchanged but shifted negatively by 0.5 eV.The positive or negative shifts of the characteristic peaks of the above metal ions indicate that the two-phase interface of NiMoO4NWs and ZnCo MOF has stronger electronic interactions after pyrolysis[25-26].

    In the Co2p spectrum of NiMoO4NWs@ZnCo MOF,the binding energies at 780.9 and 796.3 eV belong to Co2p2/3and Co2p1/2,respectively,indicating that the cobalt element exists in the form of Co2+[27](Fig.6d).For NiMoO4NWs@ZnCo MOF(350)after pyrolysis,the main valence peak remained Co2+,but shifted negatively by 0.7 eV compared with that before pyrolysis,indicating that the electronic interaction at the interface is more intense for the phase after pyrolysis.Co2p3/2and Co2p1/2corresponded to the characteristic peaks of Co3+at 780.2 and 795.4 eV,respectively,indicating that Co2+and Co3+coexist in NiMoO4NWs@ZnCo MOF(350).It marks the appearance of a new phase of Co3O4[28],which is consistent with the analysis results in Fig.3b and 5d.The results show that various metal ions coexist in the composite,and their presence accelerates the electron transport speed and enhances its catalytic activity.

    The binding energy peaks of C1s in NiMoO4NWs@ZnCo MOF are shown in Fig.6e.With the appearance of the high-temperature pyrolysis Co3O4phase,four binding energy peaks appeared at 284.5,285.1,286.2 and 288.5 eV,which can correspond to C—C(sp2),C—N,C—O—Mo,andC=O bonds,respectively[29-31].It shows that a small amount of C=O bonds were produced by pyrolysis.In addition,as shown in Fig.6f,530.3,531.2,531.8,and 532.7 eV appeared in O1s of NiMoO4NWs@ZnCo MOF,corresponding to Mo—O bond(or Ni—O bond),oxygen vacancies(oxygen defects),C—O—Mo bond,and hydroxide(or adsorbed oxygen or moisture)[32-33].For NiMoO4NWs@ZnCo MOF(350),the peaks of O1s can be separated into five peaks at 529.4,530.3,531.2,531.8,and 532.7 eV.Except for the four peaks,before pyrolysis was retained,the binding energy peak at 529.4 eV corresponds to the spinel-type cobalt oxide(i.e.,the Co3O4phase).Through the above analysis of the XPS spectra,for NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF(350),chemical bonds C—O—Mo and a large number of oxygen vacancies were generated at the monomer phase heterointerface,which can become the source of active sites and increase the electrocatalytic activity of the composites,especially NiMoO4NWs@ZnCo MOF(350),in addition to retaining the interfacial chemical bonds and oxygen vacancies before pyrolysis,partial pyrolysis also leads to the formation of Co3O4phase,which also leads to the formation of a new phase interface and further increases the active sites of the heterointerface.

    Fig.6 XPS spectra of(a)Ni2p,(b)Mo2d,(c)Zn2p,(d)Co2p,(e)C1s,and(f)O1s in NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF NWs(350)

    2.2 Electrochemical performance

    The OER performance was performed in 1 mol·L-1KOH solution using a conventional three-electrode system.The LSV curves are shown in Fig.7a,when the current density reached 10 mA·cm-2,the overpotential of NiMoO4NWs@ZnCo MOF(350)was only 360 mV,which was lower than 700 mV of the single-component NiMoO4NWs(350)and 430 mV of ZnCo MOF(350).Tafel slope is an essential parameter for describing the kinetic reaction mechanism of catalysts,which is calculated according to the Tafel equation:η=blg j+a(η is the overpotential,j represents the current density and b belongs to the Tafel slope).To further investigate the OER kinetic properties of the samples,Fig.7b shows the Tafel slopes of the three samples.The Tafel slope of NiMoO4NWs@ZnCo MOF(350)was 62 mV·dec-1,which was much smaller than 294 mV·dec-1of NiMoO4NWs(350)and 98 mV·dec-1of ZnCo MOF(350).It reveals that NiMoO4NWs@ZnCo MOF(350)has a faster electrocatalytic reaction rate of oxygen evolution.Fig.7c is the stability curves of NiMoO4NWs@ZnCo MOF(350)and the single components.It can be observed that the current density of the composite sample NiMoO4NWs@ZnCo MOF(350)was the highest close to 10 mA·cm-2under the same overpotential,and can be maintained for 30 000 s with basically no decay.The stability curve for a longer time was further studied,and it was found that after 50 000 s,the initial current density of the composite sample was attenuated,but still retained at 67%,as shown in Fig.S3.Then,the electrochemical impedance spectroscopy(EIS)of the electrocatalyst was tested.The smaller semicircular arc diameter represents a smaller charge transfer resistance(Rct)and therefore a faster OER.NiMoO4NWs@ZnCo MOF(350)in Fig.7d had a smaller impedance radius and a charge transfer resistance of about 73.4 Ω,which was lower than that of NiMoO4NWs(350)(239.4 Ω)and ZnCo MOF(350)(86.37 Ω).

    Fig.7 (a)LSV plots,(b)Tafel slope plots,(c)stability plots,and(d)impedance plots of NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)

    The Cdlof the electrocatalyst which can be used to compare the size of the electrochemical specific surface area was calculated by CV test.The electrochemical-specific surface area is proportional to the Cdl.The larger the electrochemical specific surface area of the catalyst,the larger the Cdl,which means the more catalytic active sites and the better catalytic performance of the catalyst.As shown in Fig.8a-8c,NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)were tested at different scanning speeds of 10-100 mV·s-1.The obtained CV curves were then linearly fitted to obtain the Cdl.As shown in Fig.8d,the Cdlof NiMoO4NWs@ZnCo MOF(350),NiMoO4NWs(350),and ZnCo MOF(350)were 9.535,0.162,and 4.195 mF·cm-2,respectively.The results once again proved that NiMoO4NWs@ZnCo MOF(350)had a higher specific surface area for electrochemical activity.

    Fig.8 CV curves of(a)NiMoO4NWs(350),(b)ZnCo MOF(350),and(c)NiMoO4NWs@ZnCo MOF(350)in a non-Faradaic range;(d)Plots of the current density difference(Δj,Δj=ja-jc,where jaand jcrepresent the positive and negative current densities,respectively)against scan rate(the slope is twice that of Cdlin the Fig.8d)

    At present,the accepted OER mechanism[34]for alkaline conditions can be expressed as:

    In the above reaction formula,*represents the active site of the catalyst,and O*,HO*,and HOO*represent three different oxygen-containing intermediates.According to the reaction mechanism,and all the above structural and electrochemical analysis results,several active sites or site sources such as C—O—Mo bond,oxygen vacancies,new Co3O4phase,all of the heterophase interfaces,and new increase specific surface of NiMoO4NWs@ZnCo MOF(350)are more likely to adsorb more hydroxyl oxygen atoms and achieve faster conversion of oxygen molecules.

    To further study the changes in the morphology and electrocatalytic performance of the sample after the stability test,Fig.9a shows the SEM image of NiMoO4NWs@ZnCo MOF(350)after the stability test.Compared with Fig.4d,the morphology of the composite sample before and after the stability test did not change significantly,showing good physical stability characteristics.In Fig.9b,the changes of the LSV curves before and after the stability test were observed,and it was found that the overpotential at 10 mA·cm-2hardly increased,while the overpotential at 50 mA·cm-2increased by less than 20 mV,indicating that the stability test did not significantly alter the electrocatalytic activity of NiMoO4NWs@ZnCo MOF(350).

    Fig.9 (a)SEM image after stability test and(b)LSV curves before and after stability test for NiMoO4NWs@ZnCo MOF(350)

    3 Conclusions

    In this experiment,a new type of ZnCo MOF nanoparticles was successfully synthesized by in situ growth synthesis on NiMoO4NWs and then carbonized.The pyrolysis temperature of 350℃maintained the morphology of the precursor well,and a small amount of the Co3O4phase appeared.The appearance of the Co3O4phase made the surface of the material more rough,loose,and porous,which is beneficial to increase the effective contact area between the catalyst and the electrolyte.Moreover,the unique core-shell structure endows the material with a high specific surface area,abundant exposed active sites,fast ion diffusion paths,and good electrical conductivity.Therefore,the electrocatalyst exhibited a low overpotential of 360 mV at a current density of 10 mA·cm-2and maintained longterm durability of 30 000 s.

    Supporting information is available at http://www.wjhxxb.cn

    Acknowledgment:This study was supported by the General Project of Basic Research Program of Shanxi Province(Grant No.20210302123332),the National Natural Science Foundation of China(Grant No.22178204),and the 1331 Engineering of Shanxi Province.

    猜你喜歡
    核殼材料科學(xué)電催化
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    核殼型量子點(diǎn)(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應(yīng)用
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點(diǎn)的水熱法合成及其光致發(fā)光性能
    九九久久精品国产亚洲av麻豆| 如日韩欧美国产精品一区二区三区 | 日韩制服骚丝袜av| 日本av免费视频播放| 汤姆久久久久久久影院中文字幕| 久久av网站| 国产成人精品一,二区| 亚洲av在线观看美女高潮| 亚洲精品乱码久久久v下载方式| 美女xxoo啪啪120秒动态图| 噜噜噜噜噜久久久久久91| 日本午夜av视频| 久久久久久久久大av| 日韩中文字幕视频在线看片| 又粗又硬又长又爽又黄的视频| av又黄又爽大尺度在线免费看| 日本色播在线视频| 日本与韩国留学比较| 大话2 男鬼变身卡| 亚洲av欧美aⅴ国产| 亚洲第一区二区三区不卡| 黑丝袜美女国产一区| 欧美 日韩 精品 国产| 乱人伦中国视频| 亚洲av综合色区一区| 久久精品国产亚洲av天美| 女的被弄到高潮叫床怎么办| 国产一级毛片在线| 久久精品国产亚洲av天美| 自线自在国产av| 国产无遮挡羞羞视频在线观看| 欧美另类一区| 国产国拍精品亚洲av在线观看| 少妇人妻久久综合中文| 男女边吃奶边做爰视频| 国产成人精品婷婷| 人人妻人人添人人爽欧美一区卜| 国产成人免费无遮挡视频| 能在线免费看毛片的网站| 大香蕉97超碰在线| 一边亲一边摸免费视频| av国产精品久久久久影院| 久久ye,这里只有精品| 久久久久久久精品精品| 久久青草综合色| 久久久久人妻精品一区果冻| 777米奇影视久久| 国产男人的电影天堂91| 久久人人爽人人爽人人片va| 欧美亚洲 丝袜 人妻 在线| 91aial.com中文字幕在线观看| 一区二区三区精品91| 人人妻人人澡人人看| 在线观看免费日韩欧美大片 | 午夜日本视频在线| 久久国产乱子免费精品| 国产精品国产三级专区第一集| 久久99蜜桃精品久久| 在线观看av片永久免费下载| 国产午夜精品久久久久久一区二区三区| 一区在线观看完整版| 哪个播放器可以免费观看大片| 日日啪夜夜撸| 国产真实伦视频高清在线观看| 国产一区二区在线观看日韩| 日日撸夜夜添| 日韩av免费高清视频| 天堂8中文在线网| 啦啦啦在线观看免费高清www| 国产伦精品一区二区三区视频9| 最新中文字幕久久久久| 国产亚洲91精品色在线| 亚洲av福利一区| 亚洲内射少妇av| 日韩av在线免费看完整版不卡| 成年美女黄网站色视频大全免费 | 91精品国产九色| 老司机影院成人| 久久午夜福利片| 国产在视频线精品| 人妻少妇偷人精品九色| 特大巨黑吊av在线直播| 免费少妇av软件| 人妻制服诱惑在线中文字幕| 极品人妻少妇av视频| 最后的刺客免费高清国语| 丝袜喷水一区| 人妻夜夜爽99麻豆av| 国产亚洲欧美精品永久| 麻豆精品久久久久久蜜桃| 两个人免费观看高清视频 | 日本黄色片子视频| 亚洲成色77777| 国产成人91sexporn| 国产在视频线精品| 国产又色又爽无遮挡免| 最新中文字幕久久久久| 一区二区三区免费毛片| av在线app专区| 欧美三级亚洲精品| 亚洲国产精品一区三区| 内地一区二区视频在线| 亚洲av日韩在线播放| 国产亚洲欧美精品永久| 美女视频免费永久观看网站| 日本免费在线观看一区| 亚洲精品国产成人久久av| 秋霞在线观看毛片| 黄色日韩在线| 九色成人免费人妻av| 亚洲欧美日韩另类电影网站| 黄色一级大片看看| 亚洲国产av新网站| 欧美日韩av久久| 日韩在线高清观看一区二区三区| 少妇人妻 视频| 亚洲成人手机| a级一级毛片免费在线观看| 汤姆久久久久久久影院中文字幕| 国精品久久久久久国模美| 亚洲国产精品国产精品| 伊人亚洲综合成人网| 伦理电影免费视频| 另类精品久久| 99视频精品全部免费 在线| xxx大片免费视频| 欧美日韩av久久| 国产伦理片在线播放av一区| 少妇人妻久久综合中文| 免费在线观看成人毛片| 国产av精品麻豆| 亚洲av福利一区| 狂野欧美白嫩少妇大欣赏| 国产成人一区二区在线| 久久精品久久久久久噜噜老黄| 好男人视频免费观看在线| 国产精品麻豆人妻色哟哟久久| 国产免费一级a男人的天堂| 狂野欧美激情性xxxx在线观看| 91精品国产九色| 亚洲成人av在线免费| xxx大片免费视频| 亚洲精品成人av观看孕妇| 亚洲国产精品999| 婷婷色综合大香蕉| 久久国内精品自在自线图片| 国产精品99久久久久久久久| 97超视频在线观看视频| 免费看日本二区| 国产精品一区二区在线观看99| 成人国产av品久久久| 免费看av在线观看网站| 黑丝袜美女国产一区| 国产国拍精品亚洲av在线观看| 国产亚洲一区二区精品| 插逼视频在线观看| 国产综合精华液| av线在线观看网站| 午夜日本视频在线| 最近手机中文字幕大全| 伦精品一区二区三区| 极品人妻少妇av视频| 曰老女人黄片| h日本视频在线播放| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品成人久久小说| 国产毛片在线视频| 亚州av有码| 少妇人妻精品综合一区二区| 国产高清不卡午夜福利| 日韩强制内射视频| 91成人精品电影| 亚洲激情五月婷婷啪啪| 一区二区三区乱码不卡18| 久久精品熟女亚洲av麻豆精品| 一区二区三区精品91| 六月丁香七月| 日韩电影二区| 亚洲欧美成人综合另类久久久| 婷婷色综合www| 国产精品人妻久久久久久| 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 99国产精品免费福利视频| 国产精品秋霞免费鲁丝片| 99九九线精品视频在线观看视频| 99精国产麻豆久久婷婷| 全区人妻精品视频| 深夜a级毛片| 国产欧美另类精品又又久久亚洲欧美| 日本爱情动作片www.在线观看| 久久久久精品性色| 老女人水多毛片| 成人亚洲欧美一区二区av| 婷婷色综合大香蕉| 校园人妻丝袜中文字幕| 国产亚洲一区二区精品| 97超碰精品成人国产| 国产精品一区二区性色av| 少妇人妻久久综合中文| 少妇猛男粗大的猛烈进出视频| 国产无遮挡羞羞视频在线观看| 亚洲无线观看免费| 午夜日本视频在线| 五月玫瑰六月丁香| 国产免费一区二区三区四区乱码| 麻豆成人av视频| 亚洲一级一片aⅴ在线观看| 韩国高清视频一区二区三区| 成人毛片a级毛片在线播放| 日本av手机在线免费观看| 久久久a久久爽久久v久久| av.在线天堂| 18禁在线播放成人免费| h视频一区二区三区| 婷婷色综合大香蕉| 日韩一区二区三区影片| 日韩欧美 国产精品| 啦啦啦视频在线资源免费观看| 亚洲第一av免费看| 日本av免费视频播放| 一本一本综合久久| 成人亚洲欧美一区二区av| 久久影院123| 中文在线观看免费www的网站| 国产黄频视频在线观看| 国产片特级美女逼逼视频| 亚洲久久久国产精品| 国产精品人妻久久久影院| 欧美成人精品欧美一级黄| 三级国产精品欧美在线观看| 美女内射精品一级片tv| 18+在线观看网站| 一级毛片 在线播放| 免费在线观看成人毛片| 欧美精品人与动牲交sv欧美| 国产视频首页在线观看| 国产色婷婷99| 中国三级夫妇交换| 久久久久久人妻| 日韩av在线免费看完整版不卡| av国产久精品久网站免费入址| 免费看不卡的av| 99热国产这里只有精品6| 2018国产大陆天天弄谢| 五月开心婷婷网| 大话2 男鬼变身卡| 我的女老师完整版在线观看| 午夜福利视频精品| 黄色 视频免费看| 黄色视频不卡| 免费看十八禁软件| 美女扒开内裤让男人捅视频| 亚洲成人手机| 日本五十路高清| 岛国毛片在线播放| 中国美女看黄片| 伦理电影免费视频| 国产精品久久久av美女十八| 色婷婷av一区二区三区视频| 久久久久久人人人人人| 亚洲精品自拍成人| 国产老妇伦熟女老妇高清| 久久精品人人爽人人爽视色| 国产日韩一区二区三区精品不卡| 午夜福利乱码中文字幕| 18禁裸乳无遮挡动漫免费视频| 欧美亚洲日本最大视频资源| 视频在线观看一区二区三区| 美女国产高潮福利片在线看| 日韩欧美免费精品| 咕卡用的链子| 国产亚洲欧美在线一区二区| 精品一区在线观看国产| 久久狼人影院| 各种免费的搞黄视频| 午夜视频精品福利| 亚洲美女黄色视频免费看| 欧美激情久久久久久爽电影 | 男女之事视频高清在线观看| 99九九在线精品视频| 91精品三级在线观看| 黑人猛操日本美女一级片| videos熟女内射| 久9热在线精品视频| 久久久久国产精品人妻一区二区| 国产成人精品无人区| 亚洲av片天天在线观看| 亚洲av日韩精品久久久久久密| 中文字幕最新亚洲高清| 他把我摸到了高潮在线观看 | 成年人午夜在线观看视频| 久久国产精品大桥未久av| 看免费av毛片| 99精品欧美一区二区三区四区| 亚洲avbb在线观看| 日韩电影二区| 熟女少妇亚洲综合色aaa.| 国产日韩欧美亚洲二区| 久久这里只有精品19| 国产一级毛片在线| 国产色视频综合| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲中文日韩欧美视频| 国产精品九九99| 人人澡人人妻人| 考比视频在线观看| 一级毛片电影观看| 久久毛片免费看一区二区三区| av又黄又爽大尺度在线免费看| 国产在线一区二区三区精| 欧美日韩一级在线毛片| 午夜精品国产一区二区电影| 欧美日韩视频精品一区| 建设人人有责人人尽责人人享有的| 国产成人精品无人区| 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 国产成人a∨麻豆精品| 男女床上黄色一级片免费看| 淫妇啪啪啪对白视频 | 777米奇影视久久| 国产日韩欧美亚洲二区| 在线av久久热| 国产精品久久久av美女十八| 91麻豆av在线| 日韩电影二区| √禁漫天堂资源中文www| 国产xxxxx性猛交| 两人在一起打扑克的视频| 丝瓜视频免费看黄片| 麻豆国产av国片精品| 天堂俺去俺来也www色官网| 母亲3免费完整高清在线观看| 超碰成人久久| 国产福利在线免费观看视频| 热99国产精品久久久久久7| 精品久久久久久久毛片微露脸 | 亚洲成人国产一区在线观看| 成人影院久久| 深夜精品福利| 免费在线观看日本一区| 十八禁网站网址无遮挡| 亚洲精品av麻豆狂野| 亚洲国产日韩一区二区| 久久国产亚洲av麻豆专区| 国产在线视频一区二区| 啦啦啦中文免费视频观看日本| 国产免费av片在线观看野外av| www.精华液| 在线观看免费视频网站a站| 国产亚洲欧美精品永久| 91成人精品电影| 久久人妻熟女aⅴ| 欧美午夜高清在线| 亚洲精品久久久久久婷婷小说| 国产成人免费无遮挡视频| 欧美在线黄色| 中文字幕人妻熟女乱码| 97人妻天天添夜夜摸| 亚洲精品美女久久av网站| 精品欧美一区二区三区在线| 日韩中文字幕欧美一区二区| 99国产综合亚洲精品| 久久ye,这里只有精品| 国产野战对白在线观看| 中国美女看黄片| 国产成人av激情在线播放| 国产成人系列免费观看| 久久性视频一级片| 国产精品熟女久久久久浪| 捣出白浆h1v1| 高清av免费在线| 多毛熟女@视频| 99久久人妻综合| 老鸭窝网址在线观看| 一本大道久久a久久精品| 免费观看人在逋| 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| 咕卡用的链子| 亚洲av日韩在线播放| 欧美激情久久久久久爽电影 | 免费观看a级毛片全部| 黄色 视频免费看| 别揉我奶头~嗯~啊~动态视频 | 自拍欧美九色日韩亚洲蝌蚪91| 午夜影院在线不卡| svipshipincom国产片| 他把我摸到了高潮在线观看 | 动漫黄色视频在线观看| 麻豆国产av国片精品| 纯流量卡能插随身wifi吗| 黄色片一级片一级黄色片| 国产精品影院久久| av又黄又爽大尺度在线免费看| 精品国产一区二区三区四区第35| 欧美少妇被猛烈插入视频| 80岁老熟妇乱子伦牲交| 淫妇啪啪啪对白视频 | 制服人妻中文乱码| 日本黄色日本黄色录像| 少妇猛男粗大的猛烈进出视频| 国产成人精品在线电影| 久久精品亚洲熟妇少妇任你| 啪啪无遮挡十八禁网站| 99热全是精品| 男人操女人黄网站| 乱人伦中国视频| 18禁裸乳无遮挡动漫免费视频| 国产又爽黄色视频| 亚洲欧洲精品一区二区精品久久久| 久久久欧美国产精品| 9色porny在线观看| videosex国产| 一本综合久久免费| 老鸭窝网址在线观看| 国产视频一区二区在线看| 亚洲精品久久久久久婷婷小说| 啦啦啦啦在线视频资源| 精品国产一区二区久久| 在线观看一区二区三区激情| 高清在线国产一区| 日韩,欧美,国产一区二区三区| 精品少妇内射三级| 性色av乱码一区二区三区2| 曰老女人黄片| 青草久久国产| 国产深夜福利视频在线观看| 777米奇影视久久| 少妇被粗大的猛进出69影院| 亚洲精品久久午夜乱码| 精品久久久久久久毛片微露脸 | 亚洲av日韩精品久久久久久密| 91九色精品人成在线观看| 久久99一区二区三区| 老司机在亚洲福利影院| 国产一区二区三区av在线| 亚洲全国av大片| 操美女的视频在线观看| 久久亚洲精品不卡| 国产人伦9x9x在线观看| 日韩,欧美,国产一区二区三区| 王馨瑶露胸无遮挡在线观看| 日本a在线网址| 久久国产精品影院| 亚洲熟女精品中文字幕| 乱人伦中国视频| 亚洲国产欧美在线一区| 久久久欧美国产精品| 久久青草综合色| 99精国产麻豆久久婷婷| 国产精品一区二区精品视频观看| 国产精品成人在线| 99国产极品粉嫩在线观看| 久久久久国产一级毛片高清牌| 午夜福利乱码中文字幕| 一级毛片女人18水好多| 欧美激情高清一区二区三区| 亚洲欧美日韩另类电影网站| 女警被强在线播放| 国产一区有黄有色的免费视频| 不卡一级毛片| 日本一区二区免费在线视频| 国产日韩欧美在线精品| 久久影院123| 女人久久www免费人成看片| 人妻人人澡人人爽人人| 亚洲一区二区三区欧美精品| 999久久久国产精品视频| 成人国产av品久久久| 中文字幕人妻丝袜一区二区| 中文字幕av电影在线播放| 99精国产麻豆久久婷婷| 一级a爱视频在线免费观看| 波多野结衣一区麻豆| 涩涩av久久男人的天堂| 国产片内射在线| 国产在线视频一区二区| 欧美 亚洲 国产 日韩一| 亚洲激情五月婷婷啪啪| 91字幕亚洲| 亚洲综合色网址| 欧美黑人欧美精品刺激| 午夜91福利影院| a级毛片在线看网站| 亚洲国产欧美日韩在线播放| 欧美黄色淫秽网站| 欧美老熟妇乱子伦牲交| 99九九在线精品视频| 一级片免费观看大全| 超碰97精品在线观看| 国产一区二区在线观看av| 精品国产一区二区三区四区第35| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月 | 老鸭窝网址在线观看| 亚洲专区国产一区二区| 人成视频在线观看免费观看| av免费在线观看网站| 纵有疾风起免费观看全集完整版| 美国免费a级毛片| 亚洲激情五月婷婷啪啪| 每晚都被弄得嗷嗷叫到高潮| 99精品久久久久人妻精品| 999久久久精品免费观看国产| 久久人人97超碰香蕉20202| 欧美老熟妇乱子伦牲交| 午夜久久久在线观看| 纯流量卡能插随身wifi吗| 国产精品av久久久久免费| 91精品国产国语对白视频| 免费在线观看完整版高清| 91大片在线观看| h视频一区二区三区| 老司机午夜福利在线观看视频 | 亚洲色图综合在线观看| 日本黄色日本黄色录像| 免费在线观看日本一区| 99精品欧美一区二区三区四区| 久久影院123| a级片在线免费高清观看视频| 欧美中文综合在线视频| h视频一区二区三区| 亚洲国产中文字幕在线视频| 欧美在线黄色| 婷婷丁香在线五月| 精品国产一区二区三区四区第35| 亚洲综合色网址| 日韩 欧美 亚洲 中文字幕| 一级片'在线观看视频| 啦啦啦免费观看视频1| 少妇的丰满在线观看| 亚洲欧美色中文字幕在线| 成人国语在线视频| 国产精品麻豆人妻色哟哟久久| av又黄又爽大尺度在线免费看| av在线app专区| 首页视频小说图片口味搜索| videos熟女内射| 一本色道久久久久久精品综合| 国产亚洲精品第一综合不卡| 日本wwww免费看| 精品一区二区三卡| 亚洲色图综合在线观看| av网站免费在线观看视频| 好男人电影高清在线观看| 欧美另类一区| 99国产综合亚洲精品| 韩国高清视频一区二区三区| 老司机午夜福利在线观看视频 | 国内毛片毛片毛片毛片毛片| 黄网站色视频无遮挡免费观看| 成人国产av品久久久| 精品免费久久久久久久清纯 | 建设人人有责人人尽责人人享有的| 国产成人免费观看mmmm| 国产精品二区激情视频| 在线 av 中文字幕| 国产国语露脸激情在线看| 久久毛片免费看一区二区三区| 久久精品国产综合久久久| a在线观看视频网站| 免费黄频网站在线观看国产| xxxhd国产人妻xxx| 伊人亚洲综合成人网| 乱人伦中国视频| 丰满迷人的少妇在线观看| 天堂中文最新版在线下载| 久久久久久久大尺度免费视频| 国产亚洲欧美精品永久| 欧美日韩中文字幕国产精品一区二区三区 | 日日夜夜操网爽| 电影成人av| 99国产极品粉嫩在线观看| 丰满迷人的少妇在线观看| 亚洲欧美精品自产自拍| 天天躁夜夜躁狠狠躁躁| 国产高清国产精品国产三级| 叶爱在线成人免费视频播放| 老汉色∧v一级毛片| 国产激情久久老熟女| 久久国产精品大桥未久av| 亚洲精品在线美女| 国产亚洲欧美精品永久| 91成年电影在线观看| 国产亚洲一区二区精品| 午夜激情久久久久久久| 精品少妇黑人巨大在线播放| 欧美日韩精品网址| e午夜精品久久久久久久| 十八禁网站免费在线| 手机成人av网站| 老司机午夜十八禁免费视频| 人妻一区二区av| 欧美精品啪啪一区二区三区 | 动漫黄色视频在线观看| 国产亚洲欧美精品永久| 亚洲av电影在线进入| 超碰97精品在线观看| www.精华液| 视频区欧美日本亚洲| 国产亚洲av高清不卡| 大码成人一级视频| 成人亚洲精品一区在线观看| 亚洲欧美激情在线| 亚洲国产欧美在线一区| 91成年电影在线观看| 啦啦啦啦在线视频资源| 国产成人啪精品午夜网站| 免费高清在线观看日韩| 国产精品一二三区在线看| 熟女少妇亚洲综合色aaa.| 99精国产麻豆久久婷婷| 少妇粗大呻吟视频|