• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NiMoO4納米線@ZnCo MOF(350)核殼結(jié)構(gòu)復(fù)合材料的制備及其析氧電催化性能

    2022-12-06 06:29:38魏學(xué)東喬雙燕
    關(guān)鍵詞:核殼材料科學(xué)電催化

    魏學(xué)東 劉 楠 喬雙燕

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,太原 030031)

    0 Introduction

    As resource and environmental issues become more and more prominent,sustainable clean energy has gradually become an alternative solution,among which hydrogen energy has attracted more and more attention due to its high efficiency,cleanliness,and recyclability[1-3].And water electrolysis is considered to be one of the most promising ways to produce hydrogen energy.However,due to the sluggish kinetics of the oxygen evolution reaction(OER),the reaction rate of water electrolysis is limited[4],therefore,it is necessary to design effective electrocatalysts to reduce the OER overpotential.So far,the most efficient electrocatalysts for OER are still noble metal catalysts such as RuO2and IrO2,but their high price and extremely scarce resources hinder their wide commercial application[5-6].Therefore,there is an urgent need to develop inexpensive and abundant non-noble metal OER electrocatalysts.MOFs have attracted extensive attention due to their rich structural diversity and large specific surface area[7-8].MOFs are gradually emerging as reliable templates or precursors for the preparation of metal-active nanomaterials and porous carbons and their composites[9].Researchers have done a lot of work on OER electrocatalysts using MOFs as direct templates or precursors to composite low-dimensional inorganic nanomaterials[10-13].For example,Mu and colleagues[14]reported a Mo-N/C@MoS2multifunctional electrocatalyst synthesized by vertically growing MoS2nanosheets encapsulated in a ZIF structure and then carbonized at high temperature.The hybrid structure exhibited excellent electrocatalytic activity and stability for hydrogen evolution reaction(HER),OER and oxygen reduction reaction(ORR).By direct annealing of reduced graphene oxide(rGO)-coated core-shell bimetallic zeolite imidazole framework,Chen et al.[15]developed a new material (Co@N-CNTs@rGO) with ultrafine Co nanoparticles coated on nitrogen-doped carbon nanotubes(N-CNTs).As-prepared Co@N-CNTs@rGO composite exhibited good HER electrocatalytic activity due to the uniform distribution of Co nanoparticles as well as the large specific surface area and abundant porosity.In electrolytes of 1 mol·L-1KOH and 0.5 mol·L-1H2SO4,the composite exhibited the overpotentials of only 108 and 87 mV at a current density of 10 mA·cm-2,respectively,outperforming most other reported Co-based electrocatalysts.Wang et al.[16]reported a novel N-doped carbon CoP particle/carbon nanotube composite(CNT-NC-CoP),which was developed by in situ nucleation and growth of ZIF67 nanoparticles on carbon nanotubes,which are then carbonized and phosphatized.The unique hierarchical structure endows the CNT-NC-CoP composite with a high specific surface area and abundant active sites.The ultra-low overpotential of 251 mV can be achieved at a current density of 10 mA·cm-2.Wan et al.[17]reported one-dimensional and two-dimensional porous Mo2C nanostructured electrocatalysts.Synthesized by coating one-dimensional MoO3nanowires and two-dimensional MoO3nanosheets with ZIF67 followed by high-temperature carbonization,the obtained Mo2C nanostructures exhibited low onset overpotentials of 25 and 36 mV in 0.1 mol·L-1HClO4and 0.1 mol·L-1KOH solutions,respectively,and small Tafel slopes of 40 and 47 mV·dec-1,respectively.The catalysts also showed excellent stability.

    Based on the above reports,we first synthesized NiMoO4nanowires(NWs)by a hydrothermal method,and then in situ grew a layer of ZnCo MOF nanocrystals on the NiMoO4NWs by room temperature liquid phase synthesis to form a coaxial core-shell structure.Then after a low-temperature heat treatment at 350℃(the sample was named NiMoO4NWs@ZnCo MOF(350)),it was found that except for a very small amount of Co3O4quantum dots new phase was inside the ZnCo MOF,the structure and morphology of the composite did not change significantly.The pyrolysis at lower temperatures promotes the generation of new phases,but also basically preserves the original framework structure of MOF,forming a new MOF core-shell structure with more abundant interfaces.The composite electrocatalyst was tested on an inert glassy carbon electrode in 1 mol·L-1KOH,and NiMoO4NWs@ZnCo MOF(350)had an overpotential of only 360 mV at a current density of 10 mA·cm-2and maintained good stability for 30 000 s.

    1 Experimental

    1.1 Material synthesis

    1.1.1 Preparation of NiMoO4NWs

    The preparation method of NiMoO4NWs was mainly referred to in the literature[18].1 mmol Ni(NO3)2·6H2O and 1 mmol sodium molybdate were dissolved in 25 mL of deionized water,and after it was completely dissolved,the solution was transferred to a 50 mL reactor,kept at 150℃for 6 h,and the product was collected by centrifugation,washed three times with C2H5OH and dried the precipitate in vacuum at 40℃.

    1.1.2 Preparation of NiMoO4NWs@ZnCo MOF composites

    10 mg NiMoO4NWs was dissolved in 20 mL methanol,sonicated at 100 kHz for 30 min,and then 38 mg Zn(NO3)2·6H2O and 112 mg Co(NO3)2·6H2O were dissolved in the above solution to form solution A,followed by 40 mg polyvinylpyrrolidone(PVP)and 300 mg of dimethylimidazole were dissolved in 10 mL of methanol to form solution B.Solution B was poured into the solution A,left standing at room temperature for 2 h,the product was collected by centrifugation and washed three times with methanol to precipitate.NiMoO4NWs@ZnCo MOF composites were obtained.

    1.1.3 Preparation of NiMoO4NWs@ZnCo MOF(350)

    NiMoO4NWs@ZnCo MOF was placed in a porcelain boat,and high-purity argon gas was first passed through the quartz tube for 1 h at room temperature to remove the residual air in the quartz tube,and then kept at 350℃for 3 h.NiMoO4NWs@ZnCo MOF(350)was prepared well.

    1.2 Structural characterization

    Structural characterizations were carried out on various large-scale analytical instruments.Among them,X-ray diffraction analysis(XRD)was performed on a Philips 1830 diffractometer equipped with a Cu Kα radiation source,a 2θ range of 5°-90°,a working voltage of 40 kV,a working current of 40 mA,and a speed of 20(°)·min-1.Using field emission scanning electron microscopy(FE-SEM,SU-8010)to analyze the surface topography of the samples at the operating voltage of 5.0 kV.Nanoscale microscopic topography could be analyzed on transmission electron microscopy(TEM,JEM-2100F)and high-resolution transmission electron microscopy(HRTEM)at an accelerating voltage of 200 kV.X-ray photoelectron spectroscopy (XPS)was obtained using a K-Alpha spectrometer equipped with an Al Kα X-ray source to analyze the surface chemical states and electronic states of various elements.

    1.3 Electrochemical performance test

    All electrochemical performance tests of the material samples were carried out with a three-electrode system(the material electrode was the working electrode,the platinum foil was the counter electrode,and the Ag/AgCl was the reference electrode).The test instrument used Shanghai Chenhua Electrochemical Workstation CHI660E.It mainly includes linear sweep voltammetry(LSV),Tafel slope,cyclic voltammetry,electric double layer capacitance(Cdl),chronoamperometry,etc.Among them,the scanning speed of OER catalytic performance tested by LSV was 10 mV·s-1,and the voltage range was 1-2 V(vs RHE);The current density of 10 mA·cm-2was used for stability test by chronopotentiometry,and the time was set to 12 h.

    2 Results and discussion

    2.1 Structure and morphology characterization

    Fig.1 is a schematic diagram of the synthesis process for NiMoO4NWs@ZnCo MOF(350)electrocatalyst.First,NiMoO4NWs were synthesized under hydrothermal conditions,and then 10 mg of the synthesized NiMoO4NWs were dissolved in a methanol solution of cobalt nitrate and zinc nitrate,and methanol solution dissolved with PVP and dimethylimidazole was added to it.The mixed solution was left at room temperature for 2 h,and the NiMoO4NWs@ZnCo MOF material was obtained by centrifugal washing,and the material was calcined at 350℃for 3 h in a high-purity argon flow to obtain the final NiMoO4NWs@ZnCo MOF(350)electrocatalyst.

    Fig.1 Schematic diagram of the preparation process of NiMoO4NWs@ZnCo MOF(350)

    As shown in Fig.2a,as-synthesized NiMoO4NWs@ZnCo MOF was tested on an electrochemical workstation and found that the overpotentials were 420 and 540 mV at current densities of 10 and 50 mA·cm-2,respectively.Which is superior to the electrocatalytic performance of NiMoO4NWs and ZnCo MOF monomer samples.Therefore,it is judged that the twophase interface enhances the electrocatalytic activity,and although the electrocatalytic activity of NiMoO4NWs@ZnCo MOF is not high,it is still a potential MOF composite.To further improve its electrical conductivity and electrochemical performance,NiMoO4NWs@ZnCo MOF was subjected to pyrolysis experiments at 350,450,550,and 650℃,respectively.And it was found that the samples had the smallest overpotential at 350℃ (349 mV at 10 mA·cm-2,470 mV at 50 mA·cm-2)in Fig.2b.So NiMoO4NWs@ZnCo MOF(350)was selected as the research object to systematically study the structure and electrochemical performance.

    Fig.2 (a)LSV plots of NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF;(b)LSV plots of the pyrolyzed NiMoO4NWs@ZnCo MOF at different temperatures

    Fig.3a shows the XRD patterns of as-synthesized NiMoO4,which is basically consistent with the NiMoO4·xH2O standard diffraction card(PDF No.13-0128).The XRD pattern showed that an inconsistent small peak at 13.56°existed in real synthetic samples[18-19].So it demonstrated the successful synthesis of NiMoO4NWs.It can be seen from Fig.3a that for the pure ZnCo MOF,the diffraction peaks are consistent with the diffraction peak positions and intensities of the ZnCo MOF crystals reported in the literature[20-21],and no impurity peaks were observed,indicating that the synthesized ZnCo MOF sample has higher crystallinity.For NiMoO4NWs@ZnCo MOF,except for the most diffraction peaks of ZnCo MOF,only a weaker peak of NiMoO4NWs appeared in the composite.The NiMoO4NWs monomer itself has strong crystallinity,which indicates the experimental fact that NiMoO4NWs were tightly coated by ZnCo MOF to form a coreshell structure.All the above results indicate the successful synthesis of the NiMoO4NWs@ZnCo MOF precursor.As shown in Fig.3b,NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF were pyrolyzed at 350℃,and it was found that compared with the precursor,the characteristic peaks of the monomers like NiMoO4NWs(350)and ZnCo MOF(350)can be well maintained,indicating that the thermal stability of the monomer sample is good,especially for the ZnCo MOF(350)which does not show a lot of coordination bond breakage and framework collapse.The intensity of its diffraction peaks decreased significantly compared with that before calcination.At 350℃,NiMoO4NWs@ZnCo MOF(350)obviously underwent a little pyrolysis,a small amount of new Co3O4phase(PDF No.43-1003)appeared in the composite,and the peaks of the NiMoO4NWs phase appeared at several positions and the intensity increased,indicating that a little pyrolysis caused the ZnCo MOF shell to become loose and porous,and the diffraction peaks of the NiMoO4NWs core appeared stronger.However,the composite sample still kept the framework structure of MOF unchanged,although the intensity of its diffraction peaks was greatly reduced.However,when the pyrolysis temperature was increased to 450℃according to XRD patterns in Fig.S1(Supporting information),the composite structure was basically destroyed,and it mainly evolved into another composite structure of a new NiMoO4(PDF No.45-0142)and CoO(PDF No.43-1004).In addition,the structure of pyrolyzed samples at 450,550,and 650℃was consistent and different from the pyrolyzed sample at 350℃,so the special structure of NiMoO4NWs@ZnCo MOF(350)determined its excellent catalytic activity.

    Fig.3 (a)XRD patterns of NiMoO4NWs,ZnCo MOF,and NiMoO4NWs@ZnCo MOF;(b)XRD patterns of NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)

    The microscopic morphology is shown in Fig.4.It can be observed from Fig.4a that the morphology of NiMoO4NWs was uniform one-dimensional NWs,and the diameter of the NWs was about 50 nm.Then,after adding the methanol solution of 2-methylimidazole and PVP to the methanol suspension of NiMoO4NWs,Zn(NO3)2·6H2O and Co(NO3)2·6H2O,ZnCo MOF nanocrystals were found to grow rapidly and attach to NiMoO4NWs.On the surface of NiMoO4NWs,a composite electrocatalyst with ZnCo MOF wrapped around NiMoO4NWs was obtained.

    The SEM image of the composite electrocatalyst is shown in Fig.4c.It can be clearly observed that for the NiMoO4NWs@ZnCo MOF composite electrocatalyst,the growth of ZnCo MOF was strictly restricted to the surface of NiMoO4NWs,and a coating layer with relatively uniform thickness was formed.The SEM image in Fig.4b is the ZnCo MOF nanocrystals synthesized separately.ZnCo MOF exhibited a good dodecahedral crystal form,with uniform morphology,sharp edges and corners,and a smooth surface,and the particle size was about 400 nm.From the SEM image of NiMoO4NWs@ZnCo MOF(350)in Fig.4d,the morphology of the pristine ZnCo MOF was largely preserved,indicating that the MOF framework is not completely collapsed.The morphology change of the pyrolytic sample at 650℃was also studied in Fig.S2,and it was found that the structure collapse was aggravated,and the pyrolysis products of some ZnCo MOF precursors were aggregated.

    Fig.4 SEM images of(a)NiMoO4NWs,(b)ZnCo MOF,(c)NiMoO4NWs@ZnCo MOF,and(d)NiMoO4NWs@ZnCo MOF(350)

    To deeply explore the size,structure,and morphology of the synthesized electrocatalysts,TEM and HRTEM tests were carried out(Fig.5).Fig.5c is the TEM image of NiMoO4NWs@ZnCo MOF(350).Compared with NiMoO4NWs@ZnCo MOF in Fig.5a,the composite sample after pyrolysis well-maintained precursor morphologies of one-dimensional NWs before calcination.And the ZnCo MOF crystal shell appeared as uniformly dispersed nanoparticles without obvious agglomeration,which is because a little pyrolysis occurs during the calcination at 350℃,and the pore structure of MOF as a template and the gas generated after thermal decomposition also play a good role in inhibiting the crystal polymerization.Fig.5b is the HRTEM image of NiMoO4NWs@ZnCo MOF.It can be seen that the lattice fringes of NiMoO4NWs were clear,marked as the NiMoO4·xH2O phase with a lattice spacing of 0.299 nm,which is closely related to the ZnCo MOF phase.The interface was almost seamless.The high-resolution image of NiMoO4NWs@ZnCo MOF(350)in Fig.5d after pyrolysis showed a similar structure,but a small amount of Co3O4marked with a lattice spacing of 0.244 nm appeared at the local position of the ZnCo MOF pyrolysis phase,apparently,the structure is consistent with the XRD analysis results in Fig.3.The two-phase interface continues to behave as a tight connection,and there should be chemical bonds other than intermolecular forces.Further elemental mapping of NiMoO4NWs@ZnCo MOF(350)in Fig.5e-5l showed that C,N,O,Co,Zn,Ni,and Mo elements co-existed in the sample and exhibited an obvious coreshell structure.And the Zn and Co elements of ZnCo MOF were densely distributed on the longitudinal axis of the NWs and distributed on the shell of the coreshell structure,and the Ni and Mo elements of NiMoO4NWs were obviously distributed on the core of the coreshell structure.

    Fig.5 (a)TEM image and(b)HETEM image of NiMoO4NWs@ZnCo MOF;(c)TEM image,(d)HETEM image,(e)STEM image,and(f-l)elemental mappings of NiMoO4NWs@ZnCo MOF(350)

    In order to further characterize the valence states of elements in NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF(350)composites,the XPS spectra were detected and the peaks were fitted.As shown in Fig.6a,the characteristic peaks of Ni2p3/2and Ni2p1/2for NiMoO4NWs@ZnCo MOF were 855.5 and 873.1 eV,respectively,which can be assigned to Ni2+.For NiMoO4NWs@ZnCoMOF(350),the characteristic peak of Ni2+remained unchanged but shifted by 0.5 eV[22].As shown in Fig.6b,for NiMoO4NWs@ZnCo MOF,the Mo3d5/2peak and the Mo3d3/2characteristic peak of the Mo3d XPS spectrum were located at 232.2 and 235.3 eV,respectively,indicating the existence of Mo6+[23].For the pyrolyzed NiMoO4NWs@ZnCo MOF(350),the valence state of Mo6+was unchanged and shifted by 0.5 eV.In the XPS spectrum of Zn2p,the peaks at 1 021.2 and 1 044.3 eV were characteristic peaks of Zn2p3/2and Zn2p1/2,respectively(Fig.6c)[24],corresponding to the Zn2+in NiMoO4NWs@ZnCo MOF.While for NiMoO4NWs@ZnCo MOF(350),the characteristic peak of Zn2+was unchanged but shifted negatively by 0.5 eV.The positive or negative shifts of the characteristic peaks of the above metal ions indicate that the two-phase interface of NiMoO4NWs and ZnCo MOF has stronger electronic interactions after pyrolysis[25-26].

    In the Co2p spectrum of NiMoO4NWs@ZnCo MOF,the binding energies at 780.9 and 796.3 eV belong to Co2p2/3and Co2p1/2,respectively,indicating that the cobalt element exists in the form of Co2+[27](Fig.6d).For NiMoO4NWs@ZnCo MOF(350)after pyrolysis,the main valence peak remained Co2+,but shifted negatively by 0.7 eV compared with that before pyrolysis,indicating that the electronic interaction at the interface is more intense for the phase after pyrolysis.Co2p3/2and Co2p1/2corresponded to the characteristic peaks of Co3+at 780.2 and 795.4 eV,respectively,indicating that Co2+and Co3+coexist in NiMoO4NWs@ZnCo MOF(350).It marks the appearance of a new phase of Co3O4[28],which is consistent with the analysis results in Fig.3b and 5d.The results show that various metal ions coexist in the composite,and their presence accelerates the electron transport speed and enhances its catalytic activity.

    The binding energy peaks of C1s in NiMoO4NWs@ZnCo MOF are shown in Fig.6e.With the appearance of the high-temperature pyrolysis Co3O4phase,four binding energy peaks appeared at 284.5,285.1,286.2 and 288.5 eV,which can correspond to C—C(sp2),C—N,C—O—Mo,andC=O bonds,respectively[29-31].It shows that a small amount of C=O bonds were produced by pyrolysis.In addition,as shown in Fig.6f,530.3,531.2,531.8,and 532.7 eV appeared in O1s of NiMoO4NWs@ZnCo MOF,corresponding to Mo—O bond(or Ni—O bond),oxygen vacancies(oxygen defects),C—O—Mo bond,and hydroxide(or adsorbed oxygen or moisture)[32-33].For NiMoO4NWs@ZnCo MOF(350),the peaks of O1s can be separated into five peaks at 529.4,530.3,531.2,531.8,and 532.7 eV.Except for the four peaks,before pyrolysis was retained,the binding energy peak at 529.4 eV corresponds to the spinel-type cobalt oxide(i.e.,the Co3O4phase).Through the above analysis of the XPS spectra,for NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF(350),chemical bonds C—O—Mo and a large number of oxygen vacancies were generated at the monomer phase heterointerface,which can become the source of active sites and increase the electrocatalytic activity of the composites,especially NiMoO4NWs@ZnCo MOF(350),in addition to retaining the interfacial chemical bonds and oxygen vacancies before pyrolysis,partial pyrolysis also leads to the formation of Co3O4phase,which also leads to the formation of a new phase interface and further increases the active sites of the heterointerface.

    Fig.6 XPS spectra of(a)Ni2p,(b)Mo2d,(c)Zn2p,(d)Co2p,(e)C1s,and(f)O1s in NiMoO4NWs@ZnCo MOF and NiMoO4NWs@ZnCo MOF NWs(350)

    2.2 Electrochemical performance

    The OER performance was performed in 1 mol·L-1KOH solution using a conventional three-electrode system.The LSV curves are shown in Fig.7a,when the current density reached 10 mA·cm-2,the overpotential of NiMoO4NWs@ZnCo MOF(350)was only 360 mV,which was lower than 700 mV of the single-component NiMoO4NWs(350)and 430 mV of ZnCo MOF(350).Tafel slope is an essential parameter for describing the kinetic reaction mechanism of catalysts,which is calculated according to the Tafel equation:η=blg j+a(η is the overpotential,j represents the current density and b belongs to the Tafel slope).To further investigate the OER kinetic properties of the samples,Fig.7b shows the Tafel slopes of the three samples.The Tafel slope of NiMoO4NWs@ZnCo MOF(350)was 62 mV·dec-1,which was much smaller than 294 mV·dec-1of NiMoO4NWs(350)and 98 mV·dec-1of ZnCo MOF(350).It reveals that NiMoO4NWs@ZnCo MOF(350)has a faster electrocatalytic reaction rate of oxygen evolution.Fig.7c is the stability curves of NiMoO4NWs@ZnCo MOF(350)and the single components.It can be observed that the current density of the composite sample NiMoO4NWs@ZnCo MOF(350)was the highest close to 10 mA·cm-2under the same overpotential,and can be maintained for 30 000 s with basically no decay.The stability curve for a longer time was further studied,and it was found that after 50 000 s,the initial current density of the composite sample was attenuated,but still retained at 67%,as shown in Fig.S3.Then,the electrochemical impedance spectroscopy(EIS)of the electrocatalyst was tested.The smaller semicircular arc diameter represents a smaller charge transfer resistance(Rct)and therefore a faster OER.NiMoO4NWs@ZnCo MOF(350)in Fig.7d had a smaller impedance radius and a charge transfer resistance of about 73.4 Ω,which was lower than that of NiMoO4NWs(350)(239.4 Ω)and ZnCo MOF(350)(86.37 Ω).

    Fig.7 (a)LSV plots,(b)Tafel slope plots,(c)stability plots,and(d)impedance plots of NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)

    The Cdlof the electrocatalyst which can be used to compare the size of the electrochemical specific surface area was calculated by CV test.The electrochemical-specific surface area is proportional to the Cdl.The larger the electrochemical specific surface area of the catalyst,the larger the Cdl,which means the more catalytic active sites and the better catalytic performance of the catalyst.As shown in Fig.8a-8c,NiMoO4NWs(350),ZnCo MOF(350),and NiMoO4NWs@ZnCo MOF(350)were tested at different scanning speeds of 10-100 mV·s-1.The obtained CV curves were then linearly fitted to obtain the Cdl.As shown in Fig.8d,the Cdlof NiMoO4NWs@ZnCo MOF(350),NiMoO4NWs(350),and ZnCo MOF(350)were 9.535,0.162,and 4.195 mF·cm-2,respectively.The results once again proved that NiMoO4NWs@ZnCo MOF(350)had a higher specific surface area for electrochemical activity.

    Fig.8 CV curves of(a)NiMoO4NWs(350),(b)ZnCo MOF(350),and(c)NiMoO4NWs@ZnCo MOF(350)in a non-Faradaic range;(d)Plots of the current density difference(Δj,Δj=ja-jc,where jaand jcrepresent the positive and negative current densities,respectively)against scan rate(the slope is twice that of Cdlin the Fig.8d)

    At present,the accepted OER mechanism[34]for alkaline conditions can be expressed as:

    In the above reaction formula,*represents the active site of the catalyst,and O*,HO*,and HOO*represent three different oxygen-containing intermediates.According to the reaction mechanism,and all the above structural and electrochemical analysis results,several active sites or site sources such as C—O—Mo bond,oxygen vacancies,new Co3O4phase,all of the heterophase interfaces,and new increase specific surface of NiMoO4NWs@ZnCo MOF(350)are more likely to adsorb more hydroxyl oxygen atoms and achieve faster conversion of oxygen molecules.

    To further study the changes in the morphology and electrocatalytic performance of the sample after the stability test,Fig.9a shows the SEM image of NiMoO4NWs@ZnCo MOF(350)after the stability test.Compared with Fig.4d,the morphology of the composite sample before and after the stability test did not change significantly,showing good physical stability characteristics.In Fig.9b,the changes of the LSV curves before and after the stability test were observed,and it was found that the overpotential at 10 mA·cm-2hardly increased,while the overpotential at 50 mA·cm-2increased by less than 20 mV,indicating that the stability test did not significantly alter the electrocatalytic activity of NiMoO4NWs@ZnCo MOF(350).

    Fig.9 (a)SEM image after stability test and(b)LSV curves before and after stability test for NiMoO4NWs@ZnCo MOF(350)

    3 Conclusions

    In this experiment,a new type of ZnCo MOF nanoparticles was successfully synthesized by in situ growth synthesis on NiMoO4NWs and then carbonized.The pyrolysis temperature of 350℃maintained the morphology of the precursor well,and a small amount of the Co3O4phase appeared.The appearance of the Co3O4phase made the surface of the material more rough,loose,and porous,which is beneficial to increase the effective contact area between the catalyst and the electrolyte.Moreover,the unique core-shell structure endows the material with a high specific surface area,abundant exposed active sites,fast ion diffusion paths,and good electrical conductivity.Therefore,the electrocatalyst exhibited a low overpotential of 360 mV at a current density of 10 mA·cm-2and maintained longterm durability of 30 000 s.

    Supporting information is available at http://www.wjhxxb.cn

    Acknowledgment:This study was supported by the General Project of Basic Research Program of Shanxi Province(Grant No.20210302123332),the National Natural Science Foundation of China(Grant No.22178204),and the 1331 Engineering of Shanxi Province.

    猜你喜歡
    核殼材料科學(xué)電催化
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    中海油化工與新材料科學(xué)研究院
    材料科學(xué)與工程學(xué)科
    核殼型量子點(diǎn)(ME)4@(ME)28(M=Cd/Zn,E=Se/S)核殼間相互作用研究
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    核殼型含氟硅丙烯酸酯無皂拒水劑的合成及應(yīng)用
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點(diǎn)的水熱法合成及其光致發(fā)光性能
    亚洲一区中文字幕在线| 中国国产av一级| 午夜老司机福利片| 国产精品国产三级专区第一集| 国产成人精品无人区| 色94色欧美一区二区| 在线天堂中文资源库| 深夜精品福利| 黄片小视频在线播放| 国产精品国产av在线观看| 国产欧美亚洲国产| 99热国产这里只有精品6| 久久综合国产亚洲精品| 丝袜在线中文字幕| 大香蕉久久网| 久久精品久久久久久噜噜老黄| 我的亚洲天堂| 亚洲国产欧美日韩在线播放| 久久久久精品人妻al黑| 别揉我奶头~嗯~啊~动态视频 | 久久精品久久精品一区二区三区| 美女视频免费永久观看网站| 国产欧美日韩精品亚洲av| 亚洲精品日韩在线中文字幕| 9色porny在线观看| 超碰97精品在线观看| 国产一卡二卡三卡精品| 欧美成狂野欧美在线观看| 国产视频首页在线观看| 超碰97精品在线观看| 欧美黄色片欧美黄色片| 亚洲熟女精品中文字幕| av在线播放精品| 婷婷色av中文字幕| 国产一区二区激情短视频 | 久久99热这里只频精品6学生| 国产精品久久久久久精品电影小说| 久久久久久久大尺度免费视频| 水蜜桃什么品种好| 99九九在线精品视频| 午夜福利视频精品| 一本久久精品| 水蜜桃什么品种好| 国产亚洲av高清不卡| 亚洲成人免费电影在线观看 | 欧美亚洲 丝袜 人妻 在线| 国产熟女午夜一区二区三区| 国产一区二区在线观看av| 一边亲一边摸免费视频| 国产亚洲欧美精品永久| 伦理电影免费视频| 精品卡一卡二卡四卡免费| 又紧又爽又黄一区二区| 中文字幕制服av| 久久精品国产亚洲av涩爱| 两性夫妻黄色片| 人人澡人人妻人| 妹子高潮喷水视频| 岛国毛片在线播放| 亚洲国产av影院在线观看| 99国产精品99久久久久| 国产成人系列免费观看| 伊人亚洲综合成人网| 国产男女内射视频| 亚洲三区欧美一区| 女人久久www免费人成看片| 观看av在线不卡| 看免费av毛片| 涩涩av久久男人的天堂| 伊人亚洲综合成人网| 黑人猛操日本美女一级片| 亚洲精品一卡2卡三卡4卡5卡 | 国产三级黄色录像| 99久久精品国产亚洲精品| 国语对白做爰xxxⅹ性视频网站| 国产亚洲精品第一综合不卡| 香蕉丝袜av| 亚洲精品乱久久久久久| 又紧又爽又黄一区二区| 精品人妻熟女毛片av久久网站| 婷婷色综合大香蕉| 丰满少妇做爰视频| 亚洲国产毛片av蜜桃av| 男女下面插进去视频免费观看| 亚洲欧洲日产国产| 日韩中文字幕欧美一区二区 | 一本综合久久免费| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 黄色a级毛片大全视频| 999精品在线视频| 看免费成人av毛片| 在线av久久热| 侵犯人妻中文字幕一二三四区| 赤兔流量卡办理| 婷婷色麻豆天堂久久| 国产一区二区 视频在线| 国产亚洲一区二区精品| 人人妻人人澡人人爽人人夜夜| 免费不卡黄色视频| 久久久久国产精品人妻一区二区| 在线天堂中文资源库| 一区二区av电影网| 一边摸一边抽搐一进一出视频| 国产欧美日韩一区二区三 | av片东京热男人的天堂| 美女国产高潮福利片在线看| 欧美黑人欧美精品刺激| 性少妇av在线| 欧美精品亚洲一区二区| 啦啦啦 在线观看视频| 中国美女看黄片| √禁漫天堂资源中文www| 亚洲精品一卡2卡三卡4卡5卡 | 精品国产一区二区三区久久久樱花| 成人国产av品久久久| 国产精品 欧美亚洲| 一级a爱视频在线免费观看| 宅男免费午夜| 日本午夜av视频| 丝袜美足系列| 赤兔流量卡办理| 后天国语完整版免费观看| 日日摸夜夜添夜夜爱| 女人高潮潮喷娇喘18禁视频| 天堂中文最新版在线下载| 亚洲国产中文字幕在线视频| 日韩中文字幕欧美一区二区 | 女性被躁到高潮视频| 美女中出高潮动态图| 最新的欧美精品一区二区| 久久青草综合色| 精品亚洲乱码少妇综合久久| 大型av网站在线播放| 搡老乐熟女国产| 欧美日韩亚洲高清精品| 黑丝袜美女国产一区| 一边亲一边摸免费视频| 成年av动漫网址| 狠狠婷婷综合久久久久久88av| 国产激情久久老熟女| 激情视频va一区二区三区| 欧美激情极品国产一区二区三区| 日韩av免费高清视频| 麻豆乱淫一区二区| 久久国产精品大桥未久av| av网站在线播放免费| 丰满饥渴人妻一区二区三| 久久精品人人爽人人爽视色| 黑人猛操日本美女一级片| 国产一级毛片在线| 国产成人精品久久二区二区91| 亚洲av电影在线观看一区二区三区| 欧美日韩亚洲高清精品| 电影成人av| 黄色a级毛片大全视频| 午夜免费成人在线视频| 欧美日韩成人在线一区二区| 一本大道久久a久久精品| 成人午夜精彩视频在线观看| 极品人妻少妇av视频| 中文乱码字字幕精品一区二区三区| kizo精华| 国产97色在线日韩免费| 少妇 在线观看| 亚洲中文av在线| 亚洲精品乱久久久久久| 午夜视频精品福利| 国产精品久久久久久人妻精品电影 | 波野结衣二区三区在线| 日本猛色少妇xxxxx猛交久久| 另类精品久久| 男女下面插进去视频免费观看| 天堂8中文在线网| 亚洲少妇的诱惑av| 午夜av观看不卡| 欧美日韩国产mv在线观看视频| 久久精品aⅴ一区二区三区四区| 69精品国产乱码久久久| 亚洲午夜精品一区,二区,三区| 少妇被粗大的猛进出69影院| 亚洲av欧美aⅴ国产| 免费观看a级毛片全部| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品一二三| 国产熟女欧美一区二区| 一区在线观看完整版| 一级毛片电影观看| 亚洲午夜精品一区,二区,三区| 午夜精品国产一区二区电影| 另类亚洲欧美激情| 国产熟女欧美一区二区| 欧美成狂野欧美在线观看| av天堂久久9| 我要看黄色一级片免费的| 成人国产一区最新在线观看 | 久久综合国产亚洲精品| 欧美av亚洲av综合av国产av| 女警被强在线播放| 国产视频一区二区在线看| 美女高潮到喷水免费观看| 2018国产大陆天天弄谢| 亚洲 国产 在线| 电影成人av| 美女福利国产在线| 欧美激情 高清一区二区三区| 国产欧美日韩综合在线一区二区| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久av网站| 久久久久国产一级毛片高清牌| 啦啦啦啦在线视频资源| 高清黄色对白视频在线免费看| 一级毛片女人18水好多 | 久久综合国产亚洲精品| 国产主播在线观看一区二区 | 欧美在线黄色| 亚洲av成人精品一二三区| 欧美精品亚洲一区二区| 少妇裸体淫交视频免费看高清 | 欧美国产精品va在线观看不卡| 亚洲国产精品999| 最新在线观看一区二区三区 | 欧美精品一区二区大全| 精品国产国语对白av| 午夜免费男女啪啪视频观看| xxx大片免费视频| 丝袜在线中文字幕| 亚洲精品久久久久久婷婷小说| 午夜日韩欧美国产| 尾随美女入室| 亚洲国产欧美在线一区| 黑人巨大精品欧美一区二区蜜桃| 青草久久国产| 欧美精品亚洲一区二区| 国产成人精品久久久久久| 久久青草综合色| h视频一区二区三区| 视频区图区小说| 久久久久国产精品人妻一区二区| 高清黄色对白视频在线免费看| 久久国产亚洲av麻豆专区| 80岁老熟妇乱子伦牲交| 婷婷丁香在线五月| 久久久久久人人人人人| 日本av免费视频播放| 欧美 亚洲 国产 日韩一| 中文字幕制服av| 电影成人av| 丰满少妇做爰视频| 女性生殖器流出的白浆| xxx大片免费视频| 亚洲精品日本国产第一区| 精品国产超薄肉色丝袜足j| 精品亚洲成国产av| 视频区欧美日本亚洲| 观看av在线不卡| 91老司机精品| 97人妻天天添夜夜摸| 成人免费观看视频高清| 精品少妇久久久久久888优播| 男人添女人高潮全过程视频| 精品一区二区三区四区五区乱码 | 中文字幕人妻丝袜制服| 国产免费一区二区三区四区乱码| 成年人免费黄色播放视频| www.精华液| 男女午夜视频在线观看| 久久久精品国产亚洲av高清涩受| 久久久久久久大尺度免费视频| 久久精品成人免费网站| 美国免费a级毛片| 日本黄色日本黄色录像| 在线观看国产h片| 美女午夜性视频免费| 午夜老司机福利片| 狠狠精品人妻久久久久久综合| 1024视频免费在线观看| 水蜜桃什么品种好| 天天操日日干夜夜撸| 亚洲欧美一区二区三区久久| 日韩熟女老妇一区二区性免费视频| 国产人伦9x9x在线观看| 精品人妻在线不人妻| 十分钟在线观看高清视频www| 中文字幕制服av| 国产精品国产三级专区第一集| 成年人午夜在线观看视频| 色网站视频免费| 久久99热这里只频精品6学生| 久久久欧美国产精品| 国产精品人妻久久久影院| 成年av动漫网址| 成人手机av| 日韩 亚洲 欧美在线| 国产伦人伦偷精品视频| 又黄又粗又硬又大视频| 日韩熟女老妇一区二区性免费视频| 欧美久久黑人一区二区| 国产不卡av网站在线观看| 大片电影免费在线观看免费| 一个人免费看片子| 性少妇av在线| 精品人妻1区二区| 亚洲人成电影观看| 久久 成人 亚洲| 免费看av在线观看网站| 热99久久久久精品小说推荐| 欧美亚洲 丝袜 人妻 在线| 婷婷丁香在线五月| 水蜜桃什么品种好| 自线自在国产av| 国产一区二区激情短视频 | 别揉我奶头~嗯~啊~动态视频 | 国产成人精品久久二区二区免费| 国产一级毛片在线| 日韩熟女老妇一区二区性免费视频| 18禁裸乳无遮挡动漫免费视频| 精品久久久精品久久久| 一区二区日韩欧美中文字幕| 免费看十八禁软件| av一本久久久久| 天天躁夜夜躁狠狠躁躁| 色94色欧美一区二区| 国产一区亚洲一区在线观看| 国产精品久久久久久精品古装| 肉色欧美久久久久久久蜜桃| 国产在视频线精品| 国产熟女欧美一区二区| 亚洲自偷自拍图片 自拍| 成人免费观看视频高清| 日本猛色少妇xxxxx猛交久久| 9热在线视频观看99| 午夜免费观看性视频| 99精品久久久久人妻精品| netflix在线观看网站| av在线老鸭窝| 中国美女看黄片| 不卡av一区二区三区| 国产欧美日韩精品亚洲av| 大片电影免费在线观看免费| 99久久人妻综合| 亚洲美女黄色视频免费看| 99久久综合免费| 人人妻人人爽人人添夜夜欢视频| 国产97色在线日韩免费| 亚洲精品中文字幕在线视频| 亚洲国产精品一区二区三区在线| 中文字幕高清在线视频| 国产午夜精品一二区理论片| 免费高清在线观看视频在线观看| 久久精品国产综合久久久| 国产不卡av网站在线观看| 亚洲国产av影院在线观看| 亚洲精品在线美女| 国产精品九九99| 日本色播在线视频| 精品卡一卡二卡四卡免费| 精品国产乱码久久久久久男人| 亚洲综合色网址| 国产欧美日韩一区二区三区在线| 亚洲一码二码三码区别大吗| 高清不卡的av网站| 一区福利在线观看| 亚洲国产av影院在线观看| 国产片特级美女逼逼视频| 热99久久久久精品小说推荐| 国产色视频综合| 啦啦啦视频在线资源免费观看| 国产一级毛片在线| 成人免费观看视频高清| 欧美大码av| 亚洲欧美色中文字幕在线| 中文欧美无线码| 国产成人精品久久二区二区免费| 久久久久久人人人人人| 免费观看人在逋| 国产成人91sexporn| 黄色怎么调成土黄色| 国产精品久久久久久精品古装| 久久久久久久大尺度免费视频| 亚洲精品美女久久av网站| 亚洲情色 制服丝袜| 久热这里只有精品99| 亚洲免费av在线视频| 亚洲精品国产区一区二| 日韩一本色道免费dvd| 9191精品国产免费久久| 国产av一区二区精品久久| 国产成人欧美在线观看 | 欧美+亚洲+日韩+国产| 中文字幕另类日韩欧美亚洲嫩草| 日日夜夜操网爽| 久久狼人影院| 日本vs欧美在线观看视频| 国产日韩欧美视频二区| 男女下面插进去视频免费观看| 99国产精品99久久久久| 99re6热这里在线精品视频| 2018国产大陆天天弄谢| 精品亚洲成国产av| 波多野结衣一区麻豆| 亚洲欧美日韩另类电影网站| 在线看a的网站| 咕卡用的链子| 国产亚洲欧美在线一区二区| 国产精品一区二区免费欧美 | www.自偷自拍.com| 亚洲av欧美aⅴ国产| 午夜福利影视在线免费观看| 人人妻人人澡人人爽人人夜夜| 久久热在线av| 欧美精品高潮呻吟av久久| 国产成人一区二区三区免费视频网站 | netflix在线观看网站| 国产不卡av网站在线观看| 久久久久国产一级毛片高清牌| 狠狠精品人妻久久久久久综合| 亚洲黑人精品在线| 国产成人免费无遮挡视频| 熟女av电影| 午夜久久久在线观看| videos熟女内射| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 亚洲av欧美aⅴ国产| 日日摸夜夜添夜夜爱| 久热这里只有精品99| 各种免费的搞黄视频| 国产一级毛片在线| 亚洲精品日韩在线中文字幕| 777久久人妻少妇嫩草av网站| 十八禁网站网址无遮挡| 伦理电影免费视频| 国产主播在线观看一区二区 | 成人国产一区最新在线观看 | 久久精品久久久久久久性| 美女脱内裤让男人舔精品视频| 伦理电影免费视频| 99久久人妻综合| 只有这里有精品99| 欧美乱码精品一区二区三区| 午夜福利一区二区在线看| 自拍欧美九色日韩亚洲蝌蚪91| 老司机靠b影院| 欧美xxⅹ黑人| 欧美日韩国产mv在线观看视频| kizo精华| 桃花免费在线播放| 欧美 日韩 精品 国产| 日韩一本色道免费dvd| 国产高清videossex| 午夜福利视频在线观看免费| 18禁裸乳无遮挡动漫免费视频| 国产在线观看jvid| 91麻豆av在线| avwww免费| 国产97色在线日韩免费| 亚洲国产毛片av蜜桃av| 国产男人的电影天堂91| 国产淫语在线视频| 国产亚洲午夜精品一区二区久久| av视频免费观看在线观看| 制服人妻中文乱码| 久久av网站| 天堂8中文在线网| 欧美日本中文国产一区发布| 国产免费视频播放在线视频| 亚洲中文av在线| netflix在线观看网站| 久久人妻福利社区极品人妻图片 | 亚洲成色77777| 精品久久久精品久久久| 女人久久www免费人成看片| 啦啦啦视频在线资源免费观看| 久久鲁丝午夜福利片| 校园人妻丝袜中文字幕| 亚洲精品一二三| 中国国产av一级| 人妻一区二区av| 9色porny在线观看| 亚洲,欧美,日韩| 国产视频首页在线观看| 1024香蕉在线观看| 久久ye,这里只有精品| av视频免费观看在线观看| 黑人猛操日本美女一级片| 少妇被粗大的猛进出69影院| 久久久久精品国产欧美久久久 | 晚上一个人看的免费电影| 久久99精品国语久久久| 水蜜桃什么品种好| 黄频高清免费视频| 2021少妇久久久久久久久久久| 亚洲人成77777在线视频| 免费在线观看日本一区| 午夜免费观看性视频| www.精华液| 欧美在线黄色| 亚洲精品乱久久久久久| 99久久人妻综合| 99久久精品国产亚洲精品| 十八禁高潮呻吟视频| 亚洲色图 男人天堂 中文字幕| 秋霞在线观看毛片| 久久精品成人免费网站| 国产精品熟女久久久久浪| 亚洲av国产av综合av卡| 韩国精品一区二区三区| 午夜激情久久久久久久| 久久亚洲精品不卡| 亚洲精品国产色婷婷电影| 亚洲精品美女久久久久99蜜臀 | 夫妻性生交免费视频一级片| 天天躁日日躁夜夜躁夜夜| 国产免费福利视频在线观看| 超碰97精品在线观看| 一本—道久久a久久精品蜜桃钙片| 国产午夜精品一二区理论片| 色播在线永久视频| 母亲3免费完整高清在线观看| 国产成人欧美| xxx大片免费视频| 欧美人与善性xxx| 精品久久久精品久久久| 亚洲五月婷婷丁香| 波多野结衣av一区二区av| 国产一区二区 视频在线| 亚洲九九香蕉| 性色av一级| 一本—道久久a久久精品蜜桃钙片| a级片在线免费高清观看视频| 国产成人精品久久二区二区免费| 高清黄色对白视频在线免费看| 日韩 亚洲 欧美在线| 国产成人影院久久av| 一区二区三区激情视频| 久久久久久久久久久久大奶| 欧美日韩精品网址| 免费女性裸体啪啪无遮挡网站| 无限看片的www在线观看| 黄频高清免费视频| 亚洲精品日本国产第一区| 欧美日韩亚洲综合一区二区三区_| 中文字幕精品免费在线观看视频| 你懂的网址亚洲精品在线观看| 欧美人与性动交α欧美软件| 51午夜福利影视在线观看| 男人爽女人下面视频在线观看| 老鸭窝网址在线观看| 国产视频一区二区在线看| 日本av免费视频播放| 晚上一个人看的免费电影| 婷婷色综合大香蕉| 嫩草影视91久久| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| av一本久久久久| 中文字幕人妻丝袜一区二区| 日日爽夜夜爽网站| 人体艺术视频欧美日本| 色婷婷久久久亚洲欧美| 中国美女看黄片| 蜜桃国产av成人99| 女警被强在线播放| 亚洲,欧美精品.| 50天的宝宝边吃奶边哭怎么回事| 久久鲁丝午夜福利片| 99久久99久久久精品蜜桃| 欧美xxⅹ黑人| 一级黄片播放器| 国产精品一国产av| 久久久久久久国产电影| 国产精品秋霞免费鲁丝片| 人人妻,人人澡人人爽秒播 | 黄色a级毛片大全视频| 国产伦理片在线播放av一区| av天堂久久9| 人妻一区二区av| 91精品国产国语对白视频| 欧美日韩亚洲综合一区二区三区_| 一边摸一边抽搐一进一出视频| 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 别揉我奶头~嗯~啊~动态视频 | av线在线观看网站| 精品熟女少妇八av免费久了| 乱人伦中国视频| 免费久久久久久久精品成人欧美视频| 久久女婷五月综合色啪小说| 黄网站色视频无遮挡免费观看| 操美女的视频在线观看| 欧美人与善性xxx| 一边摸一边抽搐一进一出视频| 久久久精品国产亚洲av高清涩受| 黄片小视频在线播放| 在线 av 中文字幕| 亚洲欧美成人综合另类久久久| 国产日韩欧美亚洲二区| 亚洲欧洲日产国产| 男女床上黄色一级片免费看| 两个人看的免费小视频| 免费在线观看完整版高清| 午夜免费鲁丝| 五月开心婷婷网| 国产老妇伦熟女老妇高清| 中国美女看黄片| 丰满饥渴人妻一区二区三| 别揉我奶头~嗯~啊~动态视频 | 精品福利永久在线观看| av在线app专区| xxxhd国产人妻xxx| 视频在线观看一区二区三区| 国产在线观看jvid| 亚洲中文日韩欧美视频| 如日韩欧美国产精品一区二区三区|