• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    吡啶-2-甲醛肟鈦氧簇合物的合成、結(jié)構(gòu)調(diào)控及光電性質(zhì)

    2022-12-06 06:29:38郁有祝張艷茹郭玉華周忠源楊立國李嘉琳方黎月喬寬寬
    無機化學(xué)學(xué)報 2022年11期
    關(guān)鍵詞:安陽吡啶化學(xué)

    郁有祝 張艷茹 郭玉華 周忠源 楊立國 李嘉琳 方黎月 喬寬寬

    (1安陽工學(xué)院化學(xué)與環(huán)境工程學(xué)院,安陽 455000)

    (2山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,太原 030000)

    0 Introduction

    As a representative semiconductor material,titanium dioxide(TiO2)is widely applied in many areas such as catalysis,energy,and environmental science owing to its high stability,negligible toxicity,and cheap cost[1-4].Doping TiO2materials with nitrogen is an effective approach to modify the band-gap energies and strengthen efficiencies for their photocatalytic applications[5-8].However,the photocatalytic mechanisms of nitrogen-doped TiO2(N-TiO2)materials could not be illustrated clearly due to their imprecise and inhomogeneous characteristics.As the structure and reactivity models of N-TiO2,nitrogen-doped titanium oxo clusters(N-TOCs) have attracted considerable attention because of their accurate atomic structures[9-12].In general,N-TOCs are characterized by N—Ti bond which always exhibits high photocatalytic activity such as photocatalytic H2evolution[12-13],and rapid dye degradation[9,14].To date,it is still of great importance to enlarge the numbers and structure diversities of NTOCs for future potential applications.

    As is known,the construction of N—Ti bonds is crucial for N-TOCs.The N-donor ligands with the type of N(sp2)atoms such as pyridine,1,10-phenanthroline,and pyrazole have good affinities to Ti(Ⅳ)ions,and a few N-TOCs have been reported[9,12].To be noted,despite including N—Ti bonds in the N-TOCs their light absorption is mainly located in the ultraviolet region,limiting their full use of sunlight[9,13].Introducing dye-ligands has proven to be an effective strategy for the construction of N-TOCs with narrow band gaps[15-18].However,simultaneously use of N-donor ligands and dye-ligands in one reaction system for N-TOCs construction is not beneficial for obtaining diverse structures of N-TOCs because of the rigidity and steric hindrance of ligands.In this context,selecting one type ligand both including N(sp2)and N(sp2)—O-as N-donor and dye-ligand for N-TOCs construction and at the same time introducing the second ligand to regulate the structures is appealing,which is seldom reported in the literature.Accordingly,2-pyridinecarbaldehyde oxime(HPycox)characterized with N(sp2)and N(sp2)—O-as coordinated sites is the ideal N-donor and dye-ligand for N-TOCs construction,and phosphonic acid with strong coordination ability towards Ti4+ions can be used as ligands to regulate core structures of N-TOCs.

    Based on the above-described background,HPycox was used as N-donor and dye-ligand in this work to construct N-TOCs,and simultaneously phosphonic acid was introduced to regulate the core structures of N-TOCs.As shown in Scheme 1,we solvothermally synthesized three N-TOCs formulated as[Ti2(μ2-O)(Pycox)2(OiPr)4](1),[Ti3(μ2-O)2(Pycox)2(Ph2PO2)2(OiPr)4](2)and[Ti6(μ2-O)2(μ3-O)2(Pycox)2(PhPO3)4(OiPr)6]·2CH3CN (3)respectively.All the structures were characterized by X-ray single crystal diffraction.Moreover,their light absorption behaviors,band gaps,and photocurrent responses were also investigated.

    Scheme 1 Illustration of the synthesis of complexes 1-3

    1 Experimental

    1.1 Material and methods

    All starting reagents were of AR grade and used as received without further purification.IR spectra were performed with a Perkin Elmer Spectrum 100 FT-IR Spectrometer.The powder X-ray diffraction(PXRD)patterns were obtained at 40 kV and 100 mA on a Rigaku D/Max-2500 diffractometer from 5°to 50°,with the use of Cu Kα radiation(λ =0.154 2 nm)at room temperature.The solid-state UV-Vis diffuse reflectance spectra of complexes 1-3 were recorded on a TU-1901 spectrophotometer and scanned in a range of 240-800 nm.The electrochemical measurements were carried out using CHI 660E as the electrochemical work station in an ambient environment in a standard three-electrode system.The sample coated ITO glass was used as the working electrode,and a Pt plate and an Ag/AgCl electrode were used as the auxiliary electrode and the reference electrode respectively.An aqueous solution of Na2SO4(0.2 mol·L-1)was used as an electrolyte.The working electrodes were prepared as the reference reported[15,19-20].A 300 W xenon lamp was used as a full-wavelength light source for photocurrent measurement,located 20 cm away from the surface of the ITO electrode with an applied potential of 0.6 V.The on-off cycling irradiation interval was 10 s.

    1.2 Synthesis of complex 1

    First,HPycox(1 mmol,122.13 mg)was added with stirring to 1 mL isopropanol and 6 mL acetonitrile.After 10 min,Ti(OiPr)4(1.63 mmol,0.5 mL)was added to the above solution with vigorous stirring,and then the resulting mixture was sealed in a Teflon-lined stainless vessel(10 mL)and heated at 80℃for 72 h under autogenous pressure.The vessel was then cooled by air to room temperature spontaneously.Light yellow block crystals were obtained and then washed thoroughly with acetonitrile.Yield:0.156 g(53% based on HPycox).Elemental analysis Calcd.(Found)for C24H38N4O7Ti2(%):C,48.83(48.67);H,6.49(6.53),N,9.49(9.42).IR(KBr pellet,cm-1):3 067(w),2 970(s),2 851(w),2 956(w),1 606(s),1 541(m),1 476(s),1 346(w),1 129(s),1 000(s),783(m),697(s),600(s).

    1.3 Synthesis of complex 2

    A mixture of HPycox(1 mmol,122.13 mg)and diphenylphosphinic acid(0.5 mmol,109 mg)was added with stirring to 1 mL isopropanol and 6 mL acetonitrile.After 10 min,Ti(OiPr)4(1.63 mmol,0.5 mL)was added to the above solution with vigorous stirring,and then the resulting mixture was sealed in a Teflon-lined stainless vessel(10 mL)and heated at 80℃for 72 h under autogenous pressure.The vessel was then cooled by air to room temperature spontaneously.Light yellow block crystals were obtained and then washed thoroughly with acetonitrile.Yield:0.152 g(56% based on diphenylphosphinic acid).Elemental analysis Calcd.(Found)for C48H58N4O12P2Ti3(%):C,52.96(52.79);H,5.37(5.28);N,5.15(4.98).IR(KBr pellet,cm-1):3 058(w),2 960(m),2 921(w),2 849(w),1 604(m),1 551(w),1 440(m),1 132(s),995(s),687(m),556(s).

    1.4 Synthesis of complex 3

    A mixture of HPycox(1 mmol,122.13 mg)and phenylphosphonic acid(0.5 mmol,80 mg)was added with stirring to 1 mL isopropanol and 6 mL acetonitrile.After 10 min,Ti(OiPr)4(1.63 mmol,0.5 mL)was added to the above solution with vigorous stirring,and then the resulting mixture was sealed in a Teflon-lined stainless vessel(10 mL)and heated at 80℃for 72 h under autogenous pressure.The vessel was then cooled by air to room temperature spontaneously.Light yellow block crystals were obtained and then washed thoroughly with acetonitrile.Yield:0.093 g(45% based on phenylphosphonic acid).Elemental analysis Calcd.(Found)for C58H78N6O24P4Ti6(%):C,42.11(42.23);H,4.75(4.62);N,5.08(4.96).IR(KBr pellet,cm-1):3 066(w),2 968(m),2 916(w),2 871(w),1 603(m),1 548(m),1 475(m),1 101(s),1 003(s),788(m),698(m),583(s).

    1.5 X-ray structure determination

    Crystallographic data of 1 and 2 were collected on a Bruker SMART APEX Ⅱ diffractometer equipped with a graphite-monochromatized Mo Kα radiation(λ=0.071 073 nm)at room temperature.Crystallographic data of 3 was collected on an Agilent Gemini Eos diffractometer equipped with a graphite-monochromatized Mo Kα radiation(λ=0.071 073 nm).All the structures were solved by direct methods and refined by using the SHELXTL-2014.The relatively large residual peaks in the structure of complex 2 were located near the carbon atoms of isopropoxide groups which mainly resulted from the disordered carbon atoms.Relevant crystallographic data are summarized in Table 1.The selected bond lengths and bond angles are given in Table 2.

    Table 1 Selected crystallographic data for complexes 1-3

    Table 2 Selected bond lengths(nm)and angles(°)for complexes 1-3

    CCDC:2149944,1;2149949,2;2149950,3.

    Continued Table 2

    2 Results and discussion

    2.1 Synthesis

    In the synthetic progress,we firstly synthesized complex 1 in a simple and general approach.Structure analysis of 1 showed that only two Ti atoms,two Pycoxanions,and four isopropoxide groups are observed in the structure.Notably,though the structure of complex 1 is nearly the same as the reported TOC except for the solvent molecular,the synthetic method of complex 1 in this work is easier than the reported one[21].The simple structure of 1 indicates that the structure may be regulated by a stronger ligand.Then,in the same synthetic system of 1,diphenylphosphinic acid was added to regulate the structure,resulting in the titanium numbers tuned from two of 1 to three of 2.Obviously,the regulation of titanium numbers from two to three was only in a small range due to the large steric resistance of diphenylphosphinic acid. Further, we chose phenylphosphonic acid with smaller steric resistance to replace diphenylphosphinic acid under the same condition,and very interestingly the titanium numbers are tuned from three of 2 to six of 3.The successful structure regulation of TOCs in this work indicates that phosphonic acid with different steric resistance can be used to regulate TOCs structures,which may provide us with more TOCs with different structure diversities in the future.

    2.2 Structure description of complex 1

    The molecular structure of complex 1 consists of two Ti4+ions,one μ2-O ion,two Pycox-anions,and four isopropoxide groups(Fig.1a).The two Ti4+ions show the same octahedral[TiO4N2]coordination environments which linked by vertex-sharing mode to form a Ti2core(Fig.1b).The packing structure demonstrates the shortest distance of the adjacent clusters in 1 is 0.69 nm(Fig.1c).

    Fig.1 Crystal structure(a),polyhedral view(b),and packing diagram(c)for complex 1

    2.3 Structure description of complex 2

    The molecular structure of complex 2 consists of three Ti4+ions,two μ2-O ions,two Pycox-anions,two diphenylphosphonate molecules,and four isopropoxide groups(Fig.2a).Among the three Ti4+ions,two Ti4+ions show the same octahedral[TiO4N2]coordination environments,while the other Ti4+ions show[TiO6]coordination environments.The three Ti4+ions are linked by vertex-sharing mode to form a Ti3core(Fig.2b).The packing structure demonstrates the shortest distance of the adjacent clusters in 2 is 0.765 nm(Fig.2c).

    Fig.2 Crystal structure(a),polyhedral view(b),and packing diagram(c)for complex 2

    2.4 Structure description of complex 3

    The asymmetric unit of complex 3 consists of three Ti4+ions,two O2-ions,one Pycox-anion,two phenyl phosphonate molecules,three isopropoxide groups,and one CHCN.Among the six Ti4+ions,four Ti4+ions show octahedral[TiO6]coordination environments,while the other two Ti4+ions show[TiO4N2]coordination environments(Fig.3a).Fig.3b illustrates that three Ti4+ions by edge and vertex-sharing modes respectively,in turn,generate a nearly flat type Ti3O subunit,then the two same Ti3O subunits are linked by two μ2-O atoms to form a Ti6core structure by vertex-sharing mode(Fig.3b).The packing structure demonstrates the shortest distance of the adjacent clusters in 3 is 1.25 nm(Fig.3c).Interestingly,the structure of complex 3 is very similar to our early reported Ti6oxo cluster despite their different dye-ligands in the structures.

    Fig.3 Crystal structure(a),polyhedral view(b),and packing diagram(c)for complex 3

    The bond lengths of Ti—O in complexes 1-3 are in a range of 0.180 8-0.212 5 nm,0.181 0-0.207 3 nm,0.177 3-0.205 4 nm,respectively,and the Ti—N bond lengths in complexes 1-3 are in a range of 0.221 6-0.225 5 nm,0.222 7-0.226 0 nm,0.216 8-0.223 9 nm,respectively.Both the Ti—O and Ti—N bond lengths are consistent with those in the literature[19,22-28].

    2.5 PXRD analysis

    The phase purity for complexes 1-3 was determined by PXRD at room temperature.As shown in Fig.4,all the simulated patterns from the single-crystal X-ray data of 1-3 were in good agreement with the experimental ones,indicating the pure phase of complexes 1-3.Notably,the intensities difference between the simulated and experimental patterns can be ascribed to the powder size and variation in preferred orientation during experimental PXRD data collections[29].

    Fig.4 XRD patterns of complexes 1-3

    2.6 Light absorption,band gap,and photocurrent property

    The band gaps of complexes 1-3 were determined by a UV-Vis diffuse reflectance measurement method at room temperature.As shown in Fig.5a,solid-state optical absorbance spectra indicate that complexes 1 and 3 showed nearly the same absorption behaviors in a range from 240 to 500 nm.In contrast,complex 2 only exhibited light absorption in a range of 240 to 400 nm.On the basis of the Kubelka-Munk function[31],the optical band gaps of complexes 1-3 were estimated to be 2.89,3.00,and 2.87 eV,respectively(Fig.5b),showing an obvious reduction compared to the band gap(3.2 eV)of TiO2.The relatively narrow band gaps of complexes 1-3 can be attributed to the Pycox-as dyeligand in structures.In addition,photocurrent responses of complexes 1-3 were measured by using a typical three-electrode photoelectrochemical cell in a 0.20 mol·L-1Na2SO4electrolyte solution under 0.6 V bias potential.As shown in Fig.5c,upon illumination,the photocurrents were quickly generated,while when the light was switched off,the photocurrents rapidly decayed.Complexes 1 and 3 showed smaller photocurrent densities of 0.02 and 0.01 μA·cm-2,respectively,while complex 2 exhibited a higher photocurrent density of 0.10μA·cm-2.The different photocurrent responses of complexes 1-3 might be ascribed to the different rigidity and hydrophobicity of ligands in the structures.

    Fig.5 Solid-state UV-Vis reflectance spectra(a),band gaps(b),and photocurrent responses(c)of complexes 1-3

    2.7 Mott-Schottky measurements

    Similar to N-TiO2,N-TOCs also have semiconductor properties.In this work,the LUMO positions of complexes 1-3 were conducted by Mott-Schottky measurements at frequencies of 300,500,and 1 000 Hz.As shown in Fig.6,the LUMO position value of 1 was-0.85 eV,while the LUMO positions of 2 and 3 were similar with the value of-0.80 eV.The negative LUMO position values of 1-3 indicate their potential applications for photocatalytic reductions,such as for reduction of CO2to CO,and as well for photocatalytic H2evolution[31-33].

    Fig.6 Mott-Schottky plots for 1(a),2(b),and 3(c)in 0.2 mol·L-1Na2SO4 aqueous solution

    3 Conclusions

    In summary,using HPycox as a dye-ligand,we successfully synthesized three N-TOCs with various core structures.Structure analysis of complexes 1-3 reveals that phosphonic acids are the ideal ligands for their structural regulation.Moreover,the light absorption behaviors,band gaps,and photocurrent responses are also influenced by the titanium oxo cores and the ligands.All of them have potential applications for photocatalytic reductions,and further studies of photocatalytic applications are underway.

    猜你喜歡
    安陽吡啶化學(xué)
    安陽之旅
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    勘 誤
    安陽:以最嚴(yán)密的法治向大氣污染宣戰(zhàn)
    今日農(nóng)業(yè)(2019年11期)2019-08-13 00:49:02
    安陽有個“花木蘭”
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    欧美日韩视频高清一区二区三区二| 午夜激情久久久久久久| 一区二区三区四区激情视频| 校园人妻丝袜中文字幕| 国产精品久久久久久精品电影| 亚洲va在线va天堂va国产| 美女内射精品一级片tv| 水蜜桃什么品种好| 老师上课跳d突然被开到最大视频| 人妻一区二区av| 欧美xxⅹ黑人| 国产黄色免费在线视频| freevideosex欧美| 亚洲国产精品专区欧美| 最近视频中文字幕2019在线8| 偷拍熟女少妇极品色| 能在线免费看毛片的网站| 成人鲁丝片一二三区免费| 亚洲三级黄色毛片| 国产伦理片在线播放av一区| 亚洲无线观看免费| 欧美区成人在线视频| 久久久亚洲精品成人影院| 久久久成人免费电影| 99九九线精品视频在线观看视频| 中文乱码字字幕精品一区二区三区 | 免费播放大片免费观看视频在线观看| 久久99热这里只有精品18| 成人漫画全彩无遮挡| 99久久精品国产国产毛片| 中文字幕亚洲精品专区| 91精品一卡2卡3卡4卡| 黄色配什么色好看| 国内少妇人妻偷人精品xxx网站| av播播在线观看一区| 日韩大片免费观看网站| 国产av国产精品国产| 午夜激情福利司机影院| 日韩欧美国产在线观看| 天堂av国产一区二区熟女人妻| 日韩在线高清观看一区二区三区| 欧美人与善性xxx| 岛国毛片在线播放| 色网站视频免费| 国产精品一区二区性色av| 日本与韩国留学比较| 亚洲成人中文字幕在线播放| 亚洲欧洲国产日韩| 国产成人免费观看mmmm| 国产成人精品婷婷| 精品久久久久久久久av| 观看美女的网站| 欧美性感艳星| 18禁在线无遮挡免费观看视频| 亚洲最大成人手机在线| 成人午夜精彩视频在线观看| 人人妻人人澡欧美一区二区| 青春草亚洲视频在线观看| 免费在线观看成人毛片| 国产又色又爽无遮挡免| av免费观看日本| 亚洲精品久久午夜乱码| 成人亚洲精品av一区二区| 国产成人精品福利久久| 国产精品国产三级国产av玫瑰| 亚洲综合精品二区| a级一级毛片免费在线观看| 精品熟女少妇av免费看| 日韩欧美精品v在线| 日产精品乱码卡一卡2卡三| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久久免费av| 亚洲成人中文字幕在线播放| 高清av免费在线| 一二三四中文在线观看免费高清| 人妻少妇偷人精品九色| 欧美成人精品欧美一级黄| 亚洲色图av天堂| 午夜福利网站1000一区二区三区| 国产伦精品一区二区三区视频9| 国产精品爽爽va在线观看网站| 激情五月婷婷亚洲| 天天躁日日操中文字幕| 久热久热在线精品观看| 中国美白少妇内射xxxbb| 中文天堂在线官网| 久久久久久久久久黄片| 欧美日韩视频高清一区二区三区二| 亚洲成人久久爱视频| 尤物成人国产欧美一区二区三区| 国产伦在线观看视频一区| 国内少妇人妻偷人精品xxx网站| 久久这里只有精品中国| 国国产精品蜜臀av免费| 日本欧美国产在线视频| 国产一级毛片在线| 99久久精品一区二区三区| 欧美激情久久久久久爽电影| 三级男女做爰猛烈吃奶摸视频| 日韩欧美 国产精品| 亚洲成人中文字幕在线播放| 99热网站在线观看| 国产亚洲最大av| 一本久久精品| 亚洲精品国产av蜜桃| 国产69精品久久久久777片| 亚洲国产欧美人成| av国产久精品久网站免费入址| 日韩一区二区三区影片| 青春草视频在线免费观看| 肉色欧美久久久久久久蜜桃 | 日本免费在线观看一区| 男人舔女人下体高潮全视频| 一级a做视频免费观看| 亚洲精品影视一区二区三区av| 午夜爱爱视频在线播放| 成人鲁丝片一二三区免费| 内地一区二区视频在线| 国产久久久一区二区三区| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av涩爱| 美女主播在线视频| 免费观看的影片在线观看| 免费人成在线观看视频色| 婷婷色麻豆天堂久久| 校园人妻丝袜中文字幕| 免费少妇av软件| 日韩精品青青久久久久久| 免费大片18禁| 久久久a久久爽久久v久久| 国产精品综合久久久久久久免费| 啦啦啦中文免费视频观看日本| 精品久久久久久久久久久久久| 亚洲欧美一区二区三区黑人 | www.av在线官网国产| 亚洲伊人久久精品综合| 国产精品美女特级片免费视频播放器| 成人高潮视频无遮挡免费网站| 亚洲怡红院男人天堂| 在现免费观看毛片| 午夜免费男女啪啪视频观看| 日韩制服骚丝袜av| 亚洲精品第二区| 久久精品国产亚洲av涩爱| 亚洲怡红院男人天堂| 男人和女人高潮做爰伦理| 波多野结衣巨乳人妻| 日本午夜av视频| 最后的刺客免费高清国语| 成人一区二区视频在线观看| 日本色播在线视频| 男人爽女人下面视频在线观看| 尾随美女入室| 日韩大片免费观看网站| 成人鲁丝片一二三区免费| 夫妻性生交免费视频一级片| 狂野欧美激情性xxxx在线观看| 18禁动态无遮挡网站| 欧美区成人在线视频| 国国产精品蜜臀av免费| 精品99又大又爽又粗少妇毛片| 你懂的网址亚洲精品在线观看| 97在线视频观看| 蜜桃亚洲精品一区二区三区| 你懂的网址亚洲精品在线观看| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 一区二区三区高清视频在线| 国产成人a∨麻豆精品| 免费少妇av软件| av播播在线观看一区| 好男人视频免费观看在线| 日韩电影二区| 草草在线视频免费看| 好男人在线观看高清免费视频| 日日摸夜夜添夜夜添av毛片| 日韩欧美三级三区| 国产精品久久久久久久久免| 中文天堂在线官网| 一区二区三区免费毛片| 色5月婷婷丁香| 菩萨蛮人人尽说江南好唐韦庄| 国产淫片久久久久久久久| 国产精品99久久久久久久久| 欧美精品国产亚洲| 亚洲精品国产av蜜桃| 亚洲av日韩在线播放| 深爱激情五月婷婷| 日本一本二区三区精品| 婷婷色综合大香蕉| 精品欧美国产一区二区三| av在线亚洲专区| 久久久久久久久大av| 99热6这里只有精品| 白带黄色成豆腐渣| 中国国产av一级| 色尼玛亚洲综合影院| 亚洲精品亚洲一区二区| 亚洲综合精品二区| 免费大片黄手机在线观看| xxx大片免费视频| 成人鲁丝片一二三区免费| 日本免费在线观看一区| 免费大片18禁| 亚洲av中文字字幕乱码综合| 97超视频在线观看视频| 久久久久久久国产电影| 汤姆久久久久久久影院中文字幕 | 久久精品国产亚洲av涩爱| 爱豆传媒免费全集在线观看| 国产综合精华液| 亚洲国产精品国产精品| 亚洲精品日韩av片在线观看| 超碰av人人做人人爽久久| 日韩 亚洲 欧美在线| 亚洲丝袜综合中文字幕| 亚洲综合色惰| 欧美成人精品欧美一级黄| 两个人的视频大全免费| 成人无遮挡网站| 亚洲av中文字字幕乱码综合| 亚州av有码| 又爽又黄无遮挡网站| 亚洲欧美一区二区三区黑人 | 亚洲av日韩在线播放| 91在线精品国自产拍蜜月| 联通29元200g的流量卡| 亚洲av.av天堂| 麻豆精品久久久久久蜜桃| 插逼视频在线观看| 欧美zozozo另类| 国产激情偷乱视频一区二区| 亚洲一级一片aⅴ在线观看| 啦啦啦啦在线视频资源| 国产高潮美女av| 亚洲国产精品成人综合色| 赤兔流量卡办理| 日日撸夜夜添| 亚洲精品国产av蜜桃| 久久精品人妻少妇| 精品欧美国产一区二区三| 九草在线视频观看| 偷拍熟女少妇极品色| 国产免费又黄又爽又色| 亚洲国产精品专区欧美| 国产精品蜜桃在线观看| 国产亚洲5aaaaa淫片| 午夜福利视频1000在线观看| 亚洲成色77777| 舔av片在线| 又黄又爽又刺激的免费视频.| 欧美日韩在线观看h| 老司机影院成人| 黄色配什么色好看| 久久久精品94久久精品| videos熟女内射| 人人妻人人澡欧美一区二区| 午夜激情欧美在线| 中文天堂在线官网| 国产精品嫩草影院av在线观看| 日本熟妇午夜| 国产精品女同一区二区软件| 亚洲av中文字字幕乱码综合| 午夜激情久久久久久久| 久久精品国产亚洲av天美| av播播在线观看一区| 国产精品久久久久久精品电影小说 | 熟女人妻精品中文字幕| 日本黄大片高清| 卡戴珊不雅视频在线播放| 久久亚洲国产成人精品v| 欧美精品国产亚洲| 日本一本二区三区精品| 日韩大片免费观看网站| 亚洲精品国产av蜜桃| 国产极品天堂在线| 最近2019中文字幕mv第一页| av网站免费在线观看视频 | 天天一区二区日本电影三级| 偷拍熟女少妇极品色| 成年女人在线观看亚洲视频 | 毛片女人毛片| 在线天堂最新版资源| 91久久精品国产一区二区成人| 中文资源天堂在线| 我要看日韩黄色一级片| 午夜视频国产福利| 精品久久国产蜜桃| 成人欧美大片| 免费电影在线观看免费观看| 直男gayav资源| 哪个播放器可以免费观看大片| 免费黄色在线免费观看| 日本黄大片高清| 能在线免费看毛片的网站| 国内精品一区二区在线观看| 欧美性猛交╳xxx乱大交人| 免费人成在线观看视频色| 亚洲av.av天堂| 亚洲久久久久久中文字幕| 日本与韩国留学比较| 亚洲成人久久爱视频| 亚洲第一区二区三区不卡| 亚洲精品影视一区二区三区av| 日韩国内少妇激情av| 搡老乐熟女国产| 久久精品熟女亚洲av麻豆精品 | 亚洲精品国产av蜜桃| 国产精品福利在线免费观看| 色视频www国产| 午夜福利高清视频| 亚洲国产精品成人久久小说| 国产女主播在线喷水免费视频网站 | 18+在线观看网站| 高清av免费在线| 又黄又爽又刺激的免费视频.| 草草在线视频免费看| 欧美 日韩 精品 国产| 国产极品天堂在线| 国产精品国产三级国产专区5o| 成人毛片a级毛片在线播放| 久久久久九九精品影院| 高清午夜精品一区二区三区| 大片免费播放器 马上看| www.av在线官网国产| 日本免费a在线| 免费看不卡的av| 有码 亚洲区| 精品一区二区三卡| 少妇的逼好多水| 国产色爽女视频免费观看| 精品久久久久久电影网| 伊人久久国产一区二区| 色综合亚洲欧美另类图片| 欧美高清性xxxxhd video| av免费观看日本| 免费看av在线观看网站| 少妇人妻一区二区三区视频| 如何舔出高潮| 亚洲精品日韩av片在线观看| 晚上一个人看的免费电影| 黄片无遮挡物在线观看| 成人鲁丝片一二三区免费| 人人妻人人澡欧美一区二区| 婷婷色av中文字幕| 美女大奶头视频| 免费看av在线观看网站| av免费观看日本| 男人狂女人下面高潮的视频| 国产一区二区在线观看日韩| 亚洲久久久久久中文字幕| 欧美bdsm另类| 日本三级黄在线观看| 日韩伦理黄色片| 中文字幕制服av| 国产一区二区在线观看日韩| 亚洲国产成人一精品久久久| 婷婷六月久久综合丁香| 国产综合懂色| 欧美精品国产亚洲| 国产激情偷乱视频一区二区| 国产精品爽爽va在线观看网站| 国产午夜精品一二区理论片| 日韩强制内射视频| 麻豆成人av视频| 美女xxoo啪啪120秒动态图| 中国美白少妇内射xxxbb| 欧美性猛交╳xxx乱大交人| 亚洲精华国产精华液的使用体验| 99九九线精品视频在线观看视频| 不卡视频在线观看欧美| 亚洲aⅴ乱码一区二区在线播放| 欧美激情久久久久久爽电影| 久久午夜福利片| 波野结衣二区三区在线| 国语对白做爰xxxⅹ性视频网站| 99视频精品全部免费 在线| videossex国产| h日本视频在线播放| 美女内射精品一级片tv| 你懂的网址亚洲精品在线观看| 男插女下体视频免费在线播放| 亚洲电影在线观看av| 人妻一区二区av| 欧美精品国产亚洲| av线在线观看网站| 免费播放大片免费观看视频在线观看| 高清在线视频一区二区三区| 国产成人91sexporn| 国产大屁股一区二区在线视频| 日韩欧美三级三区| 欧美潮喷喷水| 男女边吃奶边做爰视频| 免费看不卡的av| 亚洲av电影在线观看一区二区三区 | 白带黄色成豆腐渣| 18禁裸乳无遮挡免费网站照片| 亚洲经典国产精华液单| 97热精品久久久久久| 高清午夜精品一区二区三区| 亚洲欧美中文字幕日韩二区| 2022亚洲国产成人精品| 特大巨黑吊av在线直播| www.色视频.com| 国产色爽女视频免费观看| 国产精品一区二区三区四区久久| 亚洲三级黄色毛片| 嫩草影院精品99| 亚洲av日韩在线播放| 精品久久久久久久末码| 精品熟女少妇av免费看| 国产精品一区www在线观看| 婷婷色麻豆天堂久久| 国产69精品久久久久777片| av国产免费在线观看| 亚洲av电影不卡..在线观看| 精品一区二区免费观看| 成人美女网站在线观看视频| 久久久久久久午夜电影| 国产伦在线观看视频一区| 69人妻影院| 网址你懂的国产日韩在线| 能在线免费看毛片的网站| 亚洲欧美一区二区三区黑人 | 亚洲av成人精品一二三区| 亚洲精品一区蜜桃| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 一级二级三级毛片免费看| 看免费成人av毛片| 能在线免费看毛片的网站| 国内精品美女久久久久久| 日韩 亚洲 欧美在线| 久久99蜜桃精品久久| 特大巨黑吊av在线直播| 亚洲一级一片aⅴ在线观看| 精品国内亚洲2022精品成人| 亚洲av电影在线观看一区二区三区 | 最近中文字幕2019免费版| 99久国产av精品国产电影| 国产乱人偷精品视频| 美女大奶头视频| 欧美极品一区二区三区四区| 爱豆传媒免费全集在线观看| 18+在线观看网站| 嫩草影院新地址| 免费无遮挡裸体视频| 一级毛片我不卡| 身体一侧抽搐| 久久精品久久久久久久性| 久久精品久久久久久噜噜老黄| 老师上课跳d突然被开到最大视频| 久久人人爽人人爽人人片va| 国产伦一二天堂av在线观看| av卡一久久| 成年女人看的毛片在线观看| 久久精品夜色国产| 五月伊人婷婷丁香| 老师上课跳d突然被开到最大视频| 一边亲一边摸免费视频| 尾随美女入室| 97热精品久久久久久| 边亲边吃奶的免费视频| 免费看日本二区| 日韩制服骚丝袜av| av专区在线播放| 免费看美女性在线毛片视频| 夫妻性生交免费视频一级片| 国产精品一区www在线观看| 亚洲欧美精品专区久久| 日日啪夜夜爽| 国国产精品蜜臀av免费| 欧美激情久久久久久爽电影| 在现免费观看毛片| 只有这里有精品99| 亚洲图色成人| 国产精品三级大全| 国产一区二区三区综合在线观看 | 一二三四中文在线观看免费高清| 国产一级毛片七仙女欲春2| 韩国av在线不卡| 久久精品夜夜夜夜夜久久蜜豆| 国产成人a区在线观看| 舔av片在线| h日本视频在线播放| 中文乱码字字幕精品一区二区三区 | 国产精品嫩草影院av在线观看| 久久久午夜欧美精品| 亚洲精品国产av蜜桃| 日韩大片免费观看网站| 91精品一卡2卡3卡4卡| 免费观看无遮挡的男女| 亚洲欧美精品自产自拍| 性色avwww在线观看| 欧美区成人在线视频| 在线 av 中文字幕| 日本色播在线视频| 亚洲人成网站在线播| 欧美bdsm另类| 又爽又黄a免费视频| 欧美另类一区| 网址你懂的国产日韩在线| 国产精品久久久久久精品电影小说 | 内射极品少妇av片p| 丰满少妇做爰视频| 日韩av在线免费看完整版不卡| 久久久久久久大尺度免费视频| 亚洲自偷自拍三级| 熟妇人妻久久中文字幕3abv| 毛片女人毛片| 亚洲精品日韩av片在线观看| 国产成人精品一,二区| 免费看美女性在线毛片视频| 夜夜看夜夜爽夜夜摸| 免费在线观看成人毛片| 亚洲av成人精品一二三区| 国产欧美日韩精品一区二区| 成人午夜高清在线视频| 人妻夜夜爽99麻豆av| 成人二区视频| 亚洲av福利一区| 特级一级黄色大片| 国产亚洲精品久久久com| 中文欧美无线码| 天堂影院成人在线观看| 最近视频中文字幕2019在线8| 在线a可以看的网站| 非洲黑人性xxxx精品又粗又长| 日本wwww免费看| 日韩一区二区视频免费看| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品aⅴ在线观看| 欧美 日韩 精品 国产| 午夜激情久久久久久久| 精品酒店卫生间| 精品人妻熟女av久视频| 免费播放大片免费观看视频在线观看| 成人欧美大片| 嫩草影院入口| 亚洲av国产av综合av卡| 亚洲天堂国产精品一区在线| 久久综合国产亚洲精品| 全区人妻精品视频| 成人鲁丝片一二三区免费| 亚州av有码| 国产成人freesex在线| 男人和女人高潮做爰伦理| 精华霜和精华液先用哪个| 精品国内亚洲2022精品成人| 国产免费视频播放在线视频 | 中文字幕制服av| 一级a做视频免费观看| 国产黄片美女视频| 99热6这里只有精品| 久久久久久久久大av| 91狼人影院| 亚洲四区av| av免费观看日本| 成人欧美大片| 精品久久久久久久末码| 久久99精品国语久久久| 十八禁国产超污无遮挡网站| 欧美日韩视频高清一区二区三区二| 国产一级毛片七仙女欲春2| 国产精品蜜桃在线观看| 97在线视频观看| 欧美日韩综合久久久久久| 国产69精品久久久久777片| 亚洲国产欧美在线一区| 伦理电影大哥的女人| 国产美女午夜福利| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲精品av在线| 亚洲四区av| 男人舔女人下体高潮全视频| 国产又色又爽无遮挡免| 亚洲欧美清纯卡通| 亚洲欧美精品专区久久| 精品国内亚洲2022精品成人| 大片免费播放器 马上看| 免费看a级黄色片| 亚洲av成人精品一区久久| 欧美zozozo另类| 亚洲av国产av综合av卡| 国产一区有黄有色的免费视频 | 丰满乱子伦码专区| 在线a可以看的网站| 女人被狂操c到高潮| 黑人高潮一二区| 大香蕉久久网| 非洲黑人性xxxx精品又粗又长| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产黄片美女视频| 麻豆精品久久久久久蜜桃| 亚洲av福利一区| 亚洲av二区三区四区| 人妻系列 视频| 国产男人的电影天堂91| 精品酒店卫生间| 人妻系列 视频| 又粗又硬又长又爽又黄的视频| 亚洲av二区三区四区| 欧美3d第一页| 国产黄a三级三级三级人| 国产精品1区2区在线观看.| 天堂俺去俺来也www色官网 | 成年av动漫网址| 最近视频中文字幕2019在线8| 精品一区二区三区人妻视频| 亚洲美女搞黄在线观看| 免费大片18禁| 永久网站在线| 久久精品国产亚洲av天美| 观看美女的网站| 男女边摸边吃奶|