• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于含雙吡唑的四羧酸配體構(gòu)筑的Fe(Ⅱ)/Co(Ⅱ)同構(gòu)配合物的合成、晶體結(jié)構(gòu)及磁性質(zhì)

    2022-12-06 06:29:38李芬芳
    關(guān)鍵詞:晉中吡唑構(gòu)筑

    李芬芳 何 婧

    (晉中學(xué)院化學(xué)化工系,晉中 030600)

    0 Introduction

    The prudent design of coordination polymers(CPs)by connecting the metal ions as single point nodes or secondary building units(SBU)with a variety of organic ligands as linkers has attracted immense interest in the past few decades[1].This is not only due to their fascinating network structures and novel functionalities but also due to the ease of tuning such structures with the change of linkers and metals.It has been observed CPs have great potential for multiple applications depending on their structure,chemical composition,particle size,etc.Thus,in the last decades,CPs have demonstrated usefulness in fields such as hydrogen and methane storage capture[2],separation of CO2[3],water adsorption[4],solvent sponge behavior[5],controlled drug entrapment and release[6],heterogeneous catalysis[7],and luminescence[8].While many of these applications are based on the framework porosity,CPs materials also exhibit physical properties traditionally associated with highly dense oxide systems.For example,CPs may also have interesting magnetic properties because the magnetic metal ions and their coupling can be tailored in the CP structure through the incorporation of magnetic moment carriers such as paramagnetic metals,open-shell organic ligands,or both[9].So the designed syntheses of CPs having attractive magnetic properties are immensely important among the ever-growing number of functional applications.Such a class of compounds was investigated to design magnetic materials because magnetic coupling can easily be tuned and controlled by altering the linkers and nodes[10-13].Side by side it is also very important to understand the magnetic exchange pathway to rationalize the exact design of magnetically functional CPs.

    As magnetism is a cooperative phenomenon,a connection between moment carriers at distances within the interacting range is necessary;carboxylic-based and nitrogen-based ligands have proved to have good superexchange pathways for magnetic couplings[14].Especially,the carboxylate-based bridging ligand is one of the very popular choices for the execution of magnetic CPs.Thus,coordination architectures having carboxylate-donating linkers and paramagnetic metal ions have attracted the attention of contemporary research for understanding the magnetic exchange through the OCO bridges of the carboxylate ligands which show versatile binding abilities.In addition,flexible diamagnetic ligands are usually used to link magnetic d-or f-block metal ions into extended networks,facilitating magnetic exchange in one,two,and three dimensions[15-16].Paramagnetic transition metal elements allow the variation of spin quantum number and magnetic anisotropy,two important parameters in magnetism.Among these elements,Co(Ⅱ) and Ni(Ⅱ) appear as the preferred choice to develop magnetic CPs,because it provides the highest magneto-crystalline anisotropy,which results in record magnetic hardness[17].

    In the CPs,there are self-assemblies of isomorphous or isotopologue compounds,which provide variations of magnetic anisotropy and spin quantum numbers that affect the magnetic behavior of such isomorphous systems,such as[M(L)2(CH3OH)2](M=Mn(Ⅱ),Fe(Ⅱ),and Co(Ⅱ),HL=2,6-bis(pyrazole-1-yl)pyridine-4-carboxylic acid),M(HCOO)2(4,4'-bpy)·nH2O(M=Co(Ⅱ)and Ni(Ⅱ));[M(L)(N3)]n·3nH2O(M=Mn(Ⅱ),Co(Ⅱ),and Ni(Ⅱ),L-=1-(4-carboxylatobenzyl-pyridinium-4-carboxylate),and[M(H2bpta)]n(H4bpta=2,2',4,4'-biphenyltetracarboxylic acid,M=Fe(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),and Zn(Ⅱ))[18-20].The magnetic interactions between transition metal centers usually are mainly mediated through M-L-M super-exchange which is important in magnetic orbits of metal ions,in which the nd-orbits of metal ions are combined out of phase with the np-orbits of ligands.The orbital interaction plays a significant role in the spin Hamiltonian for a given magnetic system.Indeed,a substantial number of CPs with magnetic properties have been reported,due to the use of constitutive openshell transition metal ions within the framework of the structure.

    With this in mind,we selected a ligand 1,1'-(1,4-phenylenebis(methylene))bis-(1H-pyrazole-3,5-dicarboxylic acid))(H4L,Scheme 1),succeeded in obtaining two new isomorphous 2D complexes{(NH2(CH3)2)2[Fe(L)]}n(1)and{(NH2(CH3)2)2[Co(L)]}n(2),and analyzed magnetic properties of the two complexes.The result of variable-temperature magnetic measurements exhibits antiferromagnetic exchange interactions in complexes 1 and 2.

    Scheme 1 Structure of H4L

    1 Experimental

    1.1 General methods and materials

    H4L was purchased from Jinan Henghua Science&Technology Co.,Ltd.,China.All solvents and other reagents were commercially available and were used without further purification.Fourier transform(FT)IR spectra were taken on a BRUKER TENSOR27 spectrometer in a 4 000-400 cm-1region with KBr pellets.Elemental analyses of C,H,and N were recorded on a CHNO-Rapid instrument.Powder X-ray diffraction(PXRD)data were collected on a Bruker D8 Advance X-ray diffractometer with Cu Kα radiation(λ=0.154 18 nm)and the data were recorded within a 2θ range of 5°-50°.The working voltage and current were 60 kV and 50 mA,respectively.The calculated PXRD patterns were generated from the single-crystal X-ray diffraction data using PLATON software.Magnetic susceptibility data were obtained with a SQUID magnetometer(Quantum MPMS-VSM)in a temperature range of 1.8-300.0 K by using an applied field of 2 000 Oe.The magnetic susceptibility data were corrected for the diamagnetism of the samples using Pascal constants.Thermogravimetric analyses(TGA)were carried out with a Dupont thermal analyzer in a temperature range of 25-800℃under an N2flow with a heating rate of 5℃·min-1.

    1.2 Preparation of complexes 1 and 2

    A mixture of H4L(20.7 mg,0.05 mmol),FeSO4·7H2O(27.8 mg,0.10 mmol),SnCl2·2H2O(11.3 mg,0.05 mmol),and 10 mL of mixed solvents(acetonitrile/DMF/water,3∶3∶4,V/V)was placed in a 15 mL Teflonlined stainless steel autoclave.The mixture was heated under autogenous pressure at 160℃for 72 h and then cooled to room temperature naturally.Red block-shaped crystals of 1 were collected by filtration,washed with H2O,and dried in the air.Yield:70%.Anal.Calcd.for C22H26FeN6O8(%):C 47.1,H 4.63,N 14.9;Found(%):C 47.2,H 4.66,N 14.8.IR(KBr,cm-1):3 437s,3 130w,1 605s,1 533m,1 476m,1 362s,1 277m,1 241m,1 106 w,1 013s,821s,785w,764m,543m.

    The preparation process of complex 2 was the same as that of 1,except that FeSO4·7H2O and SnCl2·2H2O were replaced by CoCl2·3H2O(23.8 mg,0.10 mmol).Pink block-shaped crystals of 2 were collected,washed with H2O,and dried in air.Yield:70%.Anal.Calcd.for C22H26N6CoO8(%):C 47.0,H 4.63,N 15.0;Found(%):C 46.8,H 4.64,N 14.8.IR(KBr,cm-1):3 419 w,2 802w,2 399w,1 922w,1 610s,1 525m,1 487m,1 355s,1 274m,1 245m,1 107w,1 024s,837s,792w,767m,550m.

    1.3 X-ray crystallography

    The data for complex 1 were collected using a SuperNova(Cu)X-ray Source diffractometer utilizing Cu Kα (λ=0.154 18 nm)radiation at 173(2)K.Singlecrystal X-ray diffraction data for complex 2 were collected in the Beijing Synchrotron Radiation Facility(BSRF)beamline 3W1A,which were mounted on a MARCCD-165 detector(λ=0.071 00 nm)with the storage ring working at 2.5 GeV.In the process,the crystal was protected by liquid nitrogen at 100(2)K.Data was collected by the program MARCCD and processed using HKL 2000.

    All the structure was solved by direct methods employed in the program SHELXS-2014 and refined by full-matrix least-squares methods against F2with SHELXL-2016.The determination of cell parameters and data reduction was performed with SAINT Plus.Program SADABS was used for absorption corrections.After all non-H atoms were refined anisotropically,hydrogen atoms attached to C atoms were placed geometrically and refined using a riding model approximation,with a C—H length of 0.093 nm and Uiso(H)=1.2Ueq(C).A summary of the crystallographic data and data collection and refinement parameters for both complexes are listed in Table 1.

    Table 1 Crystal data and structure refinement parameters for complexes 1 and 2

    CCDC:1923316,1;1923318,2.

    2 Results and discussion

    2.1 IR characterization

    The peaks of FT-IR indicate that the strong broad absorption bands in the range between 3 419 cm-1should be assigned to the characteristic vibrations of the νN—Hstretching frequencies.The absence of strong bands around 1 706 cm-1in the FT-IR spectra indicates that—COOH group has been completely deprotonated to generate L4-anions,which is in agreement with that from its X-ray single crystal structure,and the characteristic strong bands of the coordinated carboxylate groups appeared at 1 610-1 525 cm-1for the asymmetric stretching and 1 355-1 274 cm-1for the symmetric one(Fig.1).

    Fig.1 FT-IR spectra of H4L and complexes 1 and 2

    2.2 Description of crystal structures

    Since the two complexes are isomorphous,only the structure of complex 1 will be described here.Complex 1 crystallizes in the P21/n space group containing the anion framework.The asymmetric unit consists of a half Fe2+ion,a half of a fully deprotonated L4-ligand,and one non-coordinated protonated dimethylamine cation by hydrolysis of DMF(Fig.2).As can be deduced from the charge balance,the framework is anionic having a-2 charge,and the electroneutrality is achieved by the incorporation of the protonated amine in the voids of the net.In complex 1,the Fe(Ⅱ)ion is surrounded by four oxygen atoms(O1,O1iii,O3i,O3ii)from four L4-ions and two nitrogen atoms(N2,N2iii)of two different L4-ions to present an octahedron geometry where the cis-and trans-angles separate at the metal is 76.65(8)°-180.0°.The Fe—O and Fe—N bond lengths are in a range of 0.206 3(2)-0.216 5(2)nm and 0.216 7(2)nm,respectively,which are slightly shorter than those of Fe(Ⅱ)complexes[21].The bond lengths(M—O and M—N)for the two complexes decrease with the increase of the d-electronic number,in agreement with the radius variation of the metal ions(Table 2).

    Fig.2 Atom labels and coordination environments of the Fe(Ⅱ)ions in complex 1 with displacement ellipsoids drawn at the 30% probability level

    Table 2 Selected bond distances(nm)and angles(°)around metal centers in isomorphous polymers 1 and 2

    As shown in Fig.3a,in complex 1,two carboxyl groups of pyrazole are fully deprotonated,each ligand bridges two Fe(Ⅱ)ions through chelating N,O atoms of the pyrazole ring and monodentate O atom of the same pyrazole ring,forming…Fe-L-Fe-L… chains parallel to the crystallographic b direction.The Fe…Fe distance separated by a μ1,5-pyrazole-carboxylate bridge is 0.795 7(1)nm(Co…Co 0.798 0(2)nm for 2).The dihedral angle between the planes of the benzene ring andpyrazole rings is 71.07(3)°.The 1D chains intersect to form an infinite 2D network that contains nearly square Fe4L4units.For each unit,four L4-anions act as the four edges,and four Fe(Ⅱ)ions represent the four vertices.The lengths of the diagonals are 1.051 3 and 1.194 8 nm,compared to 1.060 9 and 1.200 4 nm for 2,and the interior angles are 82.68°and 97.32°,compared to 82.46°and 97.54°for 2.

    Fig.3 (a)Two-dimensional sheets extending in the b-axis and c-axis of complex 1;(b)Topology net of complex 1 with Schl?fli symbol{312.414.52}

    From the topological point of view,the frameworks of complexes 1 and 2 can be simplified by the application of a(4,4)-connected topological approach(Fig.3b)using TOPOS[22].Each ligand is linked to four Fe2+ions to act as a 4-connected node;each Fe2+ion is bound by four L4-ions to act as a 4-connected node.The topological notation is{312.414.52}from TOPOS program analysis.

    To confirm that the phase of the bulk sample is pure and the crystal structures of 1 and 2 are truly representative of the bulk material,the PXRD experiments were carried out.As shown in Fig.4,PXRD patterns of 1 and 2 were determined at room temperature,which matched well with those simulated from their X-ray single crystal diffraction data,and the high purity of the complexes can be confirmed.In addition,TGA results indicate that complexes 1 and 2 were stable until about 604 K(Fig.5).

    Fig.4 Simulated(bottom)and experimental(top)PXRD patterns of complexes 1(a)and 2(b)

    Fig.5 TGA curves for complexes 1 and 2

    2.3 Magnetic properties

    To gain insight into magnetic changes in isomorphous polymers,magnetic measurements were carried out on the well-crushed crystalline samples.Variabletemperature magnetic susceptibilities of the two complexes were measured in a temperature range of 1.8-300.0 K with an applied magnetic field of 2 000 Oe.

    As shown in Fig.6a,the χMT value of 1(3.07 cm3·mol-1·K)at 300.0 K was larger than the spin-only χMT of 3.00 cm3·mol-1·K expected for a single isolated highspin Fe(Ⅱ) ion(g=2.0 and S=2).Upon cooling,the χMT value decreased smoothly and reached a minimum of 1.67 cm3·mol-1·K at 2.0 K,which indicates a characteristic feature of antiferromagnetic coupling between Fe(Ⅱ) ions.The Curie-Weiss fit,namely χ=C/(T-θ),in the range of 1.8 to 300.0 K afforded a Curie constant of C being 3.11 cm3·mol-1·K and a Weiss constant of θ being-0.49 K(Fig.6a,Inset).

    Fig.6 Temperature dependence of χMT and 1/χMcollected in an applied field of 2 000 Oe for complexes 1(a)and 2(b)

    To further investigate the magnetic properties of 1,the data can be fitted upon 7.0 K by an expression(Eq.1)for S=2 systems[23]:

    where J is the coupling constant between the neighboring Fe(Ⅱ) ions;N is Avogadro's number;β is the Bohr magneton;k is the Boltzmann constant;g is the Lande value.

    The best fit well reproduced the experimental data over the entire temperature range with g=1.95,J=-0.181 cm-1with an agreement factor(R)of 5.7×10-4,where R=∑(χMTexp-χMTcal)2/∑(χMTexp)2.The negative θ and J values indicate the presence of weak antiferromagnetic interaction between adjacent Fe(Ⅱ)ions.

    According to the literature[24],it can be deduced that the unpaired spin in egorbitals favor ferromagnetic interactions,whereas those in t2gorbitals favor stronger antiferromagnetic interactions,with only one unpaired electron in a t2gorbital being enough to dominate the overall superexchange.Therefore,Fe(Ⅱ) complexes should show antiferromagnetic.Our result is in good agreement with these expectations[25].

    As shown in Fig.6b,the χMT value of 2(3.23 cm3·mol-1·K)at 300.0 K was larger than the spin-only value(1.88 cm3·mol-1·K,g=2.0 and S=3/2).Upon cooling,the χMT value slightly increased first,then decreased and reached 2.22 cm3·mol-1·K at 2.0 K,which indicates a characteristic feature of antiferromagnetic coupling between Co(Ⅱ)ions.The magnetic susceptibility obeys the Curie-Weiss law with a Curie constant C=3.35 cm3·mol-1·K,and a Weiss constant θ=-3.87 K(Fig.6b,Inset).We apply the following expressions(Eq.2 and 3)for a 1D Co(Ⅱ)chain to fit the data[26]:

    where x=|J|kT;zj' represents the interaction between Co(Ⅱ)ions and J is the parameter of exchange interaction between the neighboring Co(Ⅱ)ions.The susceptibility values above 50 K were calculated,resulting in J=-0.11 cm-1,g=1.85,and the agreement factor defined by R= ∑ (χMTexp- χMTcal)2/∑ (χMTexp)2was 7.2×10-5.A negative J confirms a weak antiferromagnetic exchange that agrees with a negative θ value.

    3 Conclusions

    In summary,we have successfully constructed two new isomorphous coordination polymers from the 1,1'-(1,4-phenylenebis(methylene))bis-(1H-pyrazole-3,5-dicarboxylic acid))ligand under a similar synthetic procedure.The framework features anionic having a-2 charge and protonated dimethylamine cation by hydrolysis of DMF to maintain the electroneutrality of the complex.Magnetic studies indicate the presence of antiferromagnetic exchange for complexes 1 and 2.

    猜你喜歡
    晉中吡唑構(gòu)筑
    晉中國(guó)家農(nóng)高區(qū)無花果采摘正當(dāng)時(shí)
    蕓苔素內(nèi)酯與吡唑醚菌酯在小麥上的應(yīng)用技術(shù)
    晉中市委統(tǒng)戰(zhàn)部調(diào)研晉中國(guó)家農(nóng)高區(qū)(山西農(nóng)谷)
    加快培育百億企業(yè) 建好晉中國(guó)家農(nóng)高區(qū)
    蕓苔素內(nèi)酯與吡唑醚菌酯在玉米上的應(yīng)用技術(shù)
    晉中:率先出臺(tái)提升鄉(xiāng)村治理能力“25條”
    “一帶一路”構(gòu)筑“健康絲路”
    新型多氟芳烴-并H-吡唑并[5,1-α]異喹啉衍生物的合成
    構(gòu)筑“健康家庭”,從容應(yīng)對(duì)重大疾患
    踐行治水方針 構(gòu)筑安全保障
    校园人妻丝袜中文字幕| 成人精品一区二区免费| 亚洲第一区二区三区不卡| 久久精品国产亚洲av香蕉五月| 俄罗斯特黄特色一大片| x7x7x7水蜜桃| 国产伦精品一区二区三区四那| h日本视频在线播放| 国产三级在线视频| 国产一区二区亚洲精品在线观看| 日韩 亚洲 欧美在线| av黄色大香蕉| 国语自产精品视频在线第100页| 一级a爱片免费观看的视频| a级毛片免费高清观看在线播放| 国产淫片久久久久久久久| 国产精品一区二区免费欧美| 亚洲国产高清在线一区二区三| 99久久精品热视频| 禁无遮挡网站| 免费在线观看日本一区| 国产乱人视频| 国产精品三级大全| 在线免费观看不下载黄p国产 | 偷拍熟女少妇极品色| 无人区码免费观看不卡| 色5月婷婷丁香| 日日啪夜夜撸| 一个人免费在线观看电影| 美女 人体艺术 gogo| 最近最新中文字幕大全电影3| 国产白丝娇喘喷水9色精品| 国产一区二区三区av在线 | 成人欧美大片| 午夜久久久久精精品| 国产色爽女视频免费观看| 老司机福利观看| 91精品国产九色| 亚洲美女搞黄在线观看 | 亚洲欧美日韩高清在线视频| 国产伦精品一区二区三区四那| 不卡视频在线观看欧美| 精品不卡国产一区二区三区| 身体一侧抽搐| 无遮挡黄片免费观看| 香蕉av资源在线| 淫秽高清视频在线观看| 99国产精品一区二区蜜桃av| 在现免费观看毛片| 亚洲一区高清亚洲精品| 中文资源天堂在线| 久久精品久久久久久噜噜老黄 | 国产极品精品免费视频能看的| 国产精品一及| 别揉我奶头~嗯~啊~动态视频| 亚洲在线观看片| 永久网站在线| 九九热线精品视视频播放| 一进一出抽搐动态| 一个人看视频在线观看www免费| 日本与韩国留学比较| 极品教师在线免费播放| 欧美日韩亚洲国产一区二区在线观看| 麻豆成人av在线观看| 久久久成人免费电影| 午夜福利在线观看吧| 高清在线国产一区| 亚洲电影在线观看av| 美女高潮喷水抽搐中文字幕| 美女 人体艺术 gogo| 国产亚洲精品av在线| 日本五十路高清| av在线天堂中文字幕| 国产日本99.免费观看| 亚洲精华国产精华液的使用体验 | 日韩欧美 国产精品| 亚洲av成人av| 午夜爱爱视频在线播放| 天堂av国产一区二区熟女人妻| 久久久久久九九精品二区国产| 九色成人免费人妻av| 久99久视频精品免费| 国产在线男女| 亚洲真实伦在线观看| 国内毛片毛片毛片毛片毛片| 国产单亲对白刺激| 在线天堂最新版资源| 精品乱码久久久久久99久播| 美女 人体艺术 gogo| 久久久久免费精品人妻一区二区| 亚洲美女视频黄频| 成人性生交大片免费视频hd| 特级一级黄色大片| 少妇被粗大猛烈的视频| 久久天躁狠狠躁夜夜2o2o| 老师上课跳d突然被开到最大视频| 日韩中文字幕欧美一区二区| 天堂动漫精品| 在线免费十八禁| 日韩一区二区视频免费看| 久久欧美精品欧美久久欧美| 免费人成视频x8x8入口观看| 男女那种视频在线观看| 欧美又色又爽又黄视频| 欧美在线一区亚洲| 最近最新中文字幕大全电影3| 日本黄大片高清| 亚洲国产欧美人成| 婷婷丁香在线五月| 精品一区二区三区视频在线观看免费| 听说在线观看完整版免费高清| 美女高潮的动态| 亚洲欧美日韩东京热| 久久亚洲精品不卡| 国产精华一区二区三区| 国产伦一二天堂av在线观看| 免费电影在线观看免费观看| x7x7x7水蜜桃| 一个人看视频在线观看www免费| 久久亚洲精品不卡| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 免费电影在线观看免费观看| 夜夜夜夜夜久久久久| 黄色一级大片看看| 午夜a级毛片| 俺也久久电影网| 国产探花在线观看一区二区| 亚洲美女黄片视频| 18禁裸乳无遮挡免费网站照片| 免费观看精品视频网站| av国产免费在线观看| 亚洲五月天丁香| 九色国产91popny在线| 我的老师免费观看完整版| 丰满乱子伦码专区| 亚洲图色成人| 男人舔奶头视频| 一夜夜www| 国产av一区在线观看免费| 我的老师免费观看完整版| 最近视频中文字幕2019在线8| 国产精品久久久久久久久免| 身体一侧抽搐| av视频在线观看入口| 老师上课跳d突然被开到最大视频| 一区二区三区高清视频在线| 99国产精品一区二区蜜桃av| 精品久久久久久久人妻蜜臀av| 日韩一本色道免费dvd| 国产成人福利小说| 精品久久久久久久末码| 97超级碰碰碰精品色视频在线观看| 国产伦精品一区二区三区四那| 色在线成人网| 给我免费播放毛片高清在线观看| av在线亚洲专区| 草草在线视频免费看| 在现免费观看毛片| 老熟妇乱子伦视频在线观看| or卡值多少钱| 免费电影在线观看免费观看| 国产精品嫩草影院av在线观看 | 日韩欧美三级三区| 国产单亲对白刺激| 在线观看免费视频日本深夜| 欧美日韩乱码在线| 国产色爽女视频免费观看| 日韩欧美国产一区二区入口| 性色avwww在线观看| 成人欧美大片| 久久99热这里只有精品18| 日韩亚洲欧美综合| 人妻制服诱惑在线中文字幕| 久久久久久国产a免费观看| 久久久国产成人精品二区| 变态另类成人亚洲欧美熟女| 有码 亚洲区| 国产精品伦人一区二区| 亚洲成人久久性| 国产伦人伦偷精品视频| 亚洲av成人精品一区久久| 欧美又色又爽又黄视频| 男插女下体视频免费在线播放| 少妇的逼水好多| eeuss影院久久| 亚洲av免费高清在线观看| 欧美高清成人免费视频www| 日本 av在线| av女优亚洲男人天堂| 国产伦一二天堂av在线观看| 国产成人福利小说| 尤物成人国产欧美一区二区三区| 亚洲成人精品中文字幕电影| 在现免费观看毛片| 婷婷精品国产亚洲av| 精品久久国产蜜桃| 午夜久久久久精精品| 国产av在哪里看| 成人无遮挡网站| 看片在线看免费视频| 3wmmmm亚洲av在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲经典国产精华液单| 欧美性猛交╳xxx乱大交人| 欧美国产日韩亚洲一区| 日本与韩国留学比较| a在线观看视频网站| netflix在线观看网站| 精品一区二区免费观看| 中出人妻视频一区二区| 嫩草影视91久久| 亚洲黑人精品在线| 亚洲成av人片在线播放无| 婷婷六月久久综合丁香| 男人狂女人下面高潮的视频| 精品人妻偷拍中文字幕| 亚洲va在线va天堂va国产| 国产亚洲精品av在线| 久久中文看片网| 夜夜夜夜夜久久久久| 亚洲国产高清在线一区二区三| 超碰av人人做人人爽久久| 十八禁国产超污无遮挡网站| 男人舔女人下体高潮全视频| 麻豆成人午夜福利视频| 熟女电影av网| 成人午夜高清在线视频| 日日摸夜夜添夜夜添av毛片 | 99精品在免费线老司机午夜| 亚洲av.av天堂| 国产亚洲欧美98| av.在线天堂| 69人妻影院| 可以在线观看毛片的网站| 一区福利在线观看| 成年女人毛片免费观看观看9| 精品一区二区三区人妻视频| www.www免费av| 亚洲精华国产精华液的使用体验 | 精品国产三级普通话版| 美女高潮的动态| 国产精品一区二区性色av| 一区二区三区四区激情视频 | 久久久久久久亚洲中文字幕| 日本 av在线| 在线看三级毛片| 国产午夜福利久久久久久| 欧美成人性av电影在线观看| 91狼人影院| 亚洲国产欧洲综合997久久,| 色av中文字幕| 2021天堂中文幕一二区在线观| 亚洲四区av| 人妻制服诱惑在线中文字幕| 免费大片18禁| 在线播放无遮挡| 精品乱码久久久久久99久播| 在线播放国产精品三级| 少妇丰满av| 少妇人妻精品综合一区二区 | 亚洲在线自拍视频| 99久久精品热视频| 亚洲avbb在线观看| 精品人妻视频免费看| 1024手机看黄色片| 国产极品精品免费视频能看的| 丝袜美腿在线中文| 欧美精品啪啪一区二区三区| 免费观看人在逋| 国产精品电影一区二区三区| 国产精品一区二区三区四区久久| 乱码一卡2卡4卡精品| 美女大奶头视频| 成人性生交大片免费视频hd| 三级国产精品欧美在线观看| 午夜福利视频1000在线观看| 亚洲人成网站在线播放欧美日韩| 一个人观看的视频www高清免费观看| 久久久久久久久中文| 色吧在线观看| 成熟少妇高潮喷水视频| 国产午夜精品久久久久久一区二区三区 | 欧美日韩中文字幕国产精品一区二区三区| 天堂网av新在线| 久久精品国产亚洲av香蕉五月| 成人二区视频| 亚洲欧美日韩无卡精品| 性色avwww在线观看| 精品久久久噜噜| 精品人妻视频免费看| bbb黄色大片| 欧美日韩黄片免| 国产精品久久视频播放| 网址你懂的国产日韩在线| 欧美一区二区亚洲| 真人做人爱边吃奶动态| 国产亚洲91精品色在线| 中文字幕免费在线视频6| 自拍偷自拍亚洲精品老妇| 精品一区二区三区视频在线| 亚洲中文字幕一区二区三区有码在线看| 少妇猛男粗大的猛烈进出视频 | a级一级毛片免费在线观看| 精品乱码久久久久久99久播| 久久人妻av系列| 久久精品国产亚洲av香蕉五月| 国产精品久久久久久久久免| 久久国产乱子免费精品| 成年女人毛片免费观看观看9| 日日啪夜夜撸| 久久久久性生活片| 成人毛片a级毛片在线播放| 午夜福利视频1000在线观看| 久久精品91蜜桃| 久久亚洲真实| 亚洲av五月六月丁香网| 欧美在线一区亚洲| 亚洲色图av天堂| 久久亚洲精品不卡| 精品午夜福利视频在线观看一区| 亚洲国产精品sss在线观看| x7x7x7水蜜桃| 国产男靠女视频免费网站| 国产精品美女特级片免费视频播放器| 精品人妻偷拍中文字幕| 麻豆成人午夜福利视频| 久久久久久九九精品二区国产| 成年人黄色毛片网站| 老熟妇乱子伦视频在线观看| 少妇猛男粗大的猛烈进出视频 | 中文资源天堂在线| 18禁在线播放成人免费| 韩国av一区二区三区四区| 久久久久久国产a免费观看| 亚洲欧美日韩高清在线视频| 亚洲熟妇熟女久久| 联通29元200g的流量卡| 欧美黑人欧美精品刺激| 黄色欧美视频在线观看| 国产男人的电影天堂91| 午夜精品一区二区三区免费看| 丰满人妻一区二区三区视频av| 久久久久精品国产欧美久久久| 热99在线观看视频| 高清在线国产一区| 丰满人妻一区二区三区视频av| 又爽又黄a免费视频| 男女做爰动态图高潮gif福利片| 色av中文字幕| 草草在线视频免费看| 精品99又大又爽又粗少妇毛片 | 精品一区二区三区av网在线观看| 亚洲av.av天堂| 国产av一区在线观看免费| 黄色女人牲交| 久久国产精品人妻蜜桃| 在线免费观看的www视频| 久久人妻av系列| 国产精品,欧美在线| 天堂影院成人在线观看| 国产成年人精品一区二区| 国产又黄又爽又无遮挡在线| 日日撸夜夜添| 久久久精品大字幕| 色哟哟·www| 可以在线观看毛片的网站| 床上黄色一级片| 窝窝影院91人妻| 床上黄色一级片| 日日摸夜夜添夜夜添小说| 色哟哟·www| 99久久精品一区二区三区| 国产成人福利小说| 亚洲精华国产精华液的使用体验 | 床上黄色一级片| 成人欧美大片| 听说在线观看完整版免费高清| 韩国av一区二区三区四区| 18禁在线播放成人免费| 欧美日韩瑟瑟在线播放| 一区二区三区免费毛片| 日本-黄色视频高清免费观看| 国产精华一区二区三区| 老熟妇仑乱视频hdxx| 男人的好看免费观看在线视频| 全区人妻精品视频| 精品欧美国产一区二区三| 欧美日韩黄片免| 99在线视频只有这里精品首页| 国产免费一级a男人的天堂| 麻豆国产av国片精品| 一区二区三区高清视频在线| 免费在线观看成人毛片| 97人妻精品一区二区三区麻豆| 亚洲精品456在线播放app | 亚洲在线观看片| 国产国拍精品亚洲av在线观看| 成人欧美大片| av在线天堂中文字幕| 内射极品少妇av片p| 一夜夜www| 国产精品国产高清国产av| 性插视频无遮挡在线免费观看| 又紧又爽又黄一区二区| 国产欧美日韩一区二区精品| 亚洲 国产 在线| 亚洲人成伊人成综合网2020| 18禁黄网站禁片免费观看直播| 亚洲久久久久久中文字幕| 他把我摸到了高潮在线观看| 国产在线精品亚洲第一网站| 国产精品日韩av在线免费观看| 在线播放无遮挡| 国产黄色小视频在线观看| 少妇熟女aⅴ在线视频| 男女视频在线观看网站免费| 国产视频一区二区在线看| 春色校园在线视频观看| 老熟妇仑乱视频hdxx| 一级黄片播放器| 深夜a级毛片| 亚洲男人的天堂狠狠| 久久久久久久久大av| 久久久精品大字幕| 噜噜噜噜噜久久久久久91| 国产成人一区二区在线| 性插视频无遮挡在线免费观看| 熟女电影av网| 国产精品美女特级片免费视频播放器| 亚洲自拍偷在线| 99热这里只有精品一区| 国产私拍福利视频在线观看| 欧美潮喷喷水| 欧美一区二区亚洲| 免费无遮挡裸体视频| www.www免费av| 悠悠久久av| 亚洲欧美激情综合另类| avwww免费| 国产色爽女视频免费观看| 国产黄a三级三级三级人| 亚洲午夜理论影院| 免费人成视频x8x8入口观看| 国产午夜福利久久久久久| 一进一出抽搐动态| av国产免费在线观看| 国产精品永久免费网站| 哪里可以看免费的av片| 在线播放无遮挡| 女人十人毛片免费观看3o分钟| 国产老妇女一区| 久9热在线精品视频| 久久久午夜欧美精品| 91麻豆av在线| 久久久久久久久久黄片| 亚洲精华国产精华液的使用体验 | 免费看美女性在线毛片视频| 搡老熟女国产l中国老女人| 69av精品久久久久久| 熟女电影av网| 中文字幕精品亚洲无线码一区| 成人三级黄色视频| 国产av一区在线观看免费| АⅤ资源中文在线天堂| 久久久久免费精品人妻一区二区| 精品久久久久久久末码| ponron亚洲| 色视频www国产| 亚洲美女视频黄频| 99精品在免费线老司机午夜| 国产黄色小视频在线观看| 又紧又爽又黄一区二区| bbb黄色大片| 搡老岳熟女国产| 老师上课跳d突然被开到最大视频| 亚洲精品粉嫩美女一区| 亚洲最大成人中文| 久久国内精品自在自线图片| 神马国产精品三级电影在线观看| 亚洲人成网站在线播| 久久中文看片网| 少妇的逼水好多| 久久6这里有精品| 成人特级黄色片久久久久久久| 国产成人av教育| 黄片wwwwww| 又黄又爽又刺激的免费视频.| 淫秽高清视频在线观看| 国产白丝娇喘喷水9色精品| 精品欧美国产一区二区三| 国产精品福利在线免费观看| 在线播放国产精品三级| 欧美一区二区国产精品久久精品| 少妇高潮的动态图| 麻豆成人午夜福利视频| 亚洲精品成人久久久久久| 国产在视频线在精品| 琪琪午夜伦伦电影理论片6080| 国内精品一区二区在线观看| 欧美色视频一区免费| av在线观看视频网站免费| 色尼玛亚洲综合影院| 国产一区二区在线av高清观看| 老司机深夜福利视频在线观看| 久久久久九九精品影院| 最好的美女福利视频网| 天堂影院成人在线观看| or卡值多少钱| 欧美日韩综合久久久久久 | 身体一侧抽搐| 在线看三级毛片| 免费看a级黄色片| 国产69精品久久久久777片| www日本黄色视频网| 亚洲在线自拍视频| 国产伦人伦偷精品视频| 日本黄大片高清| 免费看日本二区| 五月玫瑰六月丁香| 天天一区二区日本电影三级| 欧美色视频一区免费| 欧美日本亚洲视频在线播放| 99久久成人亚洲精品观看| 亚洲精品国产成人久久av| 婷婷精品国产亚洲av| 国产成人aa在线观看| 日本 av在线| 日日摸夜夜添夜夜添小说| 久久久久久久精品吃奶| 22中文网久久字幕| 午夜福利成人在线免费观看| 亚洲av成人av| 成人国产综合亚洲| 国产人妻一区二区三区在| 3wmmmm亚洲av在线观看| 99精品在免费线老司机午夜| 亚洲国产精品成人综合色| 国产高清视频在线播放一区| 精品久久久久久成人av| 色综合站精品国产| 免费av不卡在线播放| 非洲黑人性xxxx精品又粗又长| 国产免费av片在线观看野外av| a级一级毛片免费在线观看| 久久亚洲真实| 久久久午夜欧美精品| 日韩欧美国产在线观看| 欧美性猛交黑人性爽| 亚洲经典国产精华液单| 久久精品国产亚洲网站| 免费电影在线观看免费观看| 熟妇人妻久久中文字幕3abv| 1024手机看黄色片| 在线观看一区二区三区| 看片在线看免费视频| 久久天躁狠狠躁夜夜2o2o| 午夜福利在线在线| 国产aⅴ精品一区二区三区波| 舔av片在线| 久久精品91蜜桃| 99久国产av精品| 亚洲精品粉嫩美女一区| 波野结衣二区三区在线| 久久精品国产亚洲网站| 免费不卡的大黄色大毛片视频在线观看 | 婷婷精品国产亚洲av| 精品无人区乱码1区二区| 91麻豆精品激情在线观看国产| 国产伦在线观看视频一区| 久久久色成人| avwww免费| 国产亚洲精品综合一区在线观看| 桃红色精品国产亚洲av| av国产免费在线观看| 天堂av国产一区二区熟女人妻| 国模一区二区三区四区视频| 国产精品无大码| 欧美最黄视频在线播放免费| 亚洲七黄色美女视频| 国产爱豆传媒在线观看| 黄色丝袜av网址大全| 日韩欧美免费精品| 日韩欧美 国产精品| 国内久久婷婷六月综合欲色啪| 俄罗斯特黄特色一大片| 人妻夜夜爽99麻豆av| 亚洲男人的天堂狠狠| 乱人视频在线观看| 亚洲一区二区三区色噜噜| 草草在线视频免费看| 欧美日本视频| 好男人在线观看高清免费视频| 久久亚洲精品不卡| 久久久久免费精品人妻一区二区| 好男人在线观看高清免费视频| 精品国产三级普通话版| 中文资源天堂在线| 最近在线观看免费完整版| 婷婷六月久久综合丁香| 成人永久免费在线观看视频| 亚洲国产色片| 久久婷婷人人爽人人干人人爱| 国产伦在线观看视频一区| 简卡轻食公司| 99久久中文字幕三级久久日本| 欧美+日韩+精品| 可以在线观看的亚洲视频| 国产91精品成人一区二区三区| 少妇熟女aⅴ在线视频| 非洲黑人性xxxx精品又粗又长| 国产精品人妻久久久影院| 国产乱人伦免费视频| 干丝袜人妻中文字幕| 成年女人永久免费观看视频|