• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ni(Ⅱ)摻雜分層多孔Cu-BTC高效去除水體中的四環(huán)素

    2022-12-06 06:29:38陳艷霞譚力川袁光松馮思文王萃娟
    關(guān)鍵詞:思文艷霞工程學(xué)院

    陳艷霞 譚力川 王 鵬 袁光松 馮思文 王萃娟*, 童 妍 徐 敏

    (1西南交通大學(xué)生命科學(xué)與工程學(xué)院化學(xué)化工系,成都 610031)

    (2成都市第三人民醫(yī)院,成都 610031)

    Antibiotics are effective in inhibiting the growth of microorganisms and are commonly used in the pharmaceutical and livestock industries[1].However,the overuse and abuse of antibiotics have caused serious environmental pollution[2].Tetracycline(TC)is a widely used antibiotic for effective sterilization and prevention of livestock infections[3].However,its actual dosage in the livestock industry is numerous,causing a largescale TC flow into water bodies with livestock manure,polluting the environment[4].At the same time,the ingestion of TC by other organisms in the environment can pose a serious threat to human health as it accumulates in the food chain[5].Therefore,the effective removal of residual TC from the environment is very important and valuable.

    In general,adsorption[6],membrane separation[7],photodegradation[8],and advanced oxidation[9]are commonly used methods for TC removal,among which,adsorption has the advantages of high adsorption,simple operation,and low cost that is widely used[10-11].Among a series of adsorbents,MOFs are a combination of inorganic-organic materials self-assembled by metal ions or clusters and organic ligands,which have attracted a lot of attention in adsorption research because of their modifiable pore size and high specific surface area[12-13]and are also used as adsorbents for antibiotic removal[14-15].However,most MOFs are microporous in structure,resulting in slow mass transfer rates and difficult access to open channels or active sites[16].Therefore,it is ideal to introduce mesopores or macropores into conventional micropores,which not only maintain the inherent advantages of MOFs in terms of components and structure to a certain extent but also have hierarchical pores to ensure the accessibility of active sites and the diffusion of molecules.

    There is a large amount of research dedicated to expanding the pore size of MOFs,such as hybrid ligands[17],post-synthetic modification[18],template[19],and template-free methods[20].Among them,the templatefree method is of great interest because it minimizes the preparation cost,does not require surfactants or other special synthesis conditions,and reduces the complexity of the production process.Cao et al.[21]proposed a temperature-controlled and template-free strategy for the synthesis of hierarchical porous Cu-BTC(H3BTC=benzene-1,3,5-tricarboxylic acid)by adding small amounts of acetic acid and triethylamine as modifiers to regulate the crystallization rate of the crystals.Abdelhamid et al.[22]reported that the in situ formation of ZnO nitrate nanosheets can be promoted by adding sodium hydroxide to synthesize hierarchical porous ZIF-8 without introducing any template.

    In addition,MOFs can be functionalized by various modification strategies(organic node modification,in situ doping,or loading)to enhance the adsorption capacity[23-25].Recently,various reports have shown that modification with metal doping techniques can impart additional adsorption sites to MOFs and thus improve their adsorption capacity.Yang et al.[26-27]reported that UiO-66 and UiO-67 doped Ce(Ⅲ)could significantly improve the adsorption capacity of various dyes through an adsorption drive.Sun et al.[28]reported that Cu-doped ZIF-8 used for adsorption of TC hydrochloride significantly improved the adsorption capacity,which was 2.4 times higher than that of pristine ZIF-8.

    Therefore,in our study,we combined expanded pore size and metal doping techniques to synthesize hierarchical porous Cu-BTC based on the template-free and temperature-controlled methods,and added Ni(Ⅱ)to the synthetic precursor solution to synthesize metal Ni(Ⅱ)-doped hierarchical porous Cu-BTC,which was used for the first time for the adsorption of TC.We also studied the adsorption kinetics,and adsorption isotherms,and proposed a possible adsorption mechanism.

    1 Experimental

    1.1 Materials and reagents

    Copper nitrate trihydrate(Cu(NO3)2·3H2O)was acquired from Shanghai Maclean Biochemical Technology Co.,Ltd.(Shanghai,China).1,3,5-Benzene-tri benzoic acid (H3BTC),nickel nitrate hexahydrate(Ni(NO3)2·6H2O),and TC were acquired from Tianjin Heowns Biochemical Technology Co.,Ltd.(Tianjin,China).Triethylamine(TEA),acetic acid(CH3COOH),and ethanol were purchased from Chengdu Shiyang Chemical Reagent Factory.

    1.2 Synthesis of hierarchical porous Cu-BTC

    The hierarchical porous Cu-BTC(HP-Cu-BTC)was synthesized based on the literature[21].Firstly,1.8 mmol Cu(NO3)2·3H2O was dissolved in 12 mL ethanol.Then,0.62 mL CH3COOH and 0.5 mL TEA were added to the solution.The mixture was ultrasonically mixed well and then stirred at room temperature.After stirring for 1 h,1.0 mmol H3BTC was added to the mixture and stirred for 2 h to form a homogeneous solution,which was poured into an autoclave and reacted at 110℃for 24 h.Finally,the obtained product was washed with ethanol,collected by centrifugation,and dried in an oven at 60℃.

    1.3 Synthesis of Ni(Ⅱ)-doped hierarchical porous Cu-BTC

    The method was the same as that described above for the preparation of HP-Cu-BTC,except that different masses(0.532,0.262,0.174 mg)of Ni(NO3)2·6H2O were added in the first step in molar ratios of 1∶1,1∶2,and 1∶3 with Cu(NO3)2·3H2O,respectively.The other steps were the same,and the sample powders obtained were named HP-Ni-Cu-BTC(1∶1),HP-Ni-Cu-BTC(1∶2),and HP-Ni-Cu-BTC(1∶3),respectively.

    1.4 Characterizations

    Scanning electron microscope(SEM)images of HP-Ni-Cu-BTC were obtained on a ZEISS Sigma 500 SEM using an acceleration voltage of 5 kV,and a working distance of 4 mm.Energy-dispersive X-ray spectroscopy(EDS)mapping was performed using X-ray transmission electron microscopy energy spectrometer(Apollo XLT SDD)with an acceleration voltage of 15 kV,and a working distance of 5.8 mm.Powder X-ray diffraction (XRD) patterns were obtained using EMPYREAN diffractometer(Netherlands,PANalytical)in a 2θ range from 5°to 80°with a step size of 0.02°and a test speed of 0.1 s·step-1,with Cu Kα ion source radiation(λ=0.154 06 nm),a voltage of 40 kV,a current of 40 mA.Fourier transform-infrared(FT-IR)analyses were obtained using KBr tablets in a range of 4 000-400 cm-1on an infrared spectrometer(Thermo Nicolet 5700,America).N2adsorption-desorption isotherm measurements were acquired using an automatic gas adsorption analyzer at 77 K(ASAP2020,America).The specific surface areas were calculated using the Brunauer-Emmett-Teller(BET)method,and pore size distribution was based on a nonlocalized density functional theory(NLDFT)model.Thermal gravimetric analyses(TGA,Mettler-Toledo TGDSC3+)were measured from 30 to 600℃under a nitrogen atmosphere at 10℃·min-1.

    1.5 Adsorption experiments

    The adsorption performance of HP-Ni-Cu-BTC on TC was investigated by batch adsorption experiments.Specifically,a certain amount of TC was dissolved in deionized water respectively,thereby preparing a solution with different concentrations(10,30,50,70,and 100 mg·L-1).Then,30 mL of the known concentration of TC solution was added to a conical flask and 5 mg of adsorbent was added to the TC solution.Next,the flask was shaken in a shaker at room temperature,and 3 mL of the sample was taken out and filtered by centrifugation at a set time.Finally,the absorbance of the supernatant was measured in a spectrophotometer(UV-1800PC)at 357 nm.The adsorption capacity was calculated by the following Equation 1:

    Where q was the adsorption capacity of TC,mg·g-1;c0was the initial concentration of the TC solution,mg·mL-1;ctwas the concentration of the supernatant at moment t,mg·mL-1;V represented the volume of the antibiotic solution,mL;m represented the mass of the adsorbent,mg.

    In addition,the effects of adsorption performance were investigated at different pH values(4,5,6,7,8),and adsorbent addition amounts(5,8,10,12,15 mg),respectively.The adsorption kinetics and adsorption isotherms were calculated based on the adsorption capacity at different TC concentrations(10,30,50,70,100 mg·L-1).

    After performing adsorption experiments,the recoverability of the adsorbent was evaluated.Specifically,20 mg of adsorbent was dispersed in 30 mL TC solution,the adsorbent was separated by centrifugation,washed by ultrasonication in ethanol,cycled three times,dried,and reused in the next adsorption process.

    2 Results and discussion

    2.1 Characterizations

    The morphology of the HP-Cu-BTC and HP-Ni-Cu-BTC(1∶2)were photographed by SEM(Fig.1),which showed that the hierarchical pores were formed by the accumulation of nanoscale Cu-BTC crystals and that the Ni(Ⅱ)ion doping had no significant effect on the size and morphology of the obtained particles.For the synthesized HP-Ni-Cu-BTC(1∶2),the Ni/Cu molar ratio in the framework was 0.42,confirming the presence of Ni(Ⅱ),and its EDS spectrum(Fig.2)showed a uniform distribution of each element,further indicating the successful synthesis of HP-Ni-Cu-BTC(1∶2).

    Fig.1 SEM images of(a)HP-Cu-BTC and(b)HP-Ni-Cu-BTC(1∶2)

    Fig.2 (a)SEM image,(b)EDS elemental contents,and elemental distribution of(c)Cu and(d)Ni of HP-Ni-Cu-BTC(1∶2)

    The compositions and crystal structures of the synthesized samples were characterized by FT-IR and XRD(Fig.3).FT-IR patterns showed that the characteristic peaks of Ni(Ⅱ)-doped Cu-BTC and HP-Cu-BTC were consistent with those of undoped microporous Cu-BTC and HP-Cu-BTC,demonstrating that the skeletal structure of Cu-BTC was not impacted by Ni(Ⅱ).XRD patterns also showed that all samples had similar diffraction peaks and no extra additional diffraction peaks were noticed after doping with Ni(Ⅱ),indicating that the doping of Ni(Ⅱ)did not affect the crystal structure of the material.All the above characterizations proved the successful synthesis of the samples.

    Fig.3 (a)FT-IR spectra and(b)XRD patterns of Cu-BTC,Ni-Cu-BTC,HP-Cu-BTC,and HP-Ni-Cu-BTC

    The thermal stability of Ni(Ⅱ)-doped HP-Cu-BTC(1∶2)was investigated by TGA curves.Fig.4a showed some differences between the TGA curves of undoped and doped Ni(Ⅱ),but the doping of Ni(Ⅱ) did not affect the thermal stability of HP-Cu-BTC.The first weight loss of HP-Ni-Cu-BTC(1∶2)(90%)was smaller than that of undoped HP-Cu-BTC(80%),which was due to the mass loss in the first stage mainly attributed to the loss of guest molecules,and the smaller pore volume in the MOF after Ni(Ⅱ)doping leading to the reduction of guest molecules in its pores.The mass loss of HP-Ni-Cu-BTC(1∶2)in the second stage was greater than that of HP-Cu-BTC,indicating that the residual solids of undoped Ni(Ⅱ)were higher and further indicating that Ni(Ⅱ)was successfully doped into the backbone of HP-Cu-BTC[29].

    The N2adsorption-desorption isotherms were further researched(Fig.4b).Cu-BTC and Ni-Cu-BTC showed Ⅰ-type adsorption isotherms,indicating typical microporous structures,while HP-Cu-BTC and HP-Ni-Cu-BTC(1∶2)had obvious hysteresis loops at high partial pressure,suggesting the presence of mesoporous structures.Table S1(Supporting information)lists some pore parameters.The results showed that the specific surface area and pore volume decreased after doping Ni(Ⅱ).

    Fig.4 (a)TGA curves of HP-Cu-BTC and HP-Ni-Cu-BTC(1∶2);(b)N2 adsorption-desorption isotherms of Cu-BTC,Ni-Cu-BTC,HP-Cu-BTC,and HP-Ni-Cu-BTC(1∶2)

    2.2 Adsorption experiment

    To investigate the effect of Ni(Ⅱ)-doped HP-Cu-BTC on the adsorption of TC,we also synthesized Cu-BTC,Ni-Cu-BTC,and HP-Cu-BTC,which were used to adsorb TC under the same conditions as a comparison.Fig.5a showed their adsorption capacities were(52.4±2.5)mg·g-1,(69.4±3.3)mg·g-1,(96.0±3.1)mg·g-1,and(171.8±1.6)mg·g-1,respectively.The adsorption capacity of the Ni(Ⅱ)-doped samples was larger than that of the undoped samples.In addition,the hier-archical porous structure also facilitated the improvement of the adsorption capacity.Meanwhile,we also investigated the effect of Ni(Ⅱ)addition on adsorption,Fig.5b demonstrated that the adsorption capacities of Ni(Ⅱ) doped with different ratios were(116.3±0.7)mg·g-1,(171.8±1.6)mg·g-1,and (134.4±2.6)mg·g-1,respectively.As the addition of doped Ni(Ⅱ)increased,it contributed to improving adsorption,but the adsorption capacity decreased when too much was added,probably because more Ni(Ⅱ)was introduced into the adsorbent,which may block the pores and lead to increase diffusion resistance in the mass transfer reaction and reduce the accessible active sites.Therefore,in the subsequent optimization experiments,we chose an adsorbent with a molar ratio of 1∶2 as the adsorbent model for the following experiments.

    The effects of adsorbent dosage and pH on the adsorption performance were investigated.With the increase of adsorbent addition from 3 to 15 mg,the adsorption efficiency gradually increased,while the adsorption capacity decreased,because the equilibrium concentration of TC would be lower when more adsorbent was added(Fig.5c).Therefore,based on the principle of economy,5 mg of adsorbent was chosen to in the later experiments to obtain higher adsorption capacity and removal efficiency.The adsorption capacity increased with increasing pH from 4 to 6,and reached the maximum at pH 6(Fig.5d).It may be because at pH 4-7,both the adsorbent and TC are heterogeneously charged and electrostatic attraction occurs to increase the adsorption capacity.For comparison purposes,Table 1 summarizes several recent reports on the adsorption of TC by different adsorbents and their adsorption capacities.Compared with other materials,the Ni(Ⅱ)-doped hierarchical porous Cu-BTC exhibited excellent adsorption capacity.2.2.1 Adsorption kinetics

    Table 1 Comparison of the adsorption performance of different adsorbents on TC

    Fig.5 (a)Adsorption capacities of different adsorbents on TC(m=5 mg,cTC,0=30 mg·L-1,V=30 mL);(b)Adsorption capacities of HP-Cu-BTC doped with different molar ratios of Ni(Ⅱ) on TC(m=5 mg,cTC,0=30 mg·L-1,V=30 mL);Effect of(c)adsorbent addition(cTC,0=50 mg·L-1,V=30 mL)and(d)pH(m=5 mg,cTC,0=50 mg·L-1,V=30 mL)on the adsorption capacity of TC

    To further investigate the relationship between adsorption capacity and time,the pseudo-first-order model and pseudo-second-order model were used to describe the adsorption behavior of HP-Ni-Cu-BTC(1∶2)on TC.Formulas 2 and 3 were as follows:

    Where qtwas the adsorption capacity of the adsorbent for TC at t time,mg·g-1;qewas the equilibrium adsorption capacity,mg·g-1;k1was pseudo-first-order model adsorption rate constant,min-1;k2was the pseudosecond-order model adsorption rate constant,g·mg-1·min-1.The corresponding fitted curves and parameters of the experimental results were shown in Fig.6 and Table 2(qe,calwas the calculated equilibrium adsorption capacity after fitting,mg·g-1).It is shown that the adsorption dates of TC on HP-Ni-Cu-BTC(1∶2)were more consistent with the pseudo-second-order,which had a higher linear R2and calculated the theoretical values closer to the experimental values.In the adsorption process,the TC molecules were adsorbed from the solution to the outer surface of HP-Ni-Cu-BTC(1∶2)and diffused into the pore,and the rate-limiting step was a chemisorption process between HP-Ni-Cu-BTC(1∶2)and TC molecules.

    Table 2 Pseudo-first-order model and pseudo-second-order model parameters of TC adsorption on HP-Ni-Cu-BTC(1∶2)

    Fig.6 Dynamic simulation for TC adsorption onto HP-Ni-Cu-BTC(1∶2):(a)pseudo-first-order model and(b)pseudo-second-order kinetic model

    2.2.2 Adsorption isotherms

    Adsorption isotherms were described using Langmuir,Freundlich,and Temkin models.Therein,the Langmuir model was used in the ideal case of monolayer adsorption and Freundlich isotherms are usually suitable for non-ideal adsorption on heteroge-neous surfaces[32].The equations for the three models were as follows:

    Where cewas the concentration at equilibrium,mg·L-1;KLwas the adsorption constant of Langmuir,L·mg-1;qmwas the fitted maximum adsorption capacity(mg·g-1);KF(mg·g-1-1/n·L1/n)and n were the adsorptions constant of Freundlich;KTand f(L·mg-1)were Temkin constant.Fig.7 and Table 3 showed the fitting results of the Langmuir,Freundlich,and Temkin isotherm adsorption models.R2values demonstrated that the Freundlich model was best fitted in comparison to the Langmuir and Temkin models.It showed that the adsorption of TC by HP-Ni-Cu-BTC(1∶2)was more consistent with the Freundlich equation for multilayer adsorption.These results were consistent with the kinetic fitting results,suggesting that the adsorption mechanism involved chemisorption processes.

    Fig.7 (a)Adsorption isotherms of TC adsorption on HP-Ni-Cu-BTC(1∶2)and the corresponding(b)Freundlich fit,(c)Langmuir fit,and(d)Temkin fit

    Table 3 Corresponding three model parameters of TC adsorption on HP-Ni-Cu-BTC(1∶2)

    2.2.3 Adsorption mechanism

    Possible mechanisms were proposed based on the available experimental results(pH,kinetics,isotherms),as shown in Fig.8.It is well known TC is a ternary acid and appears as differently charged ions in different pH environments,and its three acid dissociation constants are 3.3,7.7 and 9.7,respectively[33-35].Fig.S1 showed that the ζ potential of the adsorbent was negatively charged in the pH solution from 4 to 8.When pH from 4 to 7,the adsorbent and TC were heterogeneously charged and electrostatic attraction enhanced the adsorption performance.For pH>7.7,adsorbent and TC were negatively charged and electrostatic phase repulsion weakened the adsorption.Furthermore,in kinetic experiments,it was shown that chemisorption dominated the process of TC adsorption by HP-Ni-Cu-BTC(1∶2),suggesting TC may also interact with functional groups on the adsorbent,with π -π bonds and hydrogen bonds[36].In addition,from the results of TC adsorption by different adsorbents,it can be concluded that the adsorption capacity of Ni(Ⅱ)doped HP-Cu-BTC was significantly higher than the other three adsorbents,indicating that the hierarchical porous structure facilitates the diffusion of TC to the active sites inside the material and that the doping of Ni(Ⅱ)can provide valence electrons and increase the adsorption sites,thus improving the adsorption capacity.

    Fig.8 Main adsorption mechanism of TC on HP-Ni-Cu-BTC(1∶2)

    In actual wastewater,TC molecules may coexist with other inorganic ions.Therefore,we investigated the effect of HP-Ni-Cu-BTC(1∶2)on the adsorption of TC in the presence of 40 mmol·L-1Cl-and CO2-3(Fig.9a).Among them,Cl-ions had a slight effect on the adsorption performance,while the effect of CO2-3ions was obvious,indicating that CO32-may compete with TC molecules for adsorption sites,leading to a decrease in the adsorption capacity of TC[37].

    Recoverability is another essential factor to evaluate the adsorption performance of the adsorbent.In the experiment,HP-Ni-Cu-BTC(1∶2)was collected by centrifugation and soaked in ethanol after the first adsorption,and the adsorption efficiency was 71.45% in the 4th cycle(Fig.9b),showing good reproducibility of HP-Ni-Cu-BTC(1∶2).In addition,Fig.S2 showed the XRD patterns of HP-Ni-Cu-BTC(1∶2)before and after the adsorption reaction.After adsorption,the positions of the characteristic diffraction peaks of the adsorbent were basically the same as before.It showed that HP-Ni-Cu-BTC(1∶2)had good stability during the adsorption of TC.

    Fig.9 (a)Effect of coexisting anions(Cl-,CO32-)on TC adsorption by HP-Ni-Cu-BTC(cTC,0=50 mg·L-1,m=5 mg,V=30 mL);(b)Reusability of HP-Ni-Cu-BTC(1∶2)

    3 Conclusions

    In conclusion,Ni(Ⅱ)-doped hierarchical porous Cu-BTC was successfully constructed in this study.Compared with microporous Cu-BTC,HP-Ni-Cu-BTC not only had hierarchical pores structure but also provided additional valence electrons to bring more active sites,which together significantly improved the adsorption capacity with 2.28 times higher adsorption capacity for TC.In addition,various characterizations showed that the Ni(Ⅱ)doping modification did not change the morphology,crystal structure,and functional groups of the HP-Cu-BTC.The adsorption kinetics and adsorption isotherm studies showed that the adsorption process was following the pseudo-second-order and Freundlich models.The adsorbent showed good reusability in the recyclability experiments.We believe that Ni(Ⅱ)-doped hierarchical porous Cu-BTC can be used as a multifunctional adsorbent with great potential for environmental remediation.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    思文艷霞工程學(xué)院
    捧卷傍春山
    牡丹(2023年1期)2023-01-14 06:36:22
    福建工程學(xué)院
    敬廉 守廉 踐廉
    福建工程學(xué)院
    笨狗
    程璐、思文:你的笑點(diǎn)我知道
    婦女(2020年7期)2020-07-29 09:06:44
    程璐思文:相愛就是你的笑點(diǎn)我知道
    家庭百事通(2020年2期)2020-03-19 08:46:59
    福建工程學(xué)院
    福建工程學(xué)院
    An Analysis on Application and development of COCA Corpus in Translation Practice
    超碰97精品在线观看| 午夜福利在线在线| 久久国产精品男人的天堂亚洲 | 午夜激情久久久久久久| 国产高清有码在线观看视频| 丰满乱子伦码专区| 黑人高潮一二区| 国产精品成人在线| 国产精品一区二区性色av| 国产一区二区三区综合在线观看 | 久久久亚洲精品成人影院| 黄片无遮挡物在线观看| 免费观看在线日韩| 在线亚洲精品国产二区图片欧美 | 又黄又爽又刺激的免费视频.| 51国产日韩欧美| 人妻少妇偷人精品九色| 久久婷婷青草| 人人妻人人爽人人添夜夜欢视频 | 黄片无遮挡物在线观看| 制服丝袜香蕉在线| 午夜福利在线观看免费完整高清在| 一级爰片在线观看| 久久精品国产亚洲网站| 一级黄片播放器| 女人十人毛片免费观看3o分钟| 亚洲内射少妇av| 亚洲国产欧美人成| 中文乱码字字幕精品一区二区三区| 纯流量卡能插随身wifi吗| 久久亚洲国产成人精品v| 亚洲第一区二区三区不卡| 国产成人freesex在线| 又黄又爽又刺激的免费视频.| 最近最新中文字幕大全电影3| 成年av动漫网址| 一级av片app| 亚洲精品成人av观看孕妇| 干丝袜人妻中文字幕| 亚洲人成网站在线观看播放| 亚洲av国产av综合av卡| 国产综合精华液| 简卡轻食公司| 国产无遮挡羞羞视频在线观看| 日韩欧美精品免费久久| 深爱激情五月婷婷| 青春草亚洲视频在线观看| 少妇的逼好多水| 成人国产av品久久久| 国产精品人妻久久久久久| 久久亚洲国产成人精品v| 夜夜爽夜夜爽视频| 免费在线观看成人毛片| 天堂俺去俺来也www色官网| 韩国av在线不卡| 成年人午夜在线观看视频| 少妇猛男粗大的猛烈进出视频| 91精品国产国语对白视频| 国产v大片淫在线免费观看| 亚洲在久久综合| 国产精品成人在线| 日韩成人av中文字幕在线观看| 美女cb高潮喷水在线观看| 美女内射精品一级片tv| a级毛片免费高清观看在线播放| 成人特级av手机在线观看| 深爱激情五月婷婷| 国产高清国产精品国产三级 | 中文字幕人妻熟人妻熟丝袜美| h日本视频在线播放| 国产真实伦视频高清在线观看| 美女主播在线视频| 熟女电影av网| 国产精品一区二区三区四区免费观看| 99re6热这里在线精品视频| 人妻一区二区av| 99国产精品免费福利视频| 免费看光身美女| 日韩,欧美,国产一区二区三区| 免费看不卡的av| 午夜免费男女啪啪视频观看| 三级经典国产精品| 自拍偷自拍亚洲精品老妇| 亚洲精品aⅴ在线观看| 久久久久久久久久久免费av| 三级经典国产精品| 大陆偷拍与自拍| 身体一侧抽搐| 国产真实伦视频高清在线观看| 男人舔奶头视频| 国产一区二区三区av在线| 亚洲av成人精品一二三区| 少妇人妻 视频| 日本色播在线视频| 3wmmmm亚洲av在线观看| 午夜免费鲁丝| 最近最新中文字幕大全电影3| 国产熟女欧美一区二区| 多毛熟女@视频| 久久精品夜色国产| 国产成人a区在线观看| 亚洲无线观看免费| 久久久久久久亚洲中文字幕| 男人狂女人下面高潮的视频| 在线亚洲精品国产二区图片欧美 | 伦理电影大哥的女人| 美女脱内裤让男人舔精品视频| 一个人看的www免费观看视频| 国产男女超爽视频在线观看| 你懂的网址亚洲精品在线观看| 看非洲黑人一级黄片| 亚洲国产精品一区三区| 日韩欧美精品免费久久| 国产av国产精品国产| 精品久久久久久久末码| 毛片女人毛片| 日韩一区二区三区影片| 秋霞在线观看毛片| 国产精品伦人一区二区| 在线观看一区二区三区激情| 这个男人来自地球电影免费观看 | 久久99精品国语久久久| 最近最新中文字幕免费大全7| 国产精品人妻久久久影院| 777米奇影视久久| 国产精品精品国产色婷婷| av卡一久久| 老司机影院成人| 久久99热6这里只有精品| 久久久欧美国产精品| 男的添女的下面高潮视频| 亚洲精品国产成人久久av| 亚洲欧洲国产日韩| 精品人妻偷拍中文字幕| 午夜日本视频在线| 亚洲aⅴ乱码一区二区在线播放| 中文字幕人妻熟人妻熟丝袜美| 午夜福利在线观看免费完整高清在| 99久久精品热视频| 久久人人爽人人爽人人片va| 精品午夜福利在线看| 日韩大片免费观看网站| 麻豆国产97在线/欧美| 青青草视频在线视频观看| 欧美日韩国产mv在线观看视频 | 精品人妻视频免费看| 黄色怎么调成土黄色| 五月天丁香电影| 大片免费播放器 马上看| 毛片一级片免费看久久久久| 久久99热这里只频精品6学生| 亚洲婷婷狠狠爱综合网| 国产精品国产三级国产专区5o| 久久精品国产亚洲网站| 51国产日韩欧美| 18禁动态无遮挡网站| 99久久人妻综合| av福利片在线观看| 3wmmmm亚洲av在线观看| 九九久久精品国产亚洲av麻豆| 我的女老师完整版在线观看| 97超视频在线观看视频| 亚洲内射少妇av| 久久人人爽人人爽人人片va| 高清av免费在线| 久久6这里有精品| 丝瓜视频免费看黄片| 女人久久www免费人成看片| 久久精品人妻少妇| 亚洲精品,欧美精品| 国产真实伦视频高清在线观看| 少妇人妻 视频| 欧美国产精品一级二级三级 | 国产在线视频一区二区| 亚洲国产精品专区欧美| 免费观看的影片在线观看| 晚上一个人看的免费电影| 中文字幕免费在线视频6| 中文字幕免费在线视频6| 国产高清三级在线| 免费看不卡的av| 欧美日韩综合久久久久久| 人妻夜夜爽99麻豆av| 久久亚洲国产成人精品v| 黄色一级大片看看| 纵有疾风起免费观看全集完整版| 男女下面进入的视频免费午夜| 国产精品秋霞免费鲁丝片| 亚洲自偷自拍三级| 麻豆精品久久久久久蜜桃| 国产色爽女视频免费观看| 女人久久www免费人成看片| 国产精品福利在线免费观看| 美女脱内裤让男人舔精品视频| 不卡视频在线观看欧美| 国产精品人妻久久久久久| 丰满少妇做爰视频| 亚洲精品日本国产第一区| 久久精品国产亚洲av天美| 国产一区有黄有色的免费视频| 久久久欧美国产精品| 九九在线视频观看精品| 精品久久久久久电影网| 国产黄片视频在线免费观看| 秋霞伦理黄片| 成人黄色视频免费在线看| 久久99热这里只频精品6学生| 我要看黄色一级片免费的| 人妻少妇偷人精品九色| 免费黄色在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 人妻夜夜爽99麻豆av| 久久青草综合色| 亚洲av在线观看美女高潮| 波野结衣二区三区在线| 亚洲精品亚洲一区二区| 永久网站在线| 久久国产乱子免费精品| 欧美国产精品一级二级三级 | 性色av一级| 国产精品99久久久久久久久| 制服丝袜香蕉在线| 亚洲欧美精品专区久久| 亚洲一级一片aⅴ在线观看| 大片免费播放器 马上看| 老女人水多毛片| 国产亚洲5aaaaa淫片| 国产免费视频播放在线视频| 免费在线观看成人毛片| 亚洲不卡免费看| 97在线人人人人妻| 中国美白少妇内射xxxbb| 午夜福利在线在线| 国产在视频线精品| 国产在线免费精品| 久久久成人免费电影| av国产久精品久网站免费入址| 国产精品久久久久久av不卡| a 毛片基地| 又黄又爽又刺激的免费视频.| av.在线天堂| 国产成人freesex在线| 欧美精品国产亚洲| av在线app专区| 自拍偷自拍亚洲精品老妇| 亚洲高清免费不卡视频| 亚洲图色成人| 日韩成人伦理影院| 色综合色国产| 这个男人来自地球电影免费观看 | 麻豆国产97在线/欧美| 91精品伊人久久大香线蕉| 超碰97精品在线观看| 在线精品无人区一区二区三 | 观看美女的网站| 国产精品久久久久成人av| 亚洲av在线观看美女高潮| 日韩人妻高清精品专区| 插阴视频在线观看视频| 久久精品国产亚洲av涩爱| 欧美日韩亚洲高清精品| 好男人视频免费观看在线| 精品一区二区三区视频在线| 欧美极品一区二区三区四区| 国产在线视频一区二区| 成人漫画全彩无遮挡| 国产高清三级在线| 中国国产av一级| 国产视频首页在线观看| 国语对白做爰xxxⅹ性视频网站| 韩国av在线不卡| 国产伦精品一区二区三区四那| 久久国产精品大桥未久av | 少妇高潮的动态图| 国产成人免费观看mmmm| 久久99热6这里只有精品| 亚洲成人av在线免费| 中国三级夫妇交换| 视频中文字幕在线观看| 一区二区三区乱码不卡18| 国产精品蜜桃在线观看| 国产成人一区二区在线| 久久久午夜欧美精品| 亚洲国产精品一区三区| 精品人妻熟女av久视频| tube8黄色片| 欧美日本视频| 免费观看av网站的网址| www.色视频.com| 一本一本综合久久| 麻豆成人av视频| 亚洲一级一片aⅴ在线观看| 午夜精品国产一区二区电影| 三级国产精品欧美在线观看| 精品久久国产蜜桃| 美女cb高潮喷水在线观看| 欧美极品一区二区三区四区| 不卡视频在线观看欧美| 免费高清在线观看视频在线观看| 国产高清国产精品国产三级 | 精品久久久噜噜| 熟女电影av网| 亚洲精品乱久久久久久| 插阴视频在线观看视频| 久久精品国产a三级三级三级| 99视频精品全部免费 在线| 黑人高潮一二区| 最近2019中文字幕mv第一页| kizo精华| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩卡通动漫| 国产视频内射| 亚洲精品一二三| 欧美亚洲 丝袜 人妻 在线| av国产精品久久久久影院| 国产精品久久久久久精品古装| 亚洲,欧美,日韩| 婷婷色综合大香蕉| 亚洲av免费高清在线观看| 99久久精品一区二区三区| 国产免费福利视频在线观看| 亚洲综合色惰| 国产精品嫩草影院av在线观看| 免费黄频网站在线观看国产| 身体一侧抽搐| 97超视频在线观看视频| 国产精品久久久久久av不卡| 乱码一卡2卡4卡精品| 波野结衣二区三区在线| 婷婷色综合大香蕉| 久久 成人 亚洲| 国产日韩欧美亚洲二区| 欧美三级亚洲精品| 午夜福利影视在线免费观看| 成人免费观看视频高清| 精品午夜福利在线看| 最近的中文字幕免费完整| 日韩电影二区| 国产精品久久久久久久电影| 一级毛片 在线播放| 亚洲人与动物交配视频| 国产成人精品福利久久| 国产精品无大码| 一区二区三区免费毛片| 丝瓜视频免费看黄片| 免费观看av网站的网址| videossex国产| h日本视频在线播放| 日日摸夜夜添夜夜爱| 免费看光身美女| 人人妻人人添人人爽欧美一区卜 | 婷婷色综合大香蕉| 人妻少妇偷人精品九色| 伊人久久精品亚洲午夜| 草草在线视频免费看| 在线观看免费高清a一片| 中文在线观看免费www的网站| 插逼视频在线观看| 亚洲av福利一区| 狂野欧美白嫩少妇大欣赏| 人妻 亚洲 视频| 这个男人来自地球电影免费观看 | 国产精品久久久久久av不卡| 久久国产精品大桥未久av | 在线观看人妻少妇| 97超视频在线观看视频| 观看免费一级毛片| 久久精品国产自在天天线| 国产 精品1| 日韩成人伦理影院| 亚洲国产av新网站| 国产精品久久久久成人av| 联通29元200g的流量卡| 22中文网久久字幕| 高清不卡的av网站| 涩涩av久久男人的天堂| 一级毛片黄色毛片免费观看视频| 在线观看三级黄色| 美女高潮的动态| 欧美最新免费一区二区三区| 一区二区三区四区激情视频| 欧美激情极品国产一区二区三区 | 欧美日韩综合久久久久久| 在线观看免费高清a一片| 小蜜桃在线观看免费完整版高清| av国产免费在线观看| 男人爽女人下面视频在线观看| 日日啪夜夜爽| 三级国产精品欧美在线观看| 青青草视频在线视频观看| 欧美成人午夜免费资源| 色网站视频免费| 国产国拍精品亚洲av在线观看| 久久99热6这里只有精品| 黑丝袜美女国产一区| 有码 亚洲区| 国产高清三级在线| 亚洲欧洲日产国产| 欧美日本视频| 国产高清有码在线观看视频| 久久国产精品大桥未久av | 18禁在线无遮挡免费观看视频| 久久婷婷青草| 国产精品无大码| 国产免费一区二区三区四区乱码| 精品一区二区三卡| 自拍偷自拍亚洲精品老妇| 男男h啪啪无遮挡| 99久久精品一区二区三区| 一区在线观看完整版| 热99国产精品久久久久久7| 国产成人一区二区在线| 视频中文字幕在线观看| 网址你懂的国产日韩在线| 丰满少妇做爰视频| 午夜福利网站1000一区二区三区| 一级黄片播放器| 国产成人精品久久久久久| 卡戴珊不雅视频在线播放| 精品亚洲成a人片在线观看 | 偷拍熟女少妇极品色| 蜜桃久久精品国产亚洲av| 亚洲精品日韩在线中文字幕| 免费观看性生交大片5| 免费人成在线观看视频色| 国产精品秋霞免费鲁丝片| 99热6这里只有精品| 精品国产露脸久久av麻豆| 在线观看美女被高潮喷水网站| 久久亚洲国产成人精品v| 免费观看性生交大片5| 亚洲av二区三区四区| 国产黄片视频在线免费观看| 少妇的逼水好多| 草草在线视频免费看| 久久久久性生活片| 一个人看的www免费观看视频| 免费久久久久久久精品成人欧美视频 | 国产高清三级在线| 婷婷色麻豆天堂久久| 亚洲高清免费不卡视频| 在线播放无遮挡| 久久久久视频综合| 少妇精品久久久久久久| 夫妻午夜视频| 国产在线视频一区二区| 精品久久久精品久久久| 中文字幕av成人在线电影| a级毛色黄片| 亚洲成人中文字幕在线播放| 又爽又黄a免费视频| 国产男人的电影天堂91| 国产伦理片在线播放av一区| 视频中文字幕在线观看| 亚洲无线观看免费| 激情五月婷婷亚洲| 在线观看人妻少妇| 视频区图区小说| 极品教师在线视频| 亚洲av中文字字幕乱码综合| 99久久中文字幕三级久久日本| 特大巨黑吊av在线直播| freevideosex欧美| 夜夜骑夜夜射夜夜干| 黄色配什么色好看| 多毛熟女@视频| 中文在线观看免费www的网站| 国产精品福利在线免费观看| 久久国内精品自在自线图片| 久久久久久久久久久免费av| 国产综合精华液| 少妇的逼水好多| 国产精品三级大全| 成人一区二区视频在线观看| 国产一区亚洲一区在线观看| 丝瓜视频免费看黄片| 街头女战士在线观看网站| 亚洲精品日本国产第一区| 女性生殖器流出的白浆| 综合色丁香网| av天堂中文字幕网| 大码成人一级视频| 极品少妇高潮喷水抽搐| 黄片wwwwww| 美女视频免费永久观看网站| 久久久成人免费电影| 亚洲不卡免费看| 日本wwww免费看| 久热久热在线精品观看| 亚洲av国产av综合av卡| 久久久久网色| 国产精品一区二区三区四区免费观看| 亚洲内射少妇av| 成人综合一区亚洲| 亚洲怡红院男人天堂| 如何舔出高潮| 黄片无遮挡物在线观看| 午夜激情福利司机影院| 日韩欧美 国产精品| 丰满少妇做爰视频| 成人免费观看视频高清| 校园人妻丝袜中文字幕| 久久久久久久久久久免费av| 下体分泌物呈黄色| 3wmmmm亚洲av在线观看| 老师上课跳d突然被开到最大视频| 日韩不卡一区二区三区视频在线| 晚上一个人看的免费电影| 国产欧美亚洲国产| 午夜免费鲁丝| 久久av网站| 免费久久久久久久精品成人欧美视频 | 91久久精品电影网| av国产久精品久网站免费入址| 麻豆成人av视频| 亚洲精品国产成人久久av| 又黄又爽又刺激的免费视频.| 精品久久国产蜜桃| 少妇高潮的动态图| 水蜜桃什么品种好| 搡女人真爽免费视频火全软件| 一级毛片aaaaaa免费看小| 精品少妇久久久久久888优播| 免费观看av网站的网址| 狂野欧美白嫩少妇大欣赏| 汤姆久久久久久久影院中文字幕| 少妇熟女欧美另类| 欧美精品人与动牲交sv欧美| 成年人午夜在线观看视频| 全区人妻精品视频| 高清不卡的av网站| 国产探花极品一区二区| 精品一区在线观看国产| 一级毛片aaaaaa免费看小| 97超视频在线观看视频| 狠狠精品人妻久久久久久综合| 国产极品天堂在线| 一级黄片播放器| 这个男人来自地球电影免费观看 | av国产久精品久网站免费入址| 99精国产麻豆久久婷婷| 日本一二三区视频观看| 一个人看的www免费观看视频| 国产免费视频播放在线视频| 久久久久久久久久成人| 91久久精品国产一区二区三区| av视频免费观看在线观看| 精品久久久久久久久av| 久热这里只有精品99| 一级毛片 在线播放| 九九爱精品视频在线观看| 国内揄拍国产精品人妻在线| 干丝袜人妻中文字幕| 日本色播在线视频| 蜜桃亚洲精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲,欧美,日韩| 在现免费观看毛片| 久久精品国产自在天天线| 午夜免费观看性视频| 美女内射精品一级片tv| av在线观看视频网站免费| 国产色爽女视频免费观看| 天美传媒精品一区二区| 欧美最新免费一区二区三区| av不卡在线播放| 国产高潮美女av| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 日韩 亚洲 欧美在线| 国内少妇人妻偷人精品xxx网站| 99久久精品国产国产毛片| 成人亚洲欧美一区二区av| 美女内射精品一级片tv| .国产精品久久| 嫩草影院入口| 在线天堂最新版资源| 亚洲欧美清纯卡通| 国产精品一区二区性色av| 黄色视频在线播放观看不卡| 亚洲av中文av极速乱| 久久精品国产鲁丝片午夜精品| 青春草亚洲视频在线观看| 午夜福利在线观看免费完整高清在| 女的被弄到高潮叫床怎么办| 十分钟在线观看高清视频www | 91精品国产国语对白视频| 色综合色国产| 色视频在线一区二区三区| 亚洲国产精品999| av国产精品久久久久影院| 性高湖久久久久久久久免费观看| 免费大片18禁| 伦理电影大哥的女人| 国语对白做爰xxxⅹ性视频网站| 男女免费视频国产| 国产精品一区www在线观看| 亚洲真实伦在线观看| 女的被弄到高潮叫床怎么办| 日日撸夜夜添| 亚洲精华国产精华液的使用体验| 99久国产av精品国产电影| 精品国产三级普通话版| 色5月婷婷丁香| 高清欧美精品videossex| 国产极品天堂在线| 精品99又大又爽又粗少妇毛片| 国产精品一及| 在线观看免费视频网站a站| 欧美性感艳星| 欧美激情极品国产一区二区三区 | 王馨瑶露胸无遮挡在线观看| 亚洲av日韩在线播放| 嘟嘟电影网在线观看| 激情五月婷婷亚洲|