楊 婷
(甘肅省慶陽市北京師范大學(xué)慶陽附屬學(xué)校,745200)
函數(shù)圖象的對稱性和周期性是函數(shù)的兩個重要性質(zhì),許多函數(shù)問題常常需要利用兩個性質(zhì)的關(guān)系來求解.本文先歸納、證明這兩個性質(zhì)關(guān)系的幾個基本結(jié)論,再舉例說明這些結(jié)論在求解相關(guān)問題中的應(yīng)用.
結(jié)論1若函數(shù)y=f(x)的圖象分別關(guān)于兩條直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期函數(shù),且T=2|a-b|為y=f(x)的一個周期.
結(jié)論2若函數(shù)y=f(x)的圖象分別關(guān)于兩點A(a,0),B(b,0)(a≠b)對稱,則y=f(x)是周期函數(shù),且T=2|a-b|為y=f(x)的一個周期.
結(jié)論3如果函數(shù)y=f(x)的圖象關(guān)于點A(a,0)和直線x=b(a≠b)對稱,則函數(shù)y=f(x)是周期函數(shù),且T=4|a-b|為y=f(x)的一個周期.
幾個結(jié)論的證明具有一定的相似性,下面僅以結(jié)論3為例,給出證明.
因為y=f(x)的圖象關(guān)于點A(a,0)對稱,設(shè)P(x1,y1),Q(x2,y2)為y=f(x)上任意一對對稱點,則x1+x2=2a且y1+y2=0.所以y2=-y1,即f(x2)=-f(x1),亦即f(2a-x1)=-f(x1).由x1的任意性,可知f(x)=-f(2a-x)對定義域內(nèi)的所有x成立.
又因為函數(shù)y=f(x)的圖象關(guān)于直線x=b對稱,同理可知f(x)=f(2b-x)對定義域內(nèi)的所有x成立.
于是,對定義域內(nèi)的所有x,恒有f(2b-x)=-f(2a-x).
所以f[2b-(2a-x)]=-f[2a-(2a-x)]=-f(x),即f[2(b-a)+x)]=-f(x).進(jìn)而f{2(b-a)+[2(b-a)+x]}=-f[2(b-a)+x]=f(x).即f[4(b-a)+x]=f(x).可見y=f(x)是周期函數(shù),且T=4|a-b|為f(x)的一個周期.
1.求函數(shù)值
例1已知f(x)為R上的奇函數(shù),并且f(x)+f(2-x)=0,當(dāng)-1 解由f(x)為R上的奇函數(shù),得f(x)圖象關(guān)于點(0,0)對稱;又由f(x)+f(2-x)=0,得f(2-x)=-f(x),即f(x)圖象關(guān)于點(1,0)對稱.由結(jié)論2,可知y=f(x)是周期函數(shù),且以T=2|1-0|=2為函數(shù)f(x)的一個周期. 例2已知定義域為R的可導(dǎo)函數(shù)y=f(x)滿足f(4-x)=f(x),且f(8-x)=f(x),則曲線y=f(x)在x=2 022處的切線的斜率為( ) (A)2 022 (B)2 021 (C)1 (D)0 解由f(4-x)=f(x),可知f(x)圖象關(guān)于直線x=2對稱;由f(8-x)=f(x),可知f(x)圖象關(guān)于直線x=4對稱.所以由結(jié)論1可知函數(shù)f(x)和它的導(dǎo)函數(shù)f′(x)都是R上的周期函數(shù),且T=2|2-4|=4為它們的一個周期. 因為f(x)圖象關(guān)于直線x=2對稱,所以f′(2)=0.又2 022=505×4+2,于是f′(2 022)=f′(2)=0.故選D. 2.比較大小 例3已知定義在R上的函數(shù)f(x)滿足:①f(-x)+f(x)=0;② 函數(shù)f(x)的圖象關(guān)于直線x=2對稱;③ 在區(qū)間[0,2]上是增函數(shù).則( ) (A)f(18) (B)f(5) (C)f(5) (D)f(18) 解由條件① 知f(x)為奇函數(shù),所以f(x)的圖象關(guān)于原點(0,0)對稱. 又函數(shù)f(x)的圖象關(guān)于直線x=2對稱,由結(jié)論3可知y=f(x)是周期函數(shù),且T=4|0-2|=8為f(x)的一個周期. 由① ③ 知f(x)在[-2,2]是增函數(shù). 于是f(18)=f(2),f(-32)=f(0),f(5)=f(-1).結(jié)合函數(shù)f(x)在[-2,2]的單調(diào)性,可得f(-1) 3.求解方程問題 例4已知函數(shù)f(x)是定義在R上的奇函數(shù),滿足f(x-4)=-f(x),且在區(qū)間[0,2]是增函數(shù).若方程f(x)=m(m>0)在區(qū)間[-8,8]上有四個不同的根x1,x2,x3,x4,則x1+x2+x3+x4=( ) (A)-12 (B)-8 (C)-4 (D)4 解因為f(x)為R上的奇函數(shù),所以f(x)圖象關(guān)于點(0,0)對稱. 因為f(x-4)=-f(x),即f(4-x)=f(x),所以f(x)的圖象關(guān)于直線x=2對稱. 所以根據(jù)結(jié)論3可知函數(shù)y=f(x)是周期函數(shù),且T=4|0-2|=8為函數(shù)y=f(x)的一個周期. 又因為f(x)在[0,2]是增函數(shù),所以f(x)在[-2,0]也是增函數(shù).如此不難畫出f(x)的草圖,如圖1. 同理x3+x4=4.所以x1+x2+x3+x4=-12+4=-8.故選B. 4.綜合應(yīng)用 例5已知函數(shù)f(x)滿足:當(dāng)x∈(-∞,+∞)時,f(2-x)=f(2+x)且f(7-x)=f(7+x),在區(qū)間[0,7]只有f(1)=f(3)=0. (1)試判斷f(x)的奇偶性; (2)試求方程f(x)=0在[-2 022,2 022]上的根的個數(shù),并證明你的結(jié)論. 解由f(2-x)=f(2+x),可得f(x)=f(4-x),所以f(x)圖象關(guān)于直線x=2對稱. 由f(7-x)=f(7+x),可得f(x)=f(14-x),f(x)圖象關(guān)于直線x=7對稱. 所以由結(jié)論1可知y=f(x)是周期函數(shù),且T=2|2-7|=10為f(x)的一個周期. (1)由于在閉區(qū)間[0,7]只有f(1)=f(3)=0,所以f(-3)=f(7)≠0.顯然f(-3)≠f(3),且f(-3)≠-f(3),故f(x)是非奇非偶函數(shù). (2)由f(1)=f(3)=0,f(x)=f(4-x)及f(x)周期為10,得f(11)=f(13)=f(-9)=f(-7)=0,可知f(x)=0在區(qū)間[0,10]及[-10,0]各有兩個根. 因此,由2 022=202×10+2,可得到函數(shù)f(x)=0在區(qū)間[0,2 022]有405個根,在區(qū)間[-2 022,0]有404個根.故在[-2 022,2 022]的所有根的個數(shù)為809個. 評注本題的一個重要“點”是給出了兩個類似的函數(shù)等式.抓住這個“點”聯(lián)想到函數(shù)的對稱性,由結(jié)論1可知函數(shù)f(x)一定是周期函數(shù).從周期出發(fā),我們是通過思考兩點求解的:(1)借助f(1)=f(3)=0求出一些函數(shù)值,由此可發(fā)現(xiàn)奇偶性;(2)求出一個周期上方程f(x)=0根的個數(shù),再由周期性得出在區(qū)間[-2 022,2 022]上的所有根的個數(shù).