• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    傳輸柵摻雜對CMOS有源像素滿阱容量及暗電流的影響

    2022-11-26 03:43:14王倩徐江濤高志遠陳全民
    光子學(xué)報 2022年11期

    王倩,徐江濤,高志遠,陳全民

    (天津大學(xué)微電子學(xué)院天津市成像與感知微電子技術(shù)重點實驗室,天津 300072)

    0 Introduction

    In recent years,Pinned Photodiode(PPD)CMOS Image Sensors(CISs)are widely used in consumer electronics and other fields due to their high performance and low cost[1].CMOS active pixels play an important role in CISs.The design of the Transfer Gate(TG)affects image quality,which is related to Full Well Capacity(FWC)and dark current[2-4].TG affects the feedforward effect by channel potential.The feedforward effect directly influences FWC as the charges in PPD can flow into Floating Diffusion(FD)by thermal emission[5].In addition,due to the existence of interface states,the dark current generates at the interface of the TG channel,which flows into PPD during the integration period[6].

    Several papers have analyzed the influence of TG on FWC and dark current,and have proposed different improvement techniques and designs.A negative bias operation of TG is an effective method to reduce dark current under TG[7-9].When a negative bias is added to TG,the channel is in a state of accumulation,isolating the interface state of the channel from the depletion region of PPD so that dark current is greatly reduced.Furthermore,adopting a negative bias to TG increases the channel barrier,inhibiting the feedforward effect and increasing FWC.A positive voltage adopted to TG is also beneficial to reduce dark current due to the sharing mechanism[6],but will make FWC decrease.To reduce dark current,Ref.[10]has proposed a method to change the position of the potential barrier under TG by adjusting the doping length of p-type impurities so that dark charges could flow to FD.This paper investigates the influence of two types of doped transfer gates,named N+TG and P+TG,on FWC and dark current.P-type doping is shared with p+doping used in PMOS transistors,so no additional steps need to be introduced.The channel potential is affected by the work function difference between TG and the substrate.A higher potential barrier between the TG channel and PPD can effectively suppress the feedforward effect and increase FWC.In addition,accumulated channels can reduce dark current.

    1 Impact of TG doping on FWC and dark current

    1.1 Work function influence on TG channel potential

    To analyze the influence of TG doping on FWC and dark current,a typical 4T-PPD pixel structure is used in this paper.The device cross section is shown in Fig.1,which consists of a PPD,a“special”TG transistor whose drain is a Floating Diffusion(FD)node,and three conventional transistors named Reset Transistor(RST),Source Follower(SF),and Row Select(RS)transistor.P+TG and N+TG are adopted in this paper.The p-type heavy doping range is in the middle region of TG,0.1 μm away from the TG edge.The ntype heavy doping edge of FD is next to the p+doped boundary on the right side of TG.The upper left corner of Fig.1 shows the N+TG structure,and the two kinds of TG have the same structure except for different doping types.To ensure the smooth transfer of charges from PPD to FD,PPD implantation usually extends slightly under TG to assist charge transfer.At the same time,two p-type implantations are carried out under TG,named TG_PD and TG_FD,for threshold adjustment and anti-punch-through respectively.Before illumination,RST opens to reset PPD and FD.The photo-generated electrons are collected and stored by PPD during illumination.After an exposure period,the photoelectric charges in PPD are transferred to FD by switching on TG,where the signal in the charge domain is converted to the voltage domain.When RS is switched on,the signal is buffered to the column bus by SF.

    Fig.1 4T-PPD pixel structure profile of P+TG and N+TG

    The impact of TG doping on FWC and dark current is achieved by channel potential,which is affected by the work function of TG and the substrate.P+TG is proposed in the paper.Fermi energy level of P+TG is near the valence band.The work function difference(Wms-p)between P+TG and the p-type substrate is calculated by

    whereEgis the silicon forbidden bandgap,KTln(Na/ni)represents the difference between the central bandgap energy of the substrate and Fermi energy level,Kis the Boltzmann constant,Tis the absolute temperature,Nais the doping concentration in the channel region of the substrate,niis the intrinsic carrier concentration in silicon at room temperature(300 K).According to the physics of semiconductors[11],part of the voltage caused by the work function difference and traps falls on the oxide layer,while the other part falls on the channel interface.

    whereNtrapis the density of traps,the typical value ofNtrapis 1×1010traps·cm-2,σsis the effective capture cross-section(In the simulation,σsis set to 1×1-14cm2),Cois the gate capacitance per unit area,Co=εo×εr/d,Vspis the interface potential of P+TG channel,Qspaceis the density of interface space charge.Substituting the parameters in Table 1 into Eqs.(1)and(2),the left side of the formula is negative after calculation.The work function difference has a higher effect than traps,and the channel interface is in an accumulated state.Qspaceuses the metal-insulator-semiconductor model to calculate according to the formula in the accumulative state[11].

    Table 1 The design parameters in this paper

    whereLDis the Debye length,LD=((εoεsKT)/(q2Na))1/2,εsis the relative dielectric constant of silicon.Combined with Eqs.(1),(2)and(3),we can get thatVspis-0.03 V.Generally,traditional TG is heavily doped with n-type impurities.The Fermi energy level of N+TG is near the conduction band.The work function difference isWms-n=-Eg/2-(KT)ln(Na/ni).In the same analysis as above,the interface potential of the N+TG channel,namedVsn,is calculated by using the depletion approximation method,andVsnis 0.66 V.Therefore,the channel potential of P+TG is lower than that of N+TG.A higher barrier between the TG channel and PPD is conducive to inhibiting the feedforward effect.

    1.2 TG doping influence on FWC and dark current

    FWC is an important parameter of CIS.The feedforward effect is the main reason for the decrease in FWC.Fig.2 shows the potential diagram along the emission current path with TG off.The lower potential of the channel,the more difficult it is for the electrons in PPD to enter FD through thermal emission.In Ref.[12],when PPD reaches FWC,there is an equilibrium of three main currents in PPD:the light currentIph=?Φph,the sub-threshold currentIDS(mainly caused by the feedforward effect),and the forward currentIfwof PPD.

    Fig.2 Potential diagram along the emission current path of P+TG and N+TG

    whereI0is the current coefficient,depending on the Richardson constant,the cross-sectional area of the transfer path(PPD-TG interface),and temperature.The subscriptxin the symbols mentioned below represents different doping types of TG,taking n and p respectively.VBxis the height of the potential barrier between the TG channel and PPD at the full well,which is represented asVBx=VFWx-Vsxhere,VFWxis the PPD voltage at the full well,andIsatis the reverse saturation current through PPD.According to the analysis in Section 1.1,we know thatVsnis greater thanVsp.Combined with Eqs.(4),(5)and(6),it can be concluded thatVFWpis smaller thanVFWn.In addition,VBn<VBpcan also be obtained.The higher barrier can effectively inhibit the feedforward effect.Ignoring the generation and recombination process of the PPD region,F(xiàn)WC can be approximately expressed as the maximum voltage swing of PPD multiplied byCPPD:

    whereVpinis the maximum potential variation of hole and electron quasi-Fermi level,in general,the voltage after PD reset isVpin,QFWxis the FWC of PPD.Obviously,QFWn<QFWp,the FWC of P+TG is improved compared with that of N+TG.

    In a 4T-PPD pixel,the main dark current contributor is the traps at the silicon-oxide interface under TG[6].Dark current caused by traps can be expressed as Ref.[14].

    whereνthis the thermal velocity.Combined with the previous analysis,the P+TG channel is in a state of accumulation,isolating the depletion region of PPD from the interface states below TG.The dark current generated by traps is compensated,resulting in the reduction of dark current.

    2 Simulation results

    A 4T-PPD is simulated in Technology Computer Aided Design(TCAD).The same trap model as Ref.[6]is added to the simulation.We set the concentration of traps to 1×1010traps·cm-2and the capture crosssection to 1×10-14cm2[10,15-16].PPD of two doping types of TG integrates for 10 ms in dark conditions.In addition,the light intensity is set to 2×10-3W/cm2when testing the FWC of PPD.This paper compares P+TG and N+TG under the same channel and substrate doping conditions.FWC and dark current characteristics are simulated when the turn-off voltage(VTG_off)is 0 V.

    To prevent punch-through,LTG_PDandLTG_FDare set to 0.3 μm by default.We set the left side coordinate of TG to 5.0 μm.Given FWC and charge transfer problem,the length of TG is set to 0.6 μm.Fig.3 shows the simulation cross-section with two doping types of TG.The white line is the depletion zone boundary.As shown in Fig.3,the N+TG channel is depleted.For a more intuitive view of the results,F(xiàn)ig.4 shows the onedimensional electrostatic potential distribution intercepted by two doping types of TG along theX-X′(X-X′is 0.01 μm away from the channel interface)and along theY-Y′(Y-Y′is located in the middle of TG),respectively.It is obvious thatVsnof N+TG is greater than zero.Vspobtained by the simulation is-0.032 V,which is slightly different from the previous theoretical calculation of-0.03 V,due to the simulation deviation.P+TG has a higher potential barrier which can better inhibit the feedforward effect.The potential distribution fully indicates that the channel of P+TG is in the state of hole accumulation.FWC with two types of doped TG is shown in Fig.5(a).The values are normalized using FWC of N+TG as the standard.Due to the lower channel potential of P+TG,the ability to suppress the feedforward effect is stronger,and FWC is higher.Compared with N+TG,the FWC of P+TG is increased by 26.5%.Furthermore,F(xiàn)ig.5(b)shows the number of dark charges integrated by PPD of two types of doped TG in 10 ms,which is normalized based on the dark charges(Ndark)of N+TG.Dark current of P+TG is 0.377 times that of N+TG.According to the above analysis,P+TG has better FWC and dark current characteristics whenVTG_offis 0 V.In practical engineering,a negative voltage is usually applied to N+TG during exposure to obtain good full well capacity and dark current characteristics.As shown in Fig.6,F(xiàn)WC and dark current for two types of TG at variousVTG_offare obtained.With the decrease of negative voltage,channel potential decreases,so the feedforward effect is inhibited,and the FWC of two types of TG increases.WhenVTG_offis less than-0.8 V,the FWC of N+TG is higher than that of P+TG at 0 V.As the negative voltage added to N+TG is less than-0.2 V,the depletion zone of PPD is disconnected from the depletion zone of TG channel,and the channel of N+TG accumulates gradually.Dark current of N+TG reduces withVTG_offdecreases.WhenVTG_offis greater than-0.2 V,dark current of N+TG decreases due to the sharing mechanism.For P+TG,the negative voltage has little effect on the dark current because the channel is accumulated.The introduction of negative voltage can improve the full well capacity and dark current characteristics of N+TG,increasing in power consumption.

    Fig.3 Two-dimensional simulation profiles

    Fig.4 One-dimensional potential diagrams under TG

    Fig.5 Simulation results of FWC and dark charges with two types of doped TG at 0 V

    Fig.6 Simulation results of FWC and dark current with two types of doped TG at various VTG_off

    The opening characteristics of TG affect image lag,which plays an important role in imaging quality and is usually determined by Charge Transfer Efficiency(CTE)[17].

    whereQOUTis charges transferred from PPD to FD.The TCAD tool is used to study the CTE of P+TG and N+TG.In the simulation,the charge transfer characteristic with opening voltage(VTG_on)of TG from 0 V to 3.3 V is simulated.As shown in Fig.7,whenVTG_onincreases,CTE improves and finally tends to be stable,approaching 100%.BeforeVTG_onis 3.0 V,the transfer characteristic of N+TG is better than that of P+TG because of the higher channel potential.The charge transfer characteristic is controlled byVTG_on.Specially,the CTE of N+TG is greater than 99.999% at 2.3 V,while P+TG requires 3.0 V.AsVTG_on(>3.0 V)continues to rise,the CTE of N+TG and P+TG shows no difference,suggesting that charges can be completely transferred from PPD to FD.Universally,the opening voltage of TG is 3.3 V,F(xiàn)ig.8 shows the potential profile with TG on.The channel potential of N+TG is higher than that of P+TG.Moreover,the potential gradually increases from the left side to the right side,and charges can be transferred smoothly along the transfer path.This is the ideal situation for simulation.In actual devices,CTE may be lower than the simulation results because of process deviation and annealing process.When the FWC of PPD is high,CTE will be negatively affected,resulting in image lag.At this point,the positive charge pump needs to be introduced to ensure transfer characteristics.Under the simulation conditions in this paper,two doping types of TG have good transfer characteristics at 3.3 V.

    Fig.7 Simulation results of CTE with P+TG and N+TG

    Fig.8 One-dimensional potential diagram under TG channels with TG on

    3 Conclusion

    The influence of TG doping on FWC and dark current is analyzed in this paper.The channel potential of P+TG is lower than that of N+TG because of the work function difference between TG and substrate.The higher barrier inhibits the feedforward effect and increases FWC.On the other hand,the channel of P+TG is in a state of accumulation.The interface state under P+TG is isolated from PPD and dark current decreases.Device level simulation using TCAD is performed,whenVTG_offis 0V,the full well capacity of the photodiode based on P+TG is 26.5% higher than that of N+TG,and the dark current is 0.377 times that of N+TG.N+TG can optimize FWC and dark current performance by adding negative voltage.In addition,the CTE of N+TG is greater than 99.999% at 2.3 V,while P+TG requires 3.0 V.The voltage applied to P+TG is higher than that to N+TG for complete charge transfer.

    另类亚洲欧美激情| 亚洲美女黄色视频免费看| 日韩一卡2卡3卡4卡2021年| √禁漫天堂资源中文www| 99国产精品99久久久久| 亚洲av在线观看美女高潮| 亚洲精品一二三| 国产精品久久久久久人妻精品电影 | 国产野战对白在线观看| 国产亚洲欧美在线一区二区| 日本wwww免费看| 看免费av毛片| 纯流量卡能插随身wifi吗| 午夜福利,免费看| 久久99一区二区三区| 又大又黄又爽视频免费| 精品国产国语对白av| 亚洲 国产 在线| 91精品三级在线观看| 国产成人影院久久av| 国产精品免费大片| 手机成人av网站| 国产xxxxx性猛交| 国产精品av久久久久免费| 国产国语露脸激情在线看| 免费在线观看日本一区| 日韩中文字幕欧美一区二区 | 人人澡人人妻人| 亚洲欧美日韩另类电影网站| 欧美老熟妇乱子伦牲交| 久久99精品国语久久久| 一级毛片女人18水好多 | 久久精品久久久久久噜噜老黄| 欧美日韩视频高清一区二区三区二| 少妇 在线观看| 欧美黑人精品巨大| 这个男人来自地球电影免费观看| 久久人人爽av亚洲精品天堂| 亚洲国产成人一精品久久久| 亚洲精品美女久久久久99蜜臀 | www.自偷自拍.com| 香蕉丝袜av| 两人在一起打扑克的视频| 99久久综合免费| 成人国产一区最新在线观看 | 在线 av 中文字幕| av欧美777| cao死你这个sao货| 国产精品一区二区在线不卡| 黄色 视频免费看| 国产精品二区激情视频| 黄色片一级片一级黄色片| 中文字幕av电影在线播放| 女人被躁到高潮嗷嗷叫费观| 久久女婷五月综合色啪小说| 精品久久蜜臀av无| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 日韩av在线免费看完整版不卡| 国产亚洲午夜精品一区二区久久| 亚洲欧美激情在线| 在线精品无人区一区二区三| 日本wwww免费看| 国产免费一区二区三区四区乱码| 国产免费又黄又爽又色| 最新的欧美精品一区二区| 亚洲国产中文字幕在线视频| 在线观看www视频免费| 人人妻人人爽人人添夜夜欢视频| 最黄视频免费看| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 欧美激情高清一区二区三区| 欧美另类一区| 老司机靠b影院| 精品少妇黑人巨大在线播放| 免费观看a级毛片全部| 啦啦啦中文免费视频观看日本| 久久久久久久大尺度免费视频| 国产一区二区三区综合在线观看| 亚洲国产av影院在线观看| 丝袜美足系列| 精品视频人人做人人爽| 一级,二级,三级黄色视频| 国产精品一区二区在线不卡| 嫩草影视91久久| 岛国毛片在线播放| 可以免费在线观看a视频的电影网站| 2021少妇久久久久久久久久久| 亚洲少妇的诱惑av| a级毛片在线看网站| 久久久久精品国产欧美久久久 | 亚洲国产精品国产精品| 最近最新中文字幕大全免费视频 | 久久鲁丝午夜福利片| 中文字幕人妻熟女乱码| 亚洲欧美清纯卡通| 国产又色又爽无遮挡免| 亚洲熟女精品中文字幕| av国产久精品久网站免费入址| 精品亚洲成a人片在线观看| 国产亚洲精品久久久久5区| 精品欧美一区二区三区在线| 欧美成人午夜精品| 成人免费观看视频高清| av又黄又爽大尺度在线免费看| 亚洲国产精品成人久久小说| 99re6热这里在线精品视频| 99精品久久久久人妻精品| 亚洲成人手机| 国产又爽黄色视频| 亚洲激情五月婷婷啪啪| 午夜福利视频精品| 精品视频人人做人人爽| 亚洲一卡2卡3卡4卡5卡精品中文| 王馨瑶露胸无遮挡在线观看| 久久亚洲精品不卡| 天天躁夜夜躁狠狠久久av| 在线观看免费午夜福利视频| 我要看黄色一级片免费的| 久久久精品区二区三区| 亚洲成人国产一区在线观看 | 亚洲欧美色中文字幕在线| 纵有疾风起免费观看全集完整版| 亚洲国产精品一区三区| 精品人妻一区二区三区麻豆| 丝袜人妻中文字幕| 亚洲成人手机| 国产精品久久久人人做人人爽| 在线观看免费日韩欧美大片| 丁香六月欧美| 久久狼人影院| 日本色播在线视频| 久久精品亚洲熟妇少妇任你| 在线精品无人区一区二区三| 国产一区亚洲一区在线观看| 亚洲欧美精品综合一区二区三区| 岛国毛片在线播放| 国产精品三级大全| 嫩草影视91久久| 欧美xxⅹ黑人| 人成视频在线观看免费观看| 丰满迷人的少妇在线观看| 丝袜在线中文字幕| 你懂的网址亚洲精品在线观看| 国产精品欧美亚洲77777| 性色av一级| 视频区欧美日本亚洲| 国产精品秋霞免费鲁丝片| 丁香六月欧美| 美女中出高潮动态图| 国产成人影院久久av| 国产免费视频播放在线视频| h视频一区二区三区| 久久精品亚洲av国产电影网| av电影中文网址| 久久亚洲精品不卡| 人人妻人人澡人人看| 欧美性长视频在线观看| 国产欧美日韩精品亚洲av| 99久久精品国产亚洲精品| 美女国产高潮福利片在线看| 国产免费现黄频在线看| 搡老乐熟女国产| 午夜精品国产一区二区电影| 美女大奶头黄色视频| 高潮久久久久久久久久久不卡| 嫩草影视91久久| 交换朋友夫妻互换小说| av在线播放精品| 免费在线观看影片大全网站 | 少妇猛男粗大的猛烈进出视频| 日日夜夜操网爽| a 毛片基地| 午夜影院在线不卡| 夫妻性生交免费视频一级片| 中文字幕人妻熟女乱码| 在线观看免费高清a一片| 亚洲精品一区蜜桃| 久久av网站| 久久人妻熟女aⅴ| 一级毛片 在线播放| 一本久久精品| 久久久久久久大尺度免费视频| 久久鲁丝午夜福利片| 丝袜人妻中文字幕| 婷婷丁香在线五月| 中文乱码字字幕精品一区二区三区| 午夜福利,免费看| 七月丁香在线播放| 丝袜在线中文字幕| av网站免费在线观看视频| 亚洲精品久久午夜乱码| 少妇精品久久久久久久| 婷婷色综合大香蕉| 一二三四在线观看免费中文在| www.av在线官网国产| 国产男人的电影天堂91| 男人舔女人的私密视频| 亚洲人成电影观看| 女性被躁到高潮视频| 亚洲成av片中文字幕在线观看| 两人在一起打扑克的视频| 国产视频一区二区在线看| 亚洲人成77777在线视频| 国产精品欧美亚洲77777| 91字幕亚洲| 精品福利永久在线观看| av国产精品久久久久影院| 久久国产精品男人的天堂亚洲| 国产精品一国产av| 九色亚洲精品在线播放| 丝袜美腿诱惑在线| av在线播放精品| 一区福利在线观看| 一级毛片 在线播放| 建设人人有责人人尽责人人享有的| 欧美日韩综合久久久久久| 亚洲精品国产色婷婷电影| 99久久人妻综合| 视频在线观看一区二区三区| 99国产精品一区二区三区| 高清视频免费观看一区二区| 久久久久久亚洲精品国产蜜桃av| 悠悠久久av| 纵有疾风起免费观看全集完整版| 一区二区三区乱码不卡18| 18禁国产床啪视频网站| 啦啦啦在线观看免费高清www| 婷婷成人精品国产| 99国产精品一区二区蜜桃av | 国产一区二区三区综合在线观看| svipshipincom国产片| 18禁观看日本| 制服诱惑二区| 国产精品一区二区精品视频观看| 国产亚洲精品久久久久5区| 欧美久久黑人一区二区| 人妻 亚洲 视频| 日本wwww免费看| 一级黄片播放器| 成在线人永久免费视频| 一区二区三区四区激情视频| av视频免费观看在线观看| 久久久精品国产亚洲av高清涩受| 啦啦啦啦在线视频资源| 日韩av在线免费看完整版不卡| 亚洲欧美一区二区三区久久| 看免费成人av毛片| 丰满人妻熟妇乱又伦精品不卡| 乱人伦中国视频| 久久精品亚洲av国产电影网| 97精品久久久久久久久久精品| 欧美日韩综合久久久久久| 亚洲欧美日韩高清在线视频 | 精品亚洲成国产av| 日韩伦理黄色片| 亚洲欧美精品综合一区二区三区| 精品国产一区二区三区久久久樱花| 50天的宝宝边吃奶边哭怎么回事| 久久毛片免费看一区二区三区| 两人在一起打扑克的视频| 黄色 视频免费看| 一级,二级,三级黄色视频| 一本综合久久免费| 亚洲成色77777| 久久国产精品人妻蜜桃| 亚洲精品久久成人aⅴ小说| 国产一区二区在线观看av| 亚洲av综合色区一区| 国产成人精品久久久久久| 国精品久久久久久国模美| 久久久欧美国产精品| av又黄又爽大尺度在线免费看| 自线自在国产av| 国产精品偷伦视频观看了| 亚洲精品日本国产第一区| 成人亚洲精品一区在线观看| 啦啦啦在线免费观看视频4| 精品国产一区二区三区四区第35| 国产精品亚洲av一区麻豆| 黄色 视频免费看| 视频在线观看一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲九九香蕉| 色播在线永久视频| 国产精品.久久久| 国产一区二区 视频在线| 日韩视频在线欧美| 婷婷丁香在线五月| 国产高清视频在线播放一区 | 午夜av观看不卡| 80岁老熟妇乱子伦牲交| 在线观看免费午夜福利视频| 婷婷成人精品国产| 后天国语完整版免费观看| 五月天丁香电影| 视频区欧美日本亚洲| 国产成人av激情在线播放| 久热这里只有精品99| 欧美黄色淫秽网站| 在线观看人妻少妇| 极品人妻少妇av视频| 亚洲五月色婷婷综合| 51午夜福利影视在线观看| 国产成人精品久久二区二区免费| 女性生殖器流出的白浆| 日日爽夜夜爽网站| 国产精品九九99| 人人澡人人妻人| 国产精品国产av在线观看| 桃花免费在线播放| 自线自在国产av| 国产熟女午夜一区二区三区| 婷婷成人精品国产| 久9热在线精品视频| 亚洲欧美激情在线| 国产精品偷伦视频观看了| 日韩 亚洲 欧美在线| 免费观看人在逋| av国产久精品久网站免费入址| 国产精品九九99| 人人妻人人添人人爽欧美一区卜| 久久久欧美国产精品| www.精华液| 亚洲国产欧美日韩在线播放| 亚洲欧美精品自产自拍| 美国免费a级毛片| 久久久国产精品麻豆| 黄色怎么调成土黄色| 国产一卡二卡三卡精品| 久久影院123| 久久久欧美国产精品| 亚洲欧洲日产国产| 久久毛片免费看一区二区三区| 亚洲精品乱久久久久久| 搡老岳熟女国产| 女人精品久久久久毛片| 亚洲国产毛片av蜜桃av| 18禁裸乳无遮挡动漫免费视频| 黑人巨大精品欧美一区二区蜜桃| 午夜老司机福利片| 亚洲av在线观看美女高潮| 国产成人av教育| 999久久久国产精品视频| 午夜av观看不卡| 啦啦啦啦在线视频资源| 免费观看a级毛片全部| 欧美日韩黄片免| 亚洲美女黄色视频免费看| 韩国高清视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 性色av一级| 欧美亚洲 丝袜 人妻 在线| 久热爱精品视频在线9| 亚洲av欧美aⅴ国产| 曰老女人黄片| 亚洲一区二区三区欧美精品| 欧美成人午夜精品| 制服诱惑二区| 18禁观看日本| 性少妇av在线| 国产成人系列免费观看| 午夜激情久久久久久久| 欧美黑人精品巨大| 伦理电影免费视频| 欧美人与善性xxx| 国产精品一区二区免费欧美 | 亚洲人成电影观看| 亚洲精品国产区一区二| 亚洲人成电影免费在线| 伊人久久大香线蕉亚洲五| 99热国产这里只有精品6| 国产高清视频在线播放一区 | 色播在线永久视频| 精品国产乱码久久久久久男人| 国语对白做爰xxxⅹ性视频网站| 最近中文字幕2019免费版| 人妻人人澡人人爽人人| 国产伦人伦偷精品视频| 99国产精品一区二区三区| 国产成人精品久久久久久| 热99国产精品久久久久久7| 亚洲国产精品一区二区三区在线| 老司机在亚洲福利影院| 亚洲人成电影观看| 飞空精品影院首页| 少妇人妻 视频| 午夜免费成人在线视频| 狂野欧美激情性xxxx| 国产日韩欧美在线精品| 黑人猛操日本美女一级片| 午夜免费男女啪啪视频观看| 人人澡人人妻人| 国产在线视频一区二区| 大片免费播放器 马上看| 国产av精品麻豆| 中文字幕精品免费在线观看视频| cao死你这个sao货| 人妻人人澡人人爽人人| 在线天堂中文资源库| 午夜av观看不卡| 啦啦啦 在线观看视频| 国产精品成人在线| 咕卡用的链子| 欧美人与善性xxx| 国产亚洲午夜精品一区二区久久| 丝瓜视频免费看黄片| 国产色视频综合| 午夜福利影视在线免费观看| 在线观看免费视频网站a站| 制服诱惑二区| 午夜福利视频精品| 国产又色又爽无遮挡免| 桃花免费在线播放| 亚洲午夜精品一区,二区,三区| 女人久久www免费人成看片| 久久久精品94久久精品| 人人妻,人人澡人人爽秒播 | 亚洲成国产人片在线观看| 婷婷成人精品国产| 电影成人av| 丰满少妇做爰视频| 男女床上黄色一级片免费看| 熟女少妇亚洲综合色aaa.| 精品人妻一区二区三区麻豆| 欧美日韩视频精品一区| 97人妻天天添夜夜摸| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 亚洲人成网站在线观看播放| 欧美大码av| 精品少妇黑人巨大在线播放| netflix在线观看网站| 狠狠婷婷综合久久久久久88av| a级毛片黄视频| 亚洲一区二区三区欧美精品| 午夜视频精品福利| 操美女的视频在线观看| 搡老岳熟女国产| 黑人猛操日本美女一级片| 一本一本久久a久久精品综合妖精| 脱女人内裤的视频| 亚洲九九香蕉| 亚洲精品一卡2卡三卡4卡5卡 | 99久久精品国产亚洲精品| 免费少妇av软件| 欧美另类一区| 九草在线视频观看| 中文字幕精品免费在线观看视频| 久久天躁狠狠躁夜夜2o2o | 十分钟在线观看高清视频www| 国产免费又黄又爽又色| 两个人看的免费小视频| videosex国产| 超碰成人久久| 亚洲精品日韩在线中文字幕| 久久久久久久国产电影| 中文精品一卡2卡3卡4更新| 赤兔流量卡办理| 50天的宝宝边吃奶边哭怎么回事| 成人亚洲欧美一区二区av| 日韩欧美一区视频在线观看| 日韩av免费高清视频| 91麻豆精品激情在线观看国产 | 乱人伦中国视频| 成人三级做爰电影| 亚洲第一青青草原| 丝袜美足系列| 国产女主播在线喷水免费视频网站| 国产视频一区二区在线看| 中文字幕人妻熟女乱码| 国产日韩欧美在线精品| 两个人看的免费小视频| 天天添夜夜摸| 欧美日韩精品网址| 一区二区三区精品91| 日韩制服丝袜自拍偷拍| 午夜激情久久久久久久| www.999成人在线观看| 欧美日韩国产mv在线观看视频| 精品福利永久在线观看| 欧美成人精品欧美一级黄| 七月丁香在线播放| 国产欧美日韩一区二区三 | 色婷婷久久久亚洲欧美| 久久免费观看电影| 999久久久国产精品视频| 国产一区亚洲一区在线观看| 一本一本久久a久久精品综合妖精| 亚洲av片天天在线观看| 久久久久久久久久久久大奶| 999精品在线视频| 欧美黄色淫秽网站| 亚洲第一青青草原| 欧美乱码精品一区二区三区| 一级,二级,三级黄色视频| 久久久久久久国产电影| 亚洲精品国产一区二区精华液| 男女床上黄色一级片免费看| 日韩免费高清中文字幕av| 又大又爽又粗| 人人妻,人人澡人人爽秒播 | 日韩视频在线欧美| 高潮久久久久久久久久久不卡| 看免费成人av毛片| 中文字幕高清在线视频| 大陆偷拍与自拍| 9191精品国产免费久久| 老司机影院毛片| av国产久精品久网站免费入址| 黑丝袜美女国产一区| 人妻人人澡人人爽人人| 99国产精品免费福利视频| 各种免费的搞黄视频| 桃花免费在线播放| 操出白浆在线播放| 国精品久久久久久国模美| 天天影视国产精品| a级毛片在线看网站| 人人妻人人添人人爽欧美一区卜| 97在线人人人人妻| 国产成人影院久久av| 丰满少妇做爰视频| 宅男免费午夜| e午夜精品久久久久久久| 亚洲成人免费电影在线观看 | 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 成人亚洲欧美一区二区av| 欧美大码av| 天天影视国产精品| 精品熟女少妇八av免费久了| 97人妻天天添夜夜摸| 最近中文字幕2019免费版| 欧美久久黑人一区二区| 考比视频在线观看| 9色porny在线观看| 啦啦啦 在线观看视频| 少妇猛男粗大的猛烈进出视频| 精品久久久久久久毛片微露脸 | 搡老乐熟女国产| 一本一本久久a久久精品综合妖精| 色视频在线一区二区三区| www.av在线官网国产| 午夜日韩欧美国产| 免费观看av网站的网址| 老司机靠b影院| 国产男人的电影天堂91| 黄色视频不卡| 9热在线视频观看99| 操出白浆在线播放| 国产xxxxx性猛交| 日本猛色少妇xxxxx猛交久久| 久热这里只有精品99| 后天国语完整版免费观看| 天堂8中文在线网| 成年动漫av网址| 国产高清国产精品国产三级| 高清视频免费观看一区二区| 久久青草综合色| 国产精品.久久久| av电影中文网址| 永久免费av网站大全| 久久人人爽人人片av| 国产一区二区三区av在线| 在线亚洲精品国产二区图片欧美| 制服诱惑二区| 999久久久国产精品视频| 精品久久久久久电影网| 日本91视频免费播放| 久久久久国产一级毛片高清牌| 国产精品香港三级国产av潘金莲 | 狠狠精品人妻久久久久久综合| 人人妻人人澡人人看| av在线老鸭窝| 多毛熟女@视频| 深夜精品福利| 国产成人a∨麻豆精品| 国产有黄有色有爽视频| 亚洲国产精品成人久久小说| 这个男人来自地球电影免费观看| 亚洲精品国产区一区二| 国产成人av教育| 亚洲欧美色中文字幕在线| av一本久久久久| 国产精品二区激情视频| 王馨瑶露胸无遮挡在线观看| 黄频高清免费视频| 少妇 在线观看| 观看av在线不卡| 女人高潮潮喷娇喘18禁视频| 2018国产大陆天天弄谢| 亚洲视频免费观看视频| 久久久久久久精品精品| 国产高清不卡午夜福利| 日本a在线网址| 欧美日韩国产mv在线观看视频| 亚洲九九香蕉| 精品久久久精品久久久| 久久中文字幕一级| 女人爽到高潮嗷嗷叫在线视频| 亚洲av日韩精品久久久久久密 | 一级黄色大片毛片| 日本色播在线视频| 亚洲国产精品国产精品| 一级片'在线观看视频| 18禁国产床啪视频网站| 国产免费视频播放在线视频| 丝袜美腿诱惑在线| 国产精品99久久99久久久不卡| 国产精品成人在线| 99久久人妻综合| 高清av免费在线| 尾随美女入室|