• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A silazane additive for CsPbI2Br perovskite solar cells

    2022-11-21 09:30:30RuiqiCao曹瑞琪YaochangYue樂耀昌HongZhang張弘QianCheng程倩BoxinWang王博欣ShilinLi李世麟YuanZhang張淵ShuhongLi李書宏andHuiqiongZhou周惠瓊
    Chinese Physics B 2022年11期
    關鍵詞:張弘

    Ruiqi Cao(曹瑞琪) Yaochang Yue(樂耀昌) Hong Zhang(張弘) Qian Cheng(程倩) Boxin Wang(王博欣)Shilin Li(李世麟) Yuan Zhang(張淵) Shuhong Li(李書宏) and Huiqiong Zhou(周惠瓊)

    1Beijing Technology&Business University,Department of Chemistry,Beijing 100048,China

    2CAS Key Laboratory of Nanosystem and Hierarchical Fabrication,Nanoscience National Center for Nanoscience and Technology,Beijing 100190,China

    3HEEGER Beijing Research&Development Center,Beihang University,Beijing 100191,China

    Adding additives into peroskite precursor solution has been proven as a simple and efficient strategy to improve the quality of peroskite films. In this work,we demonstrate an effective additive strategy to improve the quality of all-inorganic perovskite films by adding a novel silazane additive heptamethyldisilazane (HDMS). The power conversion efficiency(PCE)of the optimized devices is enhanced from 14.55% to 15.31% with an open-circuit voltage over 1.26 V due to the higher quality perovskite films with lower trap density after the incorporation of HDMS. More interestingly, the HDMS devices exhibit superior humidity and thermal stability compared with the control ones. This work provides a simple and efficient strategy to enhance the device performance and stability of all-inorganic perovskite solar cells, which could facilitate its commercialization.

    Keywords: silazane,all-inorganic perovskite,heptamethyldisilazane(HDMS),additive,solar cells

    1. Introduction

    Since the first application of perovskite materials in solar cells in 2009, the power conversion efficiency (PCE)of organic–inorganic hybrid perovskite devices has exceeded 25% in only a few years.[1]While the thermal volatilization of methylamine ions(MA+)in organic–inorganic hybrid perovskite makes it unstable, especially under high temperature and high humidity.[2–5]Theoreticlly, all-inorganic perovskite solar cells (PSCs) should exhibit better stability than the organic–inorganic hybrid halide ones by replacing the MA+with Cs+.[6–9]However, the PCE of the all-inorganic perovskite solar cells is still much lower.

    It is well-known that the device performance of PSCs strongly depends on the crystal quality of the perovskite photoactive layers. The incomplete grain boundaries between the perovskite crystals and a large number of defects at the interfaces will cause severe charge recombination,reducing charge mobilities and affecting the device stability.[13–15]Adding additives into peroskite precursor solutions has been proven as a simple and efficent strategy to improve the quality of peroskite films.[16–18]Heptamethyldisilazane (HDMS) is highly reactive, and can participate in various chemical reactions.[15,19]If chosen as an additive for perovskites,it could interact with the precursor and involve in the crytallization process of the perovskite, which might improve the crystallization and construct high quality perovskite films. In addition, HDMS also has certain hydrophobic properties,[19]which could improve the stability of the device in the external environment. Thus,it is expected to be used as an additive to improve the device efficiency and stability of perovskite solar cells.

    In this work, we propose a simple method through incoporating a novel silazane additive HDMS into the perovskite precursor to improve the quality of all-inorganic perovskite films. Then we optimize the concentration of HDMS by checking the device performance of CsPbI2Br solar cells with various amount of additives. The best PCE of the opitimized devices with 1%HDMS is enhanced from 14.55%to 15.31%with aVOCover 1.26 V. SCLC measurements and PL characterizations exhibit that the quality of the perovskite films is improved with lower trap density after the presence of HDMS.Moreover,the HDMS devices exhibit better humidity and thermal stability compared with the control ones. At the end,the influence of HDMS on the crystalization process of perovskite is explored.

    2. Experimental procedures

    2.1. Materials

    Lead iodide (>99.95%), lead bromide (>99.95%), cesium iodide (>99.95%) were purchased from Xi’an Polymer Light Technology Corp. Isopropanol (99.9%), ethanol(99.5%)and dimethyl sulfoxide(99.9%)were purchased from Alfa Aesar Chemical Co.SnO2nanoparticle solution(2.5 wt%SnO2in isopropanol)was purchased from Avantama. HDMS(97%)was purchased from Aladdin.

    2.2. Preparation of HDMS-PbBr2

    All compounds were weighed in the glove box,a certain amount of PbBr2and excess HDMS were mixed with each other,stirred for 1 h until PbBr2changed from white to yellow,then the excess HDMS was taken out,and the yellow powder was vacuum dried.

    2.3. Film preparation and device fabrication

    ITO glass substrates were cleaned sequentially with ethanol,detergent,deionized water,and acetone,followed by drying with N2flow and UV-ozone treatment for 15 min. The SnO2(VSnO2:VH2O= 1 : 4) was spin coating onto ITO at 4000 rpm for 30 s,then heating at 150°C for 30 min. Precursor solution(467 mg of PbI2,361 mg of PbBr2,and 312 mg of CsI were mixed in 1 mL of DMF and DMSO(1:9,v/v))with different ratio of HDMS was spin coating at 2500 rpm for 25 s.Then annealing at 43°C until the color became brown and annealing again at 180°C for 10 min. The Spiro-OMeTAD in chlorobenzene solution(72.6 mg/ml)with 29 μL of 4-tertbutylpyridine, 17.5 μL of lithium bistrifluoromethylsulfonate(LiTFSI) was deposited onto the active layer by spin-coating at 4000 rpm for 30 s. Finally,the device was transferred to the evaporator for thermal evaporation of Au(60 nm–80 nm)at a pressure of 1×10-4Pa.

    2.4. Device testing and materials characterization

    UV-vis spectra were measured by PerkinElmer Lambda 650/850/950 UV-vis spectrophoto-meter. X-ray diffraction(XRD, Rigaku D/MAX-TTRIII 3(CBO)) using CuKαradiation was taken for the crystal structures. To acquire the morphology,we used the scanning electron microscope(SEM,Hitachi S4800). A fluorescence spectrophotometer (HORIBA Fluorolog-III) was used for PL spectra. The time-resolved photoluminescence (TRPL) of the films excited by 467 nm laser was obtained with TCSPC. Under AM 1.5 G illumination,current–voltage(J–V)characteristics of the photovoltaic devices were measured using an Enlitech SS-F5-3A. TheJ–Vcharacteristics were measured with a Keithley 2400 source by Enlitech Ltd. For long-term operational stability test, we stored the solar cells in N2glove box and air.

    3. Result and discussion

    We fabricated CsPbI2Br films based on the perovskite precursor solutions containing various amounts of HDMS additive (molecular structure shown in Fig. 1(a))via the one-step spin-coating procedure. Subsequently,we assembled solar cell devices with the structure of ITO/SnO2/CsPbI2Br(HDMS)/Spiro-OMeTAD/Au (see Fig.1(b)).Figure 1(c)shows the current–voltage(J–V)curves of all-inorganic PSCs without additive and with different concentrations of HDMS. The detailed photovoltaic parameters are shown in Table 1. The optimized device with 1%HDMS shows the highest PCE of 15.31%, with a short circuit current(JSC)of 15.39 mA/cm2,an open-circuit voltage(VOC)of 1.258 V,and a fill factor(FF)of 79.12%.It is worth noting that as the content of HDMS increases, the PCE of all-inorganic perovskite solar cells increases first and then decreases. Excess HDMS leads to complex crystallization paths,while promoting an adverse effect.[20,21]Therefore, subsequent studies were conducted between the 1%HDMS devices and the control ones. The external quantum efficiency (EQE) curve of the champion device is shown in Fig. 1(d), the testedJSCof 15.25 mA/cm2is consistent with the previously mentioned in theJ–Vcurve. The addition of HDMS seems to greatly improve theJSCof the devices. Statistical diagram of theJSCof 20 individual devices is described in Fig.1(e). The optimized devices behave with good repeatability,and more than 80%of the devices have aJSCof over 15 mA/cm2, furthermore, the maximumJSCof the device is over 15.5 mA/cm2. Figure 1(f)investigates the stable power output (SPO) of the HDMS optimized device while tracking at the maximum power point,of whose efficiency for the optimized CsPbI2Br PSC is about 15.17%and theJSCis 15.05 mA/cm2.

    The single carrier devices with the architecture of ITO/SnO2/perovskite/C60/BCP/Ag were fabricated as shown in Fig. S1 and the correspondingJ–Vcurves are shown under dark condition to investigate the trap state density in the control and 1%HDMS films.

    Compared with the control devices, obviously, the trapfilled limit voltages (VTFL) for 1% HDMS tailored devices demonstrate a decreased trend. Due to the proportion ofVTFLto trap state density(Ntrap),[22,23]

    whereLis the thickness of the active layer,ε0is the vacuum permittivity, andεris the dielectric constant of the perovskite. The determinedNtrapcan be assessed in Table 2, the device with HDMS has a smaller trap state density(4.712×1015cm-3),nearly half of theNtrapin the control one(7.603×1015cm-3). The reduced trap state density is due to the better crystallization in the all-norganic perovskite processed with HDMS.[24]

    Table 1. Photovoltaic parameters of the CsPbI2Br-based devices with different concentrations of HDMS.

    Fig.1.(a)Structure of HDMS.(b)All-inorganic perovskite device structure.(c)J–V curves of the CsPbI2Br-based devices with different concentrations of HDMS.(d)EQE curve and integrated JSC of the champion device with 1%HDMS,(e)JSC distributions for control devices(20 samples)and optimized CsPbI2Br PSCs(20 samples)with 1%HDMS,(f)the stable power output of the HDMS optimized device and long-term stability of the devices.

    Table 2. TRPL parameters and defect state density of CsPbI2Br films with and without 1%HDMS-PbBr2.

    As we all know, the performance of solar cells is related to the quality of the active layer. We also need to confirm the previous conjecture through film-related tests. Thus the perovskite films with or without HDMS were prepared. XRD was utilized to describe CsPbI2Br films after an annealing process. As shown in Fig.S2(a),both films show the same three main peaks at around 14.6°,20.8°and 29.5°,which represent the(100),(110)and(200)planes of a typical CsPbI2Br cubic phase, respectively.[22,25–27]Meanwhile, the XRD peak positions which do not vary with the adding of HDMS demonstrate that HDMS is not inside the crystal.[28]To better indicate the morphology of the control and the 1%HDMS optimized perovskite films after an annealing process, SEM images (see Fig. S2(b)) were acquired, it shows that the optimized film possesses more smooth grain boundaries compared with the control.[20,29,30]

    We then move to the optical properties of the additive on the quality of the pervskite film. To investigate trap states on the surface of the control and the optimized CsPbI2Br perovskite films, photoluminescence (PL) of both was studied (Fig. 3(a)). The stronger PL intensity compared with the control film means that there are less traps on the optimized surface.[31,32]Similarly, high quality films were revealed by single carrier devices (see Fig. 2), in which the unexpected charge recombination decreased. Also, a blueshift of the PL peak from 660 nm to 648 nm can be observed, which is resulted from that high quality perovskites film as confirmed by SCLC image can effectively reduce defect density.[33]Then the TRPL decays of the two CsPbI2Br perovskite thin films with and without HDMS were investigated. TRPL decay curves(Fig.3(b))were fitted by a bi-exponential decay function,and the key parameters of the two films are listed in Table 2. The average carrier lifetime(τavg)of two kinds of films are 0.58 ns and 3.82 ns,respectively. The much longerτavgof the optimized film also agrees with the conjecture of less trap states with the help of HDMS.[33,34]only 60%. These results suggest that HDMS is an effective additive to promote the film quality and prepare high PCE and stable PSCs.Figures 4(c)and 4(d)show the water droplet contact angles of the perovskite films with or without using additive. The contact angle for the optimized one is slightly larger than the control one. The superior device stability at high humidity might come from the enhanced hydrophobicity and the improved crystal quality of CsPbI2Br films with HDMS.

    Fig.2. The space-charge-limited current versus voltage of devices(a)without and(b)with 1%HDMS.

    Fig.3. (a)Steady-state PL spectra,(b)TRPL curves,(c)UV–vis absorption spectra,(d) Tauc plots of CsPbI2Br films with and without 1%HDMS.

    Fig. 4. Devices post stability of (a) RH 40%–50% in air and (b) 85 °C in N2. The contact angle of(c)control film(d)film with 1%HDMS.

    Meanwhile,figure 3(c)shows the absorbance of the films with or without HDMS. The perovskite films with or without HDMS have almost the same absorption and the value is nearly 650 nm, which is consistent with the previous reports.[35]Using the Tauc method, the optical bandgap of these perovskite films is assessed in Fig. 3(d).[36]It is noted that a small amount of HDMS has no obvious effect on the bandgap of the CsPbI2Br perovskite film, and the values are both close to 1.89 eV, which is in line with the conclusions of other experiments. It should be noted that the HDMS film(≈510 nm)is slightly thicker than the control film(≈490 nm),which is the reason for the increased absorption strength.

    Less traps promote the charge transport process,[36,37]and also enhance the stability of the perovskite devices.[38]Figure 4 demonstrates the long-term stabilities of the CsPbI2Br devices without encapsulation in the ambient atmosphere and thermal treatment, respectively. As shown in Fig. 4(a), the thermal stability of both devices at 85°C in N2indicates that the optimized ones have an enhanced tolerance to high temperatures, especially for the decay time to 80% PCEs (control device of~70 h, HDMS one of~120 h). Figure 4(b)shows the humidity stability at 25°C and RH 40%–50%.After 1000 h storing, the optimized devices with HDMS remained about 90%PCEs,while the devices without HDMS remained

    To figure out the influence of HDMS on the crystalization of perovskites, we explored a simplified experiment between HDMS and PbBr2. Interestingly,the white PbBr2powder quickly turns into yellow after adding a certain amount of HDMS, and the color does not change after purification and drying,figure 5(a)shows the whole transformation. SEM characterization was carried out to check the mouphology change. As shown in Fig. 5(b), PbBr2powder exhibits bulk blocks, while HDMS-PbBr2shows much different morphology with small plate-shaped distribution. More importantly,there are many attachments which are considered to be HDMS in the figure of HDMS-PbBr2. Then,we checked the XRD results(Figs.5(c)and 5(d)).For the two samples,the main peaks between 20°–40°do not show any different,proving that there is no change in the inherent crystal structure (PbBr2). While the new peak at below 20°in the HDMS sample might come from the coordination of HDMS with PbBr2. Based on the above experimental results, we suspect that the HDMS additive might firstly interact with PbBr2to form the HDMS–PbBr2complex,which could slow the reaction between PbBr2and CsI, resulting a higher-quality perovskite film. After the crystallization of CsPbI2Br, the HDMS might serve as a surface modification component which adheres to the surface of the perovskite grains to improve the stability.

    4. Conclusion and perspectives

    In summary, we demonstrate an effective additive strategy to improve the quality of all-inorganic perovskite films by adding a novel silazane additive HDMS into the perovskite precursor.The PCE of the optimized devices is enhanced from 14.55% to 15.31% with aVOCover 1.26 V due to the higher quality perovskite films with lower trap density after the incoporation of HDMS.More interestingly, the HDMS devices exhibit better humidity and thermal stability compared with the control ones. This work provides a simple and efficient strategy to enhance the device performance and stability of all-inorganic perovskite solar cells, which could fercilitate its commercialization.

    Acknowledgments

    This work was financially supported by the National Key Research and Development Program of China (Grant No. 2017YFA0206600), the National Natural Science Foundation of China(Grant No.21922505),and the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB36000000).

    猜你喜歡
    張弘
    工銀悅愛系列信用卡正式發(fā)布,助力“她經濟”
    溪流
    當代作家(2023年3期)2023-04-23 23:40:14
    太湖洞庭西山
    當代作家(2023年3期)2023-04-23 23:40:14
    鷓鴣天·洞庭明月
    當代作家(2023年3期)2023-04-23 23:40:14
    臨江仙·踏春
    當代作家(2023年3期)2023-04-23 23:40:14
    虞美人·蝶為媒
    當代作家(2023年3期)2023-04-23 23:40:14
    巫山一段云·情寄天涯
    當代作家(2023年3期)2023-04-23 23:40:14
    阮郎歸·游漫山島
    當代作家(2023年3期)2023-04-23 23:40:14
    臨江仙鄉(xiāng)思文
    當代作家(2023年3期)2023-04-23 23:40:14
    Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation*
    一区二区三区国产精品乱码| 叶爱在线成人免费视频播放| 国产成人影院久久av| 桃色一区二区三区在线观看| 日韩欧美在线乱码| 大型黄色视频在线免费观看| 成人特级av手机在线观看| 亚洲最大成人手机在线| 日本三级黄在线观看| 免费av观看视频| 小说图片视频综合网站| 99热只有精品国产| 欧美色视频一区免费| 最新美女视频免费是黄的| 国产精品98久久久久久宅男小说| 男女下面进入的视频免费午夜| 极品教师在线免费播放| 老司机午夜福利在线观看视频| 国产精品电影一区二区三区| 日本免费一区二区三区高清不卡| 久久久久久大精品| 亚洲欧美激情综合另类| 搞女人的毛片| 欧美一区二区精品小视频在线| 久久久久久久久久黄片| 男插女下体视频免费在线播放| 欧美日韩亚洲国产一区二区在线观看| 国产黄片美女视频| 国产精品久久久久久精品电影| 国产伦人伦偷精品视频| 日本黄色片子视频| 在线十欧美十亚洲十日本专区| 久久久久亚洲av毛片大全| 国产三级中文精品| 少妇丰满av| 亚洲av一区综合| 国产视频内射| 91在线观看av| 美女大奶头视频| 国产精品女同一区二区软件 | 亚洲,欧美精品.| 丝袜美腿在线中文| 国产久久久一区二区三区| 成人国产综合亚洲| 久久久久久久久大av| 欧美黑人巨大hd| 亚洲男人的天堂狠狠| 9191精品国产免费久久| 国产野战对白在线观看| 日本a在线网址| 欧美中文日本在线观看视频| 成年版毛片免费区| 免费av毛片视频| 久久亚洲真实| 日本三级黄在线观看| 在线十欧美十亚洲十日本专区| 日韩欧美精品v在线| 天天添夜夜摸| 蜜桃亚洲精品一区二区三区| 欧美日韩精品网址| 一区福利在线观看| 99久久无色码亚洲精品果冻| 一卡2卡三卡四卡精品乱码亚洲| 亚洲va日本ⅴa欧美va伊人久久| 国产真实伦视频高清在线观看 | 丰满人妻一区二区三区视频av | 日本熟妇午夜| 九九久久精品国产亚洲av麻豆| 欧美成人a在线观看| 国产成人啪精品午夜网站| 国产精品国产高清国产av| 欧美在线黄色| 嫁个100分男人电影在线观看| 午夜久久久久精精品| 女同久久另类99精品国产91| 国产国拍精品亚洲av在线观看 | 欧美区成人在线视频| 国产精品av视频在线免费观看| 国产精品 国内视频| 国产精品永久免费网站| 亚洲成人久久性| 少妇的逼好多水| 黄色片一级片一级黄色片| 一区二区三区国产精品乱码| 日韩欧美国产一区二区入口| 淫秽高清视频在线观看| 国产精品久久久久久久久免 | 免费在线观看影片大全网站| 长腿黑丝高跟| 最新在线观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 欧美zozozo另类| 69人妻影院| 99久久成人亚洲精品观看| 真人做人爱边吃奶动态| 国产99白浆流出| 啦啦啦免费观看视频1| 九色成人免费人妻av| 日本免费a在线| 男人和女人高潮做爰伦理| 99热这里只有精品一区| 麻豆一二三区av精品| 夜夜看夜夜爽夜夜摸| 女人高潮潮喷娇喘18禁视频| 亚洲精品美女久久久久99蜜臀| 亚洲精华国产精华精| 久久伊人香网站| 真人做人爱边吃奶动态| 波野结衣二区三区在线 | 麻豆久久精品国产亚洲av| 国产国拍精品亚洲av在线观看 | 色哟哟哟哟哟哟| 国产黄a三级三级三级人| 国产欧美日韩一区二区精品| 国产亚洲精品一区二区www| www日本黄色视频网| 欧美成人性av电影在线观看| 国产精品一区二区免费欧美| 亚洲美女黄片视频| a在线观看视频网站| 国产成人a区在线观看| 日韩欧美 国产精品| 欧美性猛交黑人性爽| 美女高潮的动态| 少妇高潮的动态图| 国产国拍精品亚洲av在线观看 | 91久久精品电影网| 日日干狠狠操夜夜爽| 日本三级黄在线观看| 亚洲电影在线观看av| 成年女人永久免费观看视频| 一卡2卡三卡四卡精品乱码亚洲| 欧美区成人在线视频| АⅤ资源中文在线天堂| 一级黄片播放器| 12—13女人毛片做爰片一| АⅤ资源中文在线天堂| 美女高潮的动态| 网址你懂的国产日韩在线| 黄片小视频在线播放| 久久久国产成人免费| 久久久久免费精品人妻一区二区| 国产91精品成人一区二区三区| 桃红色精品国产亚洲av| 最近最新中文字幕大全电影3| 每晚都被弄得嗷嗷叫到高潮| 91在线精品国自产拍蜜月 | 久久久久久大精品| 国产精品久久久久久久久免 | 国产精品美女特级片免费视频播放器| 日本a在线网址| 一个人观看的视频www高清免费观看| 搞女人的毛片| 国产精品99久久久久久久久| 久久欧美精品欧美久久欧美| 国产精品,欧美在线| 欧美成人性av电影在线观看| aaaaa片日本免费| 精品久久久久久久久久免费视频| 白带黄色成豆腐渣| 神马国产精品三级电影在线观看| 久久婷婷人人爽人人干人人爱| 一个人观看的视频www高清免费观看| 少妇人妻精品综合一区二区 | 在线免费观看的www视频| 久99久视频精品免费| 久久精品国产综合久久久| 欧美av亚洲av综合av国产av| 国产亚洲精品久久久com| 丁香六月欧美| 午夜影院日韩av| 欧美激情在线99| 两个人看的免费小视频| 18禁黄网站禁片免费观看直播| 亚洲五月天丁香| 少妇的丰满在线观看| 激情在线观看视频在线高清| 琪琪午夜伦伦电影理论片6080| 又爽又黄无遮挡网站| 麻豆一二三区av精品| 91av网一区二区| 啪啪无遮挡十八禁网站| 高清在线国产一区| 国产爱豆传媒在线观看| 日韩高清综合在线| 波多野结衣巨乳人妻| avwww免费| 精品欧美国产一区二区三| 国产亚洲精品一区二区www| 丰满的人妻完整版| 欧美黄色淫秽网站| 日本成人三级电影网站| a级毛片a级免费在线| www国产在线视频色| 一区二区三区激情视频| 欧美一区二区亚洲| 中文字幕久久专区| 午夜福利欧美成人| x7x7x7水蜜桃| 波野结衣二区三区在线 | 欧美大码av| 日韩欧美国产一区二区入口| 亚洲精华国产精华精| 免费观看精品视频网站| 男人舔女人下体高潮全视频| 熟女人妻精品中文字幕| 欧美日韩瑟瑟在线播放| 亚洲精品粉嫩美女一区| 欧洲精品卡2卡3卡4卡5卡区| 人人妻,人人澡人人爽秒播| 亚洲精华国产精华精| 成人精品一区二区免费| 在线免费观看的www视频| 色视频www国产| 久久香蕉精品热| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 精品久久久久久,| 美女cb高潮喷水在线观看| 亚洲成av人片在线播放无| 日韩欧美一区二区三区在线观看| 性欧美人与动物交配| 亚洲精品在线美女| 亚洲国产精品成人综合色| 99精品在免费线老司机午夜| 18禁国产床啪视频网站| 色av中文字幕| 村上凉子中文字幕在线| 可以在线观看的亚洲视频| 少妇高潮的动态图| av在线天堂中文字幕| av黄色大香蕉| 国产一区在线观看成人免费| 一级黄片播放器| 亚洲成人免费电影在线观看| 欧美在线一区亚洲| 国产伦一二天堂av在线观看| 午夜福利免费观看在线| 国产高清三级在线| 他把我摸到了高潮在线观看| 精品日产1卡2卡| 久久久久久九九精品二区国产| 欧美黑人巨大hd| 亚洲国产日韩欧美精品在线观看 | 看黄色毛片网站| 宅男免费午夜| 欧洲精品卡2卡3卡4卡5卡区| 久久国产乱子伦精品免费另类| 美女cb高潮喷水在线观看| 欧美乱色亚洲激情| 国产精品三级大全| 制服人妻中文乱码| 日韩 欧美 亚洲 中文字幕| 欧美成狂野欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久末码| 亚洲第一欧美日韩一区二区三区| 我的老师免费观看完整版| 69av精品久久久久久| a级一级毛片免费在线观看| 他把我摸到了高潮在线观看| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利欧美成人| 中出人妻视频一区二区| 最好的美女福利视频网| 很黄的视频免费| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| 小蜜桃在线观看免费完整版高清| 一二三四社区在线视频社区8| 亚洲国产精品久久男人天堂| 一a级毛片在线观看| aaaaa片日本免费| 免费在线观看影片大全网站| 给我免费播放毛片高清在线观看| 国产精品亚洲一级av第二区| 亚洲精华国产精华精| 熟妇人妻久久中文字幕3abv| 深爱激情五月婷婷| 在线播放无遮挡| 国产av不卡久久| 黄色丝袜av网址大全| 无遮挡黄片免费观看| 操出白浆在线播放| 国产精品综合久久久久久久免费| 一本一本综合久久| 日本黄色视频三级网站网址| 欧美成人一区二区免费高清观看| 国产黄片美女视频| 男女视频在线观看网站免费| 少妇高潮的动态图| 亚洲欧美日韩卡通动漫| 久久久久国产精品人妻aⅴ院| 久久久久久久午夜电影| 亚洲欧美日韩高清在线视频| 国产高清视频在线观看网站| 天堂影院成人在线观看| 国产蜜桃级精品一区二区三区| 免费在线观看成人毛片| 色老头精品视频在线观看| 亚洲国产中文字幕在线视频| 欧美一级a爱片免费观看看| 日本黄色视频三级网站网址| 无遮挡黄片免费观看| 韩国av一区二区三区四区| 又黄又爽又免费观看的视频| 亚洲色图av天堂| 日本精品一区二区三区蜜桃| 母亲3免费完整高清在线观看| 美女cb高潮喷水在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 黄色丝袜av网址大全| 亚洲精品乱码久久久v下载方式 | 日韩欧美国产一区二区入口| av中文乱码字幕在线| 宅男免费午夜| 国内精品久久久久久久电影| 欧美三级亚洲精品| 欧美在线一区亚洲| 国产免费男女视频| 国产国拍精品亚洲av在线观看 | netflix在线观看网站| www.色视频.com| 在线看三级毛片| 91字幕亚洲| 亚洲国产精品成人综合色| 久久精品国产亚洲av涩爱 | 日韩欧美一区二区三区在线观看| 麻豆国产av国片精品| 熟妇人妻久久中文字幕3abv| 久久香蕉国产精品| 国产又黄又爽又无遮挡在线| 国产真实伦视频高清在线观看 | 偷拍熟女少妇极品色| 老司机福利观看| 亚洲乱码一区二区免费版| 成年人黄色毛片网站| 欧美区成人在线视频| 国产亚洲欧美在线一区二区| 啦啦啦韩国在线观看视频| 中文字幕人成人乱码亚洲影| 亚洲av电影不卡..在线观看| 日韩人妻高清精品专区| 欧美色视频一区免费| 亚洲国产高清在线一区二区三| av视频在线观看入口| 欧美乱色亚洲激情| 九九热线精品视视频播放| 成人一区二区视频在线观看| 久久久久久久久大av| 成年免费大片在线观看| 午夜日韩欧美国产| 久久国产乱子伦精品免费另类| 精品免费久久久久久久清纯| 在线免费观看不下载黄p国产 | 欧美大码av| 日本五十路高清| 国产亚洲av嫩草精品影院| 国产探花极品一区二区| 91麻豆精品激情在线观看国产| 首页视频小说图片口味搜索| 伊人久久精品亚洲午夜| 黄色女人牲交| 青草久久国产| 中文字幕久久专区| 丰满的人妻完整版| 亚洲国产色片| 午夜精品一区二区三区免费看| 国产一区在线观看成人免费| 久久亚洲真实| 中文资源天堂在线| 女人高潮潮喷娇喘18禁视频| 国产亚洲精品久久久com| 亚洲在线观看片| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| 国产成人啪精品午夜网站| 黄色成人免费大全| 91麻豆精品激情在线观看国产| 黄片大片在线免费观看| 高清在线国产一区| 国产成+人综合+亚洲专区| 亚洲精品一区av在线观看| 欧美黑人巨大hd| 天堂影院成人在线观看| 亚洲 欧美 日韩 在线 免费| 宅男免费午夜| 老司机午夜十八禁免费视频| 91在线观看av| 国产三级中文精品| 亚洲七黄色美女视频| 国产成人a区在线观看| 两个人的视频大全免费| 国产三级黄色录像| 99热这里只有精品一区| 一进一出抽搐gif免费好疼| 久9热在线精品视频| 亚洲专区国产一区二区| 久久久久国内视频| 老熟妇乱子伦视频在线观看| 亚洲精华国产精华精| 两性午夜刺激爽爽歪歪视频在线观看| 欧美在线一区亚洲| 又黄又爽又免费观看的视频| 日韩欧美精品免费久久 | 国产在线精品亚洲第一网站| 一二三四社区在线视频社区8| 美女被艹到高潮喷水动态| 亚洲激情在线av| 国产 一区 欧美 日韩| 一区福利在线观看| 亚洲天堂国产精品一区在线| 丁香欧美五月| 亚洲不卡免费看| 国产高清激情床上av| 久久久国产成人精品二区| www日本黄色视频网| 亚洲一区高清亚洲精品| 欧美bdsm另类| 在线观看日韩欧美| 午夜免费成人在线视频| 蜜桃亚洲精品一区二区三区| av天堂在线播放| 色视频www国产| 97碰自拍视频| 色综合欧美亚洲国产小说| 97碰自拍视频| 特大巨黑吊av在线直播| 久久久久久久久大av| 亚洲人与动物交配视频| 老司机在亚洲福利影院| 搡老妇女老女人老熟妇| 搞女人的毛片| 综合色av麻豆| 午夜免费男女啪啪视频观看 | 国产一区二区三区在线臀色熟女| 内地一区二区视频在线| 免费av毛片视频| 亚洲avbb在线观看| 91麻豆精品激情在线观看国产| 成人亚洲精品av一区二区| 2021天堂中文幕一二区在线观| 精品午夜福利视频在线观看一区| 亚洲精品成人久久久久久| 亚洲男人的天堂狠狠| 亚洲国产精品999在线| 美女高潮的动态| 中国美女看黄片| 国产成+人综合+亚洲专区| 最近视频中文字幕2019在线8| 内射极品少妇av片p| 88av欧美| 淫妇啪啪啪对白视频| 国产精品av视频在线免费观看| 亚洲欧美精品综合久久99| 亚洲成人精品中文字幕电影| 亚洲av不卡在线观看| 18禁黄网站禁片免费观看直播| 欧美色欧美亚洲另类二区| 男人舔女人下体高潮全视频| 亚洲第一欧美日韩一区二区三区| 18禁国产床啪视频网站| 久久久久久久亚洲中文字幕 | 19禁男女啪啪无遮挡网站| 色综合婷婷激情| 床上黄色一级片| 国内精品久久久久精免费| 亚洲狠狠婷婷综合久久图片| 免费av观看视频| 长腿黑丝高跟| 国产熟女xx| 日韩欧美免费精品| 亚洲专区国产一区二区| 久久久久九九精品影院| 久久国产精品影院| 亚洲成人久久爱视频| 免费在线观看影片大全网站| 午夜精品在线福利| 国产午夜精品久久久久久一区二区三区 | 亚洲精品久久国产高清桃花| 在线天堂最新版资源| 成人无遮挡网站| 国产高潮美女av| 久久久色成人| 人妻夜夜爽99麻豆av| 日本黄色片子视频| 3wmmmm亚洲av在线观看| 亚洲人成网站高清观看| 美女高潮喷水抽搐中文字幕| 一区二区三区国产精品乱码| 国产精品女同一区二区软件 | 国产中年淑女户外野战色| 两个人的视频大全免费| 99久国产av精品| www日本黄色视频网| 男女那种视频在线观看| 国产国拍精品亚洲av在线观看 | 一区福利在线观看| 久久伊人香网站| 国产一区二区激情短视频| 真人做人爱边吃奶动态| 欧美一区二区国产精品久久精品| 手机成人av网站| 免费看十八禁软件| 97碰自拍视频| 桃色一区二区三区在线观看| 色综合亚洲欧美另类图片| 精品久久久久久久久久久久久| 在线观看一区二区三区| 美女被艹到高潮喷水动态| 亚洲av电影在线进入| 激情在线观看视频在线高清| 精品久久久久久久末码| 大型黄色视频在线免费观看| 国产视频内射| 国产av不卡久久| 免费av观看视频| 一区二区三区免费毛片| 欧美日韩综合久久久久久 | 一个人看的www免费观看视频| 亚洲七黄色美女视频| 国产一区二区三区视频了| 国产淫片久久久久久久久 | 精品国产亚洲在线| 美女高潮的动态| 亚洲精品一区av在线观看| 亚洲天堂国产精品一区在线| 男女床上黄色一级片免费看| 观看免费一级毛片| 免费大片18禁| 激情在线观看视频在线高清| 精品熟女少妇八av免费久了| 国产精品久久久久久亚洲av鲁大| 国产av一区在线观看免费| 99久久精品热视频| www.熟女人妻精品国产| 最近视频中文字幕2019在线8| 欧美日本视频| 亚洲五月婷婷丁香| 大型黄色视频在线免费观看| 国内久久婷婷六月综合欲色啪| 久久精品国产亚洲av香蕉五月| 色尼玛亚洲综合影院| 国产精品av视频在线免费观看| xxx96com| 久久久久久久午夜电影| 国产精品乱码一区二三区的特点| 亚洲黑人精品在线| 日韩欧美国产一区二区入口| 非洲黑人性xxxx精品又粗又长| 久久精品国产亚洲av香蕉五月| 99热这里只有是精品50| 欧美性猛交╳xxx乱大交人| 又黄又爽又免费观看的视频| 亚洲国产精品成人综合色| 欧美+亚洲+日韩+国产| 亚洲欧美激情综合另类| 久久久久久久久久黄片| 天堂av国产一区二区熟女人妻| 夜夜爽天天搞| 动漫黄色视频在线观看| 亚洲第一欧美日韩一区二区三区| 久久婷婷人人爽人人干人人爱| 免费在线观看亚洲国产| 国产高清视频在线播放一区| 一本久久中文字幕| 亚洲av不卡在线观看| 日日摸夜夜添夜夜添小说| 他把我摸到了高潮在线观看| 国产v大片淫在线免费观看| 精品人妻偷拍中文字幕| 日韩有码中文字幕| 欧美日韩黄片免| 亚洲精品久久国产高清桃花| 全区人妻精品视频| 少妇裸体淫交视频免费看高清| 最新美女视频免费是黄的| 亚洲欧美日韩无卡精品| 一级黄片播放器| 午夜影院日韩av| 好男人在线观看高清免费视频| 国产精品乱码一区二三区的特点| 午夜福利免费观看在线| 久久人妻av系列| 天堂√8在线中文| 天堂影院成人在线观看| 亚洲美女视频黄频| 国产日本99.免费观看| 亚洲成人精品中文字幕电影| 男人和女人高潮做爰伦理| 又紧又爽又黄一区二区| 青草久久国产| 精品不卡国产一区二区三区| 69av精品久久久久久| 国产黄片美女视频| 午夜免费激情av| 手机成人av网站| 亚洲欧美一区二区三区黑人| 亚洲无线观看免费| 两个人视频免费观看高清| 国产伦精品一区二区三区四那| 亚洲精品国产精品久久久不卡| 国产伦一二天堂av在线观看| 国内毛片毛片毛片毛片毛片| 波野结衣二区三区在线 | 国内毛片毛片毛片毛片毛片| 少妇高潮的动态图| 免费看十八禁软件| 精品国产超薄肉色丝袜足j| 精品日产1卡2卡| 国产精品久久久人人做人人爽| 国产又黄又爽又无遮挡在线| 国产精品爽爽va在线观看网站| 日韩精品中文字幕看吧| 国产中年淑女户外野战色|