• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation*

    2021-07-30 07:36:02JingWeiSun孫竟巍XuQian錢旭HongZhang張弘andSongHeSong宋松和
    Chinese Physics B 2021年7期
    關(guān)鍵詞:張弘

    Jing-Wei Sun(孫竟巍) Xu Qian(錢旭) Hong Zhang(張弘) and Song-He Song(宋松和)

    1Department of Mathematics,National University of Defense Technology,Changsha 410073,China

    2State Key Laboratory of High Performance Computing,National University of Defense Technology,Changsha 410073,China

    Keywords: moving mesh,energy dissipative,average vector field method,Allen-Cahn equation

    1. Introduction

    Phase-field models are usually constructed to reproduce a given interfacial dynamics. For instance, in solidification problems, the front dynamics is given by a diffusion equation for either concentration or temperature in the bulk and some boundary conditions at the interface, which constitutes the sharp interface model. In the past few decades,phase-field models have been widely applied in image analysis, material science, engineering, fluid mechanics, and life science, etc.(e.g.,Refs.[6,8,13-15])Among them,one fundamental model is the Allen-Cahn model,which is originally introduced to describe the non-conservative phase variables in the phase separation process. The Allen-Cahn model is recognized as gradient flow systems, for which there exists a Lyapunov function, known as the free energy. From a modeling view, given a specified Lyapunov function or a free energy function, the Allen-Cahn type equations can be derived as theL2gradient flow. This generality makes the Allen-Cahn type equations extremely useful in modeling many interfacial or multiphase problems. In this paper,we are concerned with numerical solutions of the following Allen-Cahn equation:

    where Ω is a domain in R, Δ is the Laplacian operator, andu,ε,f(u)=u-u3represent the difference between the concentrations of the two mixtures’ components, the interfacial width, and a polynomial double-well potential, respectively.The Allen-Cahn equation was originally introduced by Allen and Cahn in Ref. [1] to describe the motion of anti-phase boundaries in crystalline solids. After that,it has been widely extended to model various phenomena in nature,such as phase transitions,[2]image analysis,[3]mean curvature flows,[4]and crystal growth.[5]It is well known that the Allen-Cahn equation possesses nonlinear stability due to its time-dependent dissipation, i.e., it can be viewed as theL2-gradient flow of the Ginzburg-Landau free energy functional

    Besides the dissipation property, another is that the Allen-Cahn equation admits the maximum principle preserving(MPP)property:[9,16]if the initial value and the boundary conditions are bounded by constantβ(β=1 for Eq.(1)),then the entire solution is also bounded byβ, i.e.,||u(·,t)||L∞≤β,?t >0.

    Fig.1. A double well potential F(u)=0.25(u2-1)2.

    Since available theoretical solutions for the Allen-Cahn equation are still very limited, numerical investigation is an important tool to understand the physical behavior of this system. In particular, the average vector field (AVF) method[17]was proposed to simulate Hamiltonian ordinary differential equations(ODEs)due to their long time simulation and good preservation properties of conservative quantities of the original problem. It is a kind of B-series method which can be used to analyze the accuracy of the scheme by using the root series theory. There have been a number of works solving various PDEs by using the AVF method in time discretization.Gong, Jianget al.[18,19]extended the original second-order AVF scheme to the higher-order schemes. This is undoubted because of the satisfactory performance of the AVF method in maintaining the high-order accuracy of energy.

    There are many ways to solve the problem of energy conservation, including the symplectic and multisymplectic method (e.g., Refs. [7,35,36]), the high-order Runge-Kutta method (e.g., Refs. [10,34]), the wavelet method (e.g., Refs.[11,12]), and especially the AVF method for time-dependent PDE systems(e.g.,Ref.[38]),etc.These systems usually have a structure that has significantly evolved as the integration of PDEs proceed,including interfaces,shocks,changes of phase,and high vorticity or regions of complexity,etc. They are further associated with small length or time scales, rapid movement of the solution feature, and the possibility of blow-up of solution. Although researchers have adapted the finite element, finite volume, finite difference, or collocation method and achieved satisfactory numerical results,one problem is inevitable, that is, small enough time and space steps are required to achieve the desired accuracy, which takes a lot of computing costs. The adaptive moving mesh method has a favorable characteristic that could overcome this problem.However,as far as we know,there is no related work on how to extend the AVF method to preserve energy dissipative property on the nonuniform meshes.

    Adaptive methods for solving PDEs can be roughly divided into three fundamental categories:h-refinement method,p-refinement method, and r-refinement method. For hrefinement method, it starts with an initially uniform mesh and then locally coarsens or refines it by the inclusion or deletion of mesh points. For p-refinement method, finite element discretization of the PDE is used with local polynomials of some particular order. And for r-refinement method, it starts with a uniform mesh and then moves the mesh points, keeping the mesh points fixed as the solution evolves. The mesh points are then concentrated into regions where the solution has individual behavior, usually typified by a rapid variation of either the solution or one of its higher derivatives. Compared with other methods,there are several significant advantages of r-refinement methods in various applications such as computational fluid mechanics, phase-field models, and convective heat transfer,etc. (e.g.,Refs.[20,21])For instance,it is convenient to work with the same number of mesh points.This makes linear algebra rather easier because the matrices considered have a constant sparsity structure. Moreover, the discretization strategy on the mesh is also easier. The third advantage of r-refinement methods is that under certain conditions, the mesh movement strategy coupled with the discrete PDE can be regarded as a large dynamical system that would be easier for theoretical analysis.

    Our main proposal is to achieve a balance among effectiveness, high efficiency, and structure preservation. We are committed to extending the AVF method to nonuniform meshes via the r-refinement method. The extension is based on the “mapping method” which is the most popular one among the moving mesh method, and the change of coordinates plays an important role. Recently,Yaguchi extended the discrete variational derivative method to nonuniform grids[22]and proved that this method could likewise do the structurepreserving on nonuniform grids. A summation by parts formula is introduced on one-dimensional nonuniform grids since it plays a very important role in the discrete variational method. We also use this method as a reference to prove the theorem. In a recent study,[23]an hr adaptive method is proposed to get the spatial and temporal adaptation effect and then to solve the nonlinear Schr¨odinger equation(NSE).Nevertheless, the proposed method only involves r-refinement and explores the adaptation in space.

    The rest of this paper is organized as follows. In Section 2, we review the idea of the mapping method and two approaches of discretization for the PDE.In Section 3,we introduce our mesh movement strategy,including the mesh density function and its corresponding smoothing method. The dissipative moving mesh scheme based on the classical AVF method is defined in Section 4, and relevant theorems and proofs are given. Section 5 contains numerical experiments and results of the application of the scheme proposed. Conclusion and outlook are discussed in Section 6.

    2. Discretization and mesh adaptation

    Notice that the Allen-Cahn equation as one of the Hamiltonian PDEs

    whereSis a negative semi-definite differential operator, and?denotes a certain energy functional,such as the Hamiltonian or free energy. Equation(5)can be rewritten as the following form:[24]

    which will be a general form for later discretization and theorems.

    2.1. Spatial discretization

    For simplicity of notation, we define the following finite difference operators:

    whereD(κ)=diag(κ0,...,κN-1)is anNbyNdiagnoal matrix.

    In order to introduce mesh movement,Eq.(6)is rewritten with respect to a moving reference frame, and the problem is recast in terms of the independent variablesξandt,by using the transformation

    from computational space Ωc×(0,T]to physical space Ωp×(0,T]. A uniform mesh covering Ωcis given by

    and the corresponding nonuniform mesh on Ωpis

    where

    Equation(6)is rewritten in the computational domain Ωc

    This is a natural form of the variational derivative in the computational space. Yaguchiet al.[22]have proved that the variational structure is retained in the computational space. To make it convenient for the theoretical analysis,we decompose Eq.(12)to the following form:

    The following theorem explains that in the computational domain, Eq. (12) also has the dissipation property. It is worth mentioning that although the theorem gives special boundary conditions, it also applies to periodic boundary conditions. It can refer to Ref.[22].

    Theorem 1[22]Suppose that the boundary condition satisfies

    The effect of mesh movement in the time discretization of the physical PDE system can be treated with either the quasi-Lagrange approach or the rezoning approach. We would give the quasi-Lagrange approach as a reference. The latter one will be highlighted and applied to the adaptive method.

    2.1.1. Quasi-Lagrange approach

    With the quasi-Lagrange approach, the mesh points are considered to move continuously in time, and physical time derivatives are transformed into time derivatives along mesh trajectories supplemented with a convective term reflecting mesh movement. This approach mainly use the chain rule,i.e., denoting the transformed variablev(ξ,t)=u(x(ξ,t),t),we have

    2.1.2. Rezoning approach

    The rezoning approach, as its name implies, is going to update the mesh at each time step by using certain mesh equations or generators, and the mesh points are considered to move intermittently in time. It is an integrated process that involves solving alternately for the physical solution and the mesh. The physical solution is interpolated from the old mesh to the new one,and the physical PDE is then discretized on the new mesh, which is held fixed for the current time step. This is the main difference from the quasi-Lagrange approach, and Fig.2 gives an intuitive display. As can be seen,the mesh points are considered to move continuously for the quasi-Lagrange approach of temporal discretization of physical PDEs, while the mesh is considered to vary only at time instants for the rezoning approach of temporal discretization of physical PDEs. Interpolation of the physical solution determines the success of this method, and it is often necessary to use a conservative interpolation scheme that preserves some solution quantities and properties. We will show the detail in later chapters.

    Fig. 2. Two different mesh movement approaches with time varying in Ref.[25].

    In fact,for a moving mesh method,the discrete physical PDE and the mesh equation give a coupled system. Moreover,on account of high coupling,the mesh can respond promptly to any change occurring in the physical solution. Unfortunately,coupling leads to a highly nonlinear equation that is difficult to solve due to its more complicated structure. Therefore we choose the rezoning approach to strive for maximum decoupling. Since the time lag effect brought and the computational cost by the rezoning approach cannot be ignored, we have to take a smaller time step.

    3. Mesh movement strategy

    Since only the one-dimensional problem is concerned in this paper, the de Boor’s equidistributing algorithm could not be more appropriate. Given a continuous functionρ(x), typically depending on the first or second order derivatives of the underlying solutionuto be adapted, the number of grid pointsN-1 and the bounded domain[0,L]whereuis defined,equidistribution needs to find a gridXh:x0=0<x1<···<xN=Lsuch that

    where the functionρ(x)is to minimize the error of the numerical approximation,which is currently called the mesh density function(e.g.,Refs.[25,26]). To ensure that the equidistribution is unique,assume that the mesh density function is strictly positive,i.e,

    A typical and simple choice ofρ(x) is the arc-length mesh density function

    In this case,the meaning of the equidistribution principle is that the weighted arc length ofuover each interval is equal.That means that bothuandρare approximate values. In addition,notice that ifuis not smooth,the discrete mesh density function computed this way can often change abruptly and unnecessarily slow down the computation. To obtain a smoother mesh and also make Eq. (19) easier to integrate, a common practice is to smooth the mesh density functionρ(x). A simple but effective smoothing method is given as follows:[25]

    After twice differential with respect toξ,a classical equation yields

    4. Adaptive energy dissipative method

    Lemma 1 in Ref.[27]indicated that the operator ?as the standard gradient could replace the variational derivative in a finite number of dimensions,i.e.,

    where the notations ˉ?and ˉu,which are different from the notation ˉρas mentioned earlier,denote the discrete values of?anduand ˉ?′= ˉ?D(κ). The following two lemmas are given for later proof.

    Lemma 1[22]Suppose that a solution of Eq.(6)satisfies the condition

    4.1. Design of schemes for dissipative equations

    Theorem 2Let ˉSbe any negative-definite matrix approximation toSand ˉ?be any finite difference approximation to?. Let

    where (xξ)k,jandδkcan be chosen arbitrarily (k=1,...,s),andsis equivalent tosof Eq.(6).

    Theorem 3If the periodic boundary condition is satisfied,then Eq.(33)has an energy dissipation law,i.e.,

    Substituting Eq.(33)and applying the summation by parts in Ref.[22]gives

    4.2. A complete r-algorithm based on rezoning approach

    Algorithm 1 The r-algorithm based on rezoning approach 1: Initialize variables;select all parameters including Δx and Δt,etc.2: Give a uniform mesh over the physical domain and determine u0 based on initial condition φ0 3: Utilize the mesh density function ω(x)and de Boor’s equidistribution principle to compute an initial grid x0.4: for n=0:NT-1 do 5: Set reltol=1.0e-10 and abstol=1;6: while abstol >reltol do 7: Compute the approximately equidistributing grid xn+1 from xn and un 8: Compute ?u=ψ(xn+1,xn)un,for a given interpolation operator ψ(xn+1,xn) mapping from xn to xn+1.9: Solve Eq.(33)where U(n)j is replaced by ?Uj on the new mesh xn+1images/BZ_138_447_2554_467_2587.pngimages/BZ_138_515_2554_535_2587.pngimages/BZ_138_720_2554_740_2587.pngimages/BZ_138_740_2554_760_2587.png10: abstol=maxabs U(n+1)j -U(n)j 11: end while 12: Set n:=n+1 13: end for

    As mentioned before, the key step is to select the appropriate interpolation operatorψ. In Ref.[28], Huang gave the detailed process and error analysis of linear interpolation on the adaptive moving mesh. However,in the actual calculation,we observe that the cubic interpolation operator (the MATLAB built-in functionpchip) works best with respect to the error between the numerical solution and the exact solution.

    5. Numerical experiments

    According to Eq.(33),we obtain the full-discrete scheme of the Allen-Cahn equation on the nonuniform mesh

    Next,we choose two pairs of initial solutionu0(x)and parameterεto verify the validity of the scheme.

    Example 1Consider the following initial value

    We also setε=0.01,Δt=0.01 and Δx=0.02. In Fig.3,two intuitive top views are given att=0 s andt=10 s to show that the phase has been completely separated. The mesh trajectories and energy change are shown in Fig.4 to indicate that the r-adaptive component of the adaptive algorithm performs well tracking the movement of the front throughout the time integration period,and the discrete energy drops very quickly in the first two seconds,and att=3 s it is at a stable state.

    Fig.3. Snapshots of(a)initial time T =0 s and(b)terminus time T =10 s.

    Fig.4. (a)Grid movement-each line represents the path of one grid point in time. (b)AC equation’s energy decay case.

    Next, we test the accuracy of the proposed method by choosing a reference solution with a small time step Δt=5×10-4. TheL2-norms andL∞-norms of the errors of numerical solutions are presented respectively in Table 1.It indicates that the moving mesh method can achieve almost the same accuracy as the uniform method. Fixing space step Δx=0.02 and setting time step Δthalf each time,we obtain the numerical results shown in Table 2. Note that in the uniform mesh method,L2error can be kept the second-order convergence while it can not be in the moving mesh method. Referring to the previous literature,there is no convergence analysis for the moving mesh method. This is because even if the same number of grids are taken each time, the grid position will also bring a small change due to the r-algorithm. We also notice that in Table 2, there is no numerical result for the uniform mesh method when taking Δt=0.25 or 0.125. This is because the traditional uniform mesh method is limited by the step ratio Δx/Δt. However,the moving mesh method can break through this limit and tend to perform well in a large step, although there is no theory to verify whether it is unconditionally stable. Another point we have to mention is that using the moving mesh method costs more computational time, especially when the space or time step is very small. This phenomenon is also caused by the r-refinement method. In the beginning,the physical domain Ωpis mapped to Ωc,and it needs to solve alternately between two domains all the time. In addition,we compare the total energy with different time steps with the reference solution for theL∞error, and the line chart is shown in Fig. 5. It is worth noting that when Δt=0.5, the energy error reaches around magnitude 10-2, and Δt=0.001 corresponds to magnitude 10-6. In addition, the error decreases very quickly before the time grid numbers reach 500. It again verifies the solution stability of large time steps and the advantage of the proposed scheme.

    Fig.5. Different time step’s energy error with reference solution.

    Table 1. Numerical results for the AC equation(example 1),Δx=0.01.

    Table 2. The L2 error and L∞error between the current time step and the previous time step(example 1),Δx=0.02.

    Example 2Consider the following initial value:

    Four different parametersε2=0.001,0.002,0.003 and 0.004 are tested for this example. We also set Δx=0.02=Δt. Figure 6 shows the phase cases at the terminal timeT=20 s.Furthermore,in order to reflect the difference in phase change caused by different parameters, the magnified results of the four local areas are shown in Fig.7. It can be seen that as the parameterεbecomes larger, the width of the interfacial becomes longer,and phase separation gets coarser. This is consistent with the actual phase separation.Figure 8 illustrates intuitively the parameterεaffects the steady-state energy value and energy dissipation rate and verifies Eqs.(2)and(3).

    Fig.6. Different parameter ε2s’snapshots at T =20 s.

    Fig. 7. Enlarged images in part of the phase area, with x ∈[-0.4,0.4] and T =20 s.

    Fig. 8. (a) Grid movement with ε2 =0.001 and (b) different ε2s’ energy decay cases.

    6. Conclusion and outlook

    In this paper, we introduce a dissipative scheme and extend the average vector field method to nonuniform meshes.Our extension borrows from Yaguchi’s thought that the dissipation properties obtained from the variational structure still holds after the change of coordinates. The de Boor’s equidistribution principle and appropriate monitor function make the grid reasonably clustered in the region where the solution needs to get the effect of adaptive mesh. By using the rezoning approach, we get the discretization process of PDE solving. The numerical experiments confirm that the scheme can work well under the large step and step ratio Δx/Δtthat much less than 1. Although we have considered the only onedimensional case, the scheme can also be derived for twodimensional case by transforming the differential operators to Since the quasi-Lagrange approach and rezoning approach each has its advantage, in the near future, we may propose a two-dimensional scheme by using the quasi-Lagrange approach and try to apply it to other phase-field models such as the Cahn-Hilliard equation and molecular beam epitaxy,etc.

    猜你喜歡
    張弘
    工銀悅愛系列信用卡正式發(fā)布,助力“她經(jīng)濟(jì)”
    溪流
    太湖洞庭西山
    鷓鴣天·洞庭明月
    臨江仙·踏春
    虞美人·蝶為媒
    巫山一段云·情寄天涯
    阮郎歸·游漫山島
    臨江仙鄉(xiāng)思文
    A silazane additive for CsPbI2Br perovskite solar cells
    av在线蜜桃| 一区二区三区四区激情视频| 国产精品一二三区在线看| 午夜激情欧美在线| 黄片无遮挡物在线观看| 最近中文字幕2019免费版| av天堂中文字幕网| 三级国产精品欧美在线观看| 日韩一本色道免费dvd| av在线观看视频网站免费| 日本色播在线视频| 国产精品一及| 日韩强制内射视频| 亚洲国产精品成人综合色| 国产高清有码在线观看视频| 欧美成人一区二区免费高清观看| 日韩高清综合在线| 国产淫片久久久久久久久| 99热这里只有是精品在线观看| 欧美成人精品欧美一级黄| 精品久久久噜噜| 亚洲经典国产精华液单| 午夜福利高清视频| 国产爱豆传媒在线观看| 汤姆久久久久久久影院中文字幕 | 男插女下体视频免费在线播放| 美女cb高潮喷水在线观看| 啦啦啦啦在线视频资源| 国产综合懂色| 搞女人的毛片| 两个人的视频大全免费| 久久婷婷人人爽人人干人人爱| 成年女人永久免费观看视频| 麻豆国产97在线/欧美| av线在线观看网站| 亚洲av不卡在线观看| 晚上一个人看的免费电影| 亚洲人成网站高清观看| 亚洲av中文字字幕乱码综合| 日本一本二区三区精品| 日本熟妇午夜| 高清午夜精品一区二区三区| 国内精品美女久久久久久| 日本与韩国留学比较| 五月伊人婷婷丁香| 国产精品国产三级国产av玫瑰| 国产男人的电影天堂91| 亚洲内射少妇av| 日本免费a在线| 男人的好看免费观看在线视频| 熟女人妻精品中文字幕| 国产精品久久久久久久久免| 国产淫语在线视频| 少妇高潮的动态图| 免费看a级黄色片| 亚洲国产欧美在线一区| 日韩av在线大香蕉| 少妇熟女欧美另类| 免费看光身美女| 成人三级黄色视频| 亚洲精品影视一区二区三区av| 超碰97精品在线观看| 成人亚洲精品av一区二区| 99久久成人亚洲精品观看| 日韩一区二区视频免费看| 国产免费一级a男人的天堂| 国产精品久久久久久精品电影| 有码 亚洲区| 变态另类丝袜制服| 免费电影在线观看免费观看| 国产国拍精品亚洲av在线观看| 亚洲精品色激情综合| 欧美日本亚洲视频在线播放| 91aial.com中文字幕在线观看| 黄片wwwwww| 国产精品三级大全| 男女视频在线观看网站免费| 久久久久网色| 久久久久久久国产电影| 日韩视频在线欧美| 欧美激情久久久久久爽电影| 久久精品影院6| or卡值多少钱| 一区二区三区乱码不卡18| 大香蕉97超碰在线| 亚洲国产成人一精品久久久| 国产精品蜜桃在线观看| 国产伦在线观看视频一区| 国产免费一级a男人的天堂| 99久久精品热视频| 校园人妻丝袜中文字幕| 亚洲欧美中文字幕日韩二区| 老师上课跳d突然被开到最大视频| 亚洲国产精品久久男人天堂| 99热网站在线观看| 午夜亚洲福利在线播放| 亚洲国产欧美人成| 成人av在线播放网站| 欧美成人午夜免费资源| 亚洲,欧美,日韩| 国产爱豆传媒在线观看| 丰满人妻一区二区三区视频av| 我的女老师完整版在线观看| 日日干狠狠操夜夜爽| 成人鲁丝片一二三区免费| 一级毛片aaaaaa免费看小| 99视频精品全部免费 在线| 国产真实伦视频高清在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲精品aⅴ在线观看| 七月丁香在线播放| 国产免费视频播放在线视频 | 成人亚洲精品av一区二区| 欧美日本视频| 大话2 男鬼变身卡| 精品久久久久久电影网 | 国产成人一区二区在线| 欧美精品一区二区大全| 免费电影在线观看免费观看| 日韩成人av中文字幕在线观看| 久久人人爽人人片av| 精品99又大又爽又粗少妇毛片| 尾随美女入室| 边亲边吃奶的免费视频| av免费在线看不卡| 天美传媒精品一区二区| 午夜福利视频1000在线观看| 免费黄网站久久成人精品| 亚洲丝袜综合中文字幕| 最近中文字幕2019免费版| 看非洲黑人一级黄片| 乱人视频在线观看| 99久国产av精品国产电影| 高清在线视频一区二区三区 | 亚洲av中文av极速乱| 99久久中文字幕三级久久日本| 国产精品精品国产色婷婷| 男人和女人高潮做爰伦理| 国产精品永久免费网站| 免费av观看视频| 亚洲av日韩在线播放| 精品人妻视频免费看| 久久久久久国产a免费观看| 成人高潮视频无遮挡免费网站| 在线免费十八禁| 中国国产av一级| 亚洲内射少妇av| 视频中文字幕在线观看| 国产精品人妻久久久影院| 岛国在线免费视频观看| 热99re8久久精品国产| 午夜久久久久精精品| 两性午夜刺激爽爽歪歪视频在线观看| ponron亚洲| 99热网站在线观看| 99久久无色码亚洲精品果冻| 热99re8久久精品国产| 国产综合懂色| 日本熟妇午夜| 国产三级中文精品| 亚洲精品色激情综合| 美女内射精品一级片tv| 成人二区视频| 99久久精品一区二区三区| 纵有疾风起免费观看全集完整版 | 高清午夜精品一区二区三区| 亚洲欧美成人综合另类久久久 | 成人欧美大片| 国产精品一区二区性色av| 国产精品人妻久久久影院| 性色avwww在线观看| 一卡2卡三卡四卡精品乱码亚洲| 91狼人影院| 久久99蜜桃精品久久| 亚洲最大成人av| 2021天堂中文幕一二区在线观| 国国产精品蜜臀av免费| 久99久视频精品免费| 观看免费一级毛片| 免费看光身美女| 婷婷色麻豆天堂久久 | 青春草视频在线免费观看| 欧美日韩综合久久久久久| 欧美日本亚洲视频在线播放| 久久久久久久午夜电影| 水蜜桃什么品种好| 日本一本二区三区精品| 一个人看的www免费观看视频| av免费观看日本| 噜噜噜噜噜久久久久久91| 简卡轻食公司| 老师上课跳d突然被开到最大视频| 亚洲色图av天堂| 日产精品乱码卡一卡2卡三| 国产黄a三级三级三级人| 欧美成人a在线观看| 久久精品国产99精品国产亚洲性色| 少妇的逼水好多| 寂寞人妻少妇视频99o| 国产精品,欧美在线| 成人无遮挡网站| 一个人看的www免费观看视频| 国产免费福利视频在线观看| 国产精品一及| 男人的好看免费观看在线视频| av黄色大香蕉| 亚洲中文字幕日韩| 亚洲美女视频黄频| 岛国在线免费视频观看| 91精品国产九色| 成人高潮视频无遮挡免费网站| 久久99蜜桃精品久久| 日韩强制内射视频| 非洲黑人性xxxx精品又粗又长| 99热精品在线国产| 国内精品美女久久久久久| 变态另类丝袜制服| 国产片特级美女逼逼视频| 99热这里只有是精品50| 国产高潮美女av| 精品免费久久久久久久清纯| 亚洲不卡免费看| 午夜福利在线观看免费完整高清在| 亚洲内射少妇av| 能在线免费观看的黄片| 亚洲av成人精品一区久久| 大话2 男鬼变身卡| 成年女人永久免费观看视频| 最近2019中文字幕mv第一页| 国产免费又黄又爽又色| 久久久久久九九精品二区国产| 国产黄a三级三级三级人| 亚洲欧美中文字幕日韩二区| 欧美潮喷喷水| 我的老师免费观看完整版| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久成人av| 麻豆成人av视频| 精品人妻视频免费看| 91久久精品国产一区二区成人| 又爽又黄无遮挡网站| 白带黄色成豆腐渣| 热99在线观看视频| 亚洲婷婷狠狠爱综合网| 欧美成人午夜免费资源| 在线a可以看的网站| 日韩欧美三级三区| 国产精品熟女久久久久浪| 国产又黄又爽又无遮挡在线| 亚洲成av人片在线播放无| 亚洲在线自拍视频| 1000部很黄的大片| a级毛片免费高清观看在线播放| 能在线免费观看的黄片| 国产精品99久久久久久久久| 国产av一区在线观看免费| 国产探花极品一区二区| 最新中文字幕久久久久| 性色avwww在线观看| 少妇的逼水好多| 精品国产三级普通话版| 国产精品一区www在线观看| 一个人看视频在线观看www免费| 国产一区二区在线观看日韩| 性插视频无遮挡在线免费观看| 国产免费又黄又爽又色| 人妻夜夜爽99麻豆av| 免费观看人在逋| 直男gayav资源| 日韩人妻高清精品专区| 久久久久久久午夜电影| 中文字幕制服av| 日韩国内少妇激情av| 99久久精品热视频| 99久国产av精品国产电影| 美女被艹到高潮喷水动态| 国产 一区精品| 成人无遮挡网站| 18+在线观看网站| 亚洲av成人精品一二三区| 2021少妇久久久久久久久久久| 可以在线观看毛片的网站| 欧美又色又爽又黄视频| 一个人观看的视频www高清免费观看| 真实男女啪啪啪动态图| 一区二区三区高清视频在线| 国产精品人妻久久久久久| 全区人妻精品视频| 日韩大片免费观看网站 | 美女高潮的动态| 在线播放无遮挡| 亚洲国产精品sss在线观看| 91久久精品国产一区二区成人| 九九爱精品视频在线观看| 免费无遮挡裸体视频| 亚洲怡红院男人天堂| 成人无遮挡网站| 久久久精品大字幕| 亚洲第一区二区三区不卡| 男女国产视频网站| 美女高潮的动态| 国产伦在线观看视频一区| 婷婷色综合大香蕉| 好男人视频免费观看在线| 精品人妻一区二区三区麻豆| 久久精品91蜜桃| 深爱激情五月婷婷| 成年免费大片在线观看| 免费av观看视频| 日韩欧美精品v在线| 成人无遮挡网站| a级一级毛片免费在线观看| 日产精品乱码卡一卡2卡三| 精品免费久久久久久久清纯| 亚洲一区高清亚洲精品| h日本视频在线播放| 国产成年人精品一区二区| 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 又粗又硬又长又爽又黄的视频| 亚洲人与动物交配视频| 中国美白少妇内射xxxbb| 热99在线观看视频| 精品一区二区三区视频在线| 亚洲美女搞黄在线观看| 久久久久久久久久久免费av| 免费观看a级毛片全部| av国产久精品久网站免费入址| 亚洲在线自拍视频| 日韩av在线免费看完整版不卡| 欧美性感艳星| 亚洲国产成人一精品久久久| 成人亚洲欧美一区二区av| 亚洲国产欧美在线一区| 非洲黑人性xxxx精品又粗又长| 别揉我奶头 嗯啊视频| 人人妻人人看人人澡| 久久精品国产自在天天线| 18禁裸乳无遮挡免费网站照片| 啦啦啦观看免费观看视频高清| 国产精品福利在线免费观看| 好男人视频免费观看在线| 免费观看精品视频网站| 汤姆久久久久久久影院中文字幕 | 久久久久久久久大av| 三级毛片av免费| 国产精品国产高清国产av| 亚洲国产欧美在线一区| 狂野欧美白嫩少妇大欣赏| 国产毛片a区久久久久| 日韩欧美三级三区| 精品无人区乱码1区二区| 黄色一级大片看看| 久久久久久久久久黄片| 日韩一区二区三区影片| 欧美激情久久久久久爽电影| 黑人高潮一二区| 人妻系列 视频| 中文亚洲av片在线观看爽| 色综合站精品国产| 亚洲国产成人一精品久久久| 纵有疾风起免费观看全集完整版 | av女优亚洲男人天堂| 伊人久久精品亚洲午夜| 自拍偷自拍亚洲精品老妇| av卡一久久| 啦啦啦观看免费观看视频高清| 日本色播在线视频| 午夜精品在线福利| 国产成人一区二区在线| 99久久中文字幕三级久久日本| 久99久视频精品免费| 少妇高潮的动态图| 国产av不卡久久| 国产中年淑女户外野战色| h日本视频在线播放| 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 国产免费福利视频在线观看| 日韩成人av中文字幕在线观看| 一级毛片aaaaaa免费看小| 日韩精品有码人妻一区| 国产美女午夜福利| 一个人看视频在线观看www免费| 爱豆传媒免费全集在线观看| 免费看av在线观看网站| 亚洲国产高清在线一区二区三| 成人漫画全彩无遮挡| 直男gayav资源| 91午夜精品亚洲一区二区三区| av在线播放精品| 天堂网av新在线| 国产一区二区在线观看日韩| 久久久久性生活片| 寂寞人妻少妇视频99o| 久久99热这里只频精品6学生 | 欧美日韩综合久久久久久| 国产精品精品国产色婷婷| 亚洲精品一区蜜桃| av播播在线观看一区| 99在线视频只有这里精品首页| 欧美不卡视频在线免费观看| 有码 亚洲区| 国产久久久一区二区三区| 国产精品国产三级专区第一集| 乱人视频在线观看| 一级爰片在线观看| 亚洲美女视频黄频| 美女高潮的动态| 永久网站在线| 亚洲高清免费不卡视频| 国产一区有黄有色的免费视频 | 永久网站在线| 91精品伊人久久大香线蕉| 少妇的逼水好多| 国产成人免费观看mmmm| 亚洲欧美精品综合久久99| 久久久午夜欧美精品| 国产亚洲av嫩草精品影院| 国产精品一区二区三区四区免费观看| 久久久久久久午夜电影| 欧美3d第一页| 久久99热6这里只有精品| 欧美区成人在线视频| av视频在线观看入口| 免费av观看视频| 国产av不卡久久| 级片在线观看| 日本色播在线视频| 国产成人aa在线观看| 欧美日韩一区二区视频在线观看视频在线 | 久久精品国产自在天天线| 99热这里只有是精品在线观看| 一区二区三区高清视频在线| 春色校园在线视频观看| 国产精品1区2区在线观看.| 69人妻影院| 91精品一卡2卡3卡4卡| 97在线视频观看| 精品久久久噜噜| 最近最新中文字幕免费大全7| 国产久久久一区二区三区| 日本色播在线视频| 麻豆av噜噜一区二区三区| 波多野结衣高清无吗| 国产精品一区www在线观看| 全区人妻精品视频| 国产亚洲av片在线观看秒播厂 | 国产探花极品一区二区| 国产亚洲午夜精品一区二区久久 | 国产黄片美女视频| 亚洲av一区综合| 在线播放无遮挡| 久久久精品94久久精品| 男女那种视频在线观看| 日本wwww免费看| 国产伦精品一区二区三区四那| 色吧在线观看| 久久久久久久国产电影| 亚洲成人精品中文字幕电影| 人妻系列 视频| 亚洲国产精品合色在线| 在线观看美女被高潮喷水网站| 国产精品99久久久久久久久| 黑人高潮一二区| 午夜久久久久精精品| 日韩精品有码人妻一区| 99久国产av精品| 国产精品国产三级专区第一集| 51国产日韩欧美| 久久热精品热| 国产片特级美女逼逼视频| 亚洲欧美日韩高清专用| 麻豆成人av视频| 久久久精品94久久精品| 中文字幕av在线有码专区| 国产成人91sexporn| 一卡2卡三卡四卡精品乱码亚洲| 国产极品天堂在线| 非洲黑人性xxxx精品又粗又长| 亚洲精品乱码久久久久久按摩| 1024手机看黄色片| 国产精品.久久久| 偷拍熟女少妇极品色| 欧美成人免费av一区二区三区| 夜夜爽夜夜爽视频| 国产精品久久久久久精品电影| 色尼玛亚洲综合影院| 国产伦精品一区二区三区视频9| 免费看日本二区| 国产 一区精品| 亚洲一区高清亚洲精品| 2022亚洲国产成人精品| 热99re8久久精品国产| 男的添女的下面高潮视频| 午夜爱爱视频在线播放| 国产高潮美女av| 在线免费十八禁| 22中文网久久字幕| 国产精品熟女久久久久浪| 国产午夜福利久久久久久| 国产精华一区二区三区| 中文亚洲av片在线观看爽| 男插女下体视频免费在线播放| 精品国产露脸久久av麻豆 | 美女高潮的动态| av播播在线观看一区| 超碰97精品在线观看| 亚洲乱码一区二区免费版| 国产乱来视频区| 2022亚洲国产成人精品| 建设人人有责人人尽责人人享有的 | 午夜视频国产福利| 综合色av麻豆| 中国美白少妇内射xxxbb| 亚洲av一区综合| 日本熟妇午夜| 日韩av在线大香蕉| 亚洲经典国产精华液单| 性插视频无遮挡在线免费观看| 国产精品1区2区在线观看.| 美女内射精品一级片tv| 在线天堂最新版资源| 禁无遮挡网站| 国产高潮美女av| 最近2019中文字幕mv第一页| 亚洲精品乱码久久久久久按摩| 最近的中文字幕免费完整| 国产极品天堂在线| 亚洲一区高清亚洲精品| 婷婷色综合大香蕉| 成年av动漫网址| 色综合亚洲欧美另类图片| 亚洲人成网站高清观看| 又粗又硬又长又爽又黄的视频| 久久这里有精品视频免费| 激情 狠狠 欧美| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av熟女| 久久久久久久久久久免费av| 午夜老司机福利剧场| 精品一区二区三区人妻视频| 成人av在线播放网站| 人人妻人人澡欧美一区二区| 欧美丝袜亚洲另类| 亚洲国产精品sss在线观看| 欧美极品一区二区三区四区| 亚洲综合色惰| 99热这里只有是精品50| 国国产精品蜜臀av免费| 久久久久免费精品人妻一区二区| 69人妻影院| 在线观看66精品国产| 久久久色成人| 久久精品人妻少妇| 日本黄色片子视频| 久久精品夜夜夜夜夜久久蜜豆| 别揉我奶头 嗯啊视频| 亚洲精品乱久久久久久| 免费观看精品视频网站| 男女边吃奶边做爰视频| 欧美一区二区亚洲| 看片在线看免费视频| 淫秽高清视频在线观看| 国产成人一区二区在线| 69av精品久久久久久| 成人亚洲欧美一区二区av| 99久国产av精品国产电影| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 中文欧美无线码| 女人被狂操c到高潮| 亚洲欧洲国产日韩| 观看免费一级毛片| 麻豆国产97在线/欧美| 91狼人影院| 欧美xxxx黑人xx丫x性爽| 麻豆久久精品国产亚洲av| 在线免费十八禁| 久久99精品国语久久久| 晚上一个人看的免费电影| 久久久久久久久大av| 国产精品电影一区二区三区| 嫩草影院精品99| 少妇高潮的动态图| 国语对白做爰xxxⅹ性视频网站| 身体一侧抽搐| 国产精品美女特级片免费视频播放器| 免费看a级黄色片| 中文字幕免费在线视频6| 亚洲综合色惰| 成人欧美大片| 中文字幕熟女人妻在线| 久久久久久久久久成人| 色播亚洲综合网| 国产成人精品久久久久久| 99久国产av精品国产电影| 久久久午夜欧美精品| 亚洲av电影不卡..在线观看| 在线免费观看的www视频| 国产在线男女| 国产黄片视频在线免费观看| 色网站视频免费| 国产精品熟女久久久久浪| 欧美又色又爽又黄视频| 女的被弄到高潮叫床怎么办| 色吧在线观看| 赤兔流量卡办理| 岛国在线免费视频观看| 久久鲁丝午夜福利片| 视频中文字幕在线观看| 国产精品一区二区在线观看99 | 变态另类丝袜制服| 国产伦理片在线播放av一区| 一个人观看的视频www高清免费观看|