• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree

    2022-11-21 09:34:34YiningSu蘇怡寧XingyuanWang王興元andShujuanLin林淑娟
    Chinese Physics B 2022年11期
    關鍵詞:興元

    Yining Su(蘇怡寧), Xingyuan Wang(王興元), and Shujuan Lin(林淑娟)

    School of Information Science and Technology,Dalian Maritime University,Dalian 116026,China

    This paper proposes an image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree. Firstly, other programming software is used to perform the middle order traversal, and the plaintext image is sorted according to the middle order traversal sequence on the permutation. Secondly, the chaotic sequence is generated using the coupled map lattice to set the chaotic interference value. Finally,the XOR operation between the adjacent pixel values of the replacement image is completed to generate the ciphertext matrix. The simulation and experimental results show that the proposed algorithm can resist typical attacks and has good robustness.

    Keywords: spatiotemporal chaos,image encryption,middle order traversal,coupled map lattice

    1. Introduction

    With the rapid development of network and communication technology,information based on audio,video and image storage is distributed on various public platforms. Therefore,information security has become an important topic.[1–4]The key to researching information security is to preserve information security during the process of information transmission.

    Chaos has cryptographic characteristics such as parameter sensitivity.[5–7]Recently, many image encryption schemes have been proposed, based on DNA,[8,9]neural networks,[10–12]chaos,[13–16]substitution boxes,[17–20]etc.These encryption schemes are based on the sensitivity of chaos to the initial conditions.In the past 10 years they have attracted widespread attention and achieved positive results in the field of image encryption. Wanget al.proposed the anti-dynamic degradation theorem, which proved that a chaotic stream cipher system is theoretically secure.[21]Therefore, chaotic cryptography has entered a new stage. The recently proposed spatiotemporal chaotic system caused fluctuations in chaotic cryptography with its excellent chaotic dynamics.[21–25]However, for the image encryption algorithm proposed in this paper, space–time chaos alone is not sufficient and it does not meet the standards of information security. Therefore, different mechanisms are needed to jointly resist the destruction of and tampering with information in the transmission process.

    Middle order traversal of a binary tree is a method for traversing a binary tree in a data structure.Its traversal method is to traverse the left subtree first, then access the root node and finally traverse the right subtree. The sequence generated by this method is not sequential nor is it periodic,like cat mapping, and is easy to implement. In this paper, sequential traversal of a binary tree is applied to replace image encryption, which effectively disturbs the original position of plaintext pixels.

    The encryption algorithm proposed in this paper is based on a combination of spatiotemporal chaos and sequential traversal of a binary tree. The key is generated by the plaintext image through the SHA-512 hash function, which increases the sensitivity of the plaintext. The chaotic dynamics of spatiotemporal chaos and the permutation method of order traversal in binary trees effectively increase the image confusion.

    The rest of the paper is summarized as follows. Section 2 introduces the preparation work before the algorithm is implemented. Section 3 introduces the implementation of the encryption algorithm in detail. Section 4 shows the simulation results of the encryption algorithm. Section 5 is a security analysis of the algorithm. Section 6 gives a performance analysis of the algorithm. Section 7 contains our conclusions.

    2. Related work

    2.1. Coupled map lattices

    A coupled map lattice (CML) is a dynamic system with discrete time, discrete space and a continuous state. CMLs are widely used to generate spatiotemporal chaos. A CML consists of a non-linear map located on a grid point called a local map. Each local map is coupled to other local maps according to a certain coupling rule. In fact, in computer implementations,any chaotic system must have periodicity with limited precision,but the actual period of a CML may be large enough to protect information security. CMLs were proposed by Kaneko[26]and can be described as

    whenu ∈(3.5699456,4) andxn ∈(0,1) the system is in a chaotic state.

    2.2. Middle order traversal of a binary tree

    Middle order traversal is a kind of binary tree traversal,also called middle root traversal and middle order travel. In a binary tree,the in-order traversal first traverses the left subtree,then accesses the root node and finally traverses the right subtree.The order traversal process in the binary tree is shown in Fig.1.

    Fig.1. Middle order traversal of a binary tree.

    2.3. Replacement method based on middle order traversal of a binary tree

    In this paper, middle order traversal of a binary tree is applied to the permutation of the image, and the chaos of the ordered traversal sequence in the binary tree is adopted. Due to the large number of pixel values of the image, constructing a binary tree and performing a middle order traversal operation on the pixel values of the image may be difficult to implement and increase the running speed and time of the algorithm. Therefore,this paper adopts the middle order traversal 1–65536 through VC++ 6.0 to generate the sequence.txt document,which stores the middle order traversal sequence of 1–65536 and then traverses the image pixel values according to the order. Sorting is done to complete the image replacement operation. The pseudo code that generates the middle order traversal sequence is as follows:

    3. Encryption algorithm

    3.1. Key structure

    The key system structure of this paper is shown in Fig.2 and consists of four parts. Hereεanduare the control parameters of the CML anda1anda2are the initial values of the two coupled maps. In this paper,the keykis generated by the plaintext image through the SHA-512 hash function,which is divided into 8-bit blocks and converted into 64 decimal numbersk1,k2,...,k64.

    wherea0andb0are control parameters added to increase the sensitivity of the key. The function uses parameters within the range ofu ∈(3.89,4].uis obtained by the following transformationu:

    SHA-512 (512bit)ε u a1 a2

    3.2. Encryption process

    The encryption process based on spatiotemporal chaos and middle order traversal of a binary tree is as follows:

    Step 1: A 512-bit keykis generated by the plaintext image through the SHA-512 hash function.

    Step 2: The sequence.txt file generated in Subsection 2.3 is converted into matrixIaccording to

    Step 3: Since the matrixIis a middle order traversal sequence, the plaintext imagePis converted into a onedimensional sequence,P1, a sequence traversal sequence is used for sortingP1according to Eq.(6)and a permutation matrixBis generated,

    Step 4:Equation(1)is iteratedM×N+500 times according to the key in Subsection 3.1,cancelling the first 500 values and avoiding transient reaction. Finally,chaotic sequencesS1,S2are generated.

    Step 5: According to Eq. (7),S1,S2are integerized to generateS,which is used for the chaotic interference value of the diffusion,

    S(i)=mod(floor(double(S1(i)+S2(i))×256),256).(7)

    Step 6: A ciphertext matrixCis generated by performing a XOR operation between the pixel value and the adjacent pixel value according to

    3.3. Decryption process

    The ciphertext imageCis transmitted to the receiver through the common channel,and the keys are transmitted to the receiver through the key exchange protocol.[27]The decryption process is the reverse of the encryption process. Specific steps are as follows:

    Step 1:The chaotic sequencesS1,S2are obtained by substituting the key iterative chaotic system. SequenceSis obtained according to Step 5 in Subsection 3.2.

    Step 2: The inverse XOR operation is performed according to Eq.(9)to obtainB,

    Step 3: The sequenceIgenerated in Subsection 2.3 is used to inverse scrambleBto getP1. Finally,P1is recombined into plaintext imageP.

    4. Simulation results

    In this paper,Matlab 2017 is used as a simulation tool to test the binary images‘Lena’,‘Cameraman’,and‘House’and a colored‘Lena’image with the encryption method described in this article. The simulation results are shown in Fig.3. Figures 3(a)–3(e) show different plaintext images, figures 3(f)–3(j)are the corresponding ciphertext images,figures 3(k)–3(o)are the corresponding decrypted images,and figures 3(p)–3(r)illustrate the encryption and decryption process for the colored image‘Lena’. We can see that the ciphertext image has completely covered the plaintext information, and the decrypted image is no different from the plaintext image.

    5. Security analysis

    5.1. Key space analysis

    A good encryption algorithm is extremely sensitive to the key,and the key space is large enough to resist typical attacks.In the algorithm described in this paper, the keys used are SHA-512 generated hash value and given keysa0,b0. When the accuracy of the key reaches 10-14, the key space reaches 2512×1028≈2512×293= 2605, which is much larger than 2200. Table 1 compares the key space between this algorithm and other algorithms,and it can be seen from the table that the key space of this algorithm is larger than that of most algorithms. So the key space is large enough to resist a variety of typical attacks.

    Table 1. Comparison of the key spaces of different algorithms.

    5.2. Key sensitivity analysis

    Four sets of experiments were performed to test the sensitivity of the keys,and the color and grayscale‘Lena’images were tested separately. Figure 4 shows the test results. Figures 4(a) and 4(e) show the use of the correct key to decrypt the encrypted image; figures 4(b)–4(d) and figures 4(f)–4(h)show the respective use of the wrong key to decrypt the encrypted image. The wrong key is just a minor change to the correct key. When the plaintext image is not decrypted using the wrong key,the algorithm is sensitive to the key.

    Fig.3. Encrypted image and decrypted image of plaintext image: (a)plaintext‘Lena’;(b)plaintext‘Cameraman’;(c)plaintext‘House’;(d)plaintext white;(e) plaintext black; (f) ciphertext of ‘Lena’; (g) ciphertext of ‘Cameraman’; (h) ciphertext of ‘House’; (i) ciphertext of white; (j) ciphertext of black; (k)decryption of‘Lena’;(l)decryption of‘Cameraman’;(m)decryption of‘House’;(n)decryption of white;(o)decryption of black;(p)plaintext color‘Lena’;(q)ciphertext of color‘Lena’;(r)decryption of color‘Lena’.

    Fig.4. Key sensitivity analysis: (a)decrypted image with the correct key;(b)decrypted image with ε =ε+10-16;(c)decrypted image with u=u+10-16;(d)decrypted image with a1 =a1+10-16; (e)decrypted image with the correct key; (f)decrypted image with a2 =a2+10-16; (g)decrypted image with ε =ε+10-14;(h)decrypted image with u=u+10-14.

    6. Performance analysis

    6.1. Histogram analysis

    A histogram is a graph that shows the frequency at which gray values of a digital image appear.In order to hide the information of the plaintext image,the histogram of the encrypted image tends to be straight. Figure 5 shows the histogram of the plain image and the ciphertext image of the grayscale images ‘Lena’, ‘Cameraman’, and ‘House’ and figure 6 shows the plaintext images of the R,G,and B channels of the color image ‘Lena’ and the histogram of the ciphertext image. It can be seen from Figs.5 and 6 that the histograms of the encrypted images are very similar. In order to better express the encrypted image histograms, we use the chi-square test. The critical values for the 5% and 1% probability of 255 degrees of freedom are 293.2478 and 310.457,respectively. It can be seen from Table 2 that significance levels of 5%and 1%were accepted. Obviously, the histograms of all ciphertext images tend to be flat, so it is difficult to obtain pure image information through statistical analysis.

    Fig.5. Histogram analysis: (a)plaintext‘Lena’;(b)histogram of‘Lena’;(c)ciphertext of‘Lena’;(d)histogram of ciphered‘Lena’;(e)plaintext‘Cameraman’;(f)histogram of‘Cameraman’;(g)ciphertext of‘Cameraman’;(h)histogram of ciphered‘Cameraman’;(i)plaintext‘House’;(j)histogram of‘House’;(k)ciphertext of‘House’;(l)histogram of ciphered‘House’.

    Fig.6. Histogram analysis: (a)plaintext color‘Lena’; (b)histogram for plain R component; (c)histogram for plain G component; (d)histogram for plain B component;(e)ciphertext of color‘Cameraman’;(f)histogram for encrypted R component;(g)histogram for encrypted G component;(h)histogram for encrypted B component.

    6.2. Correlation analysis

    Adjacent pixels have a high correlation between plaintext pixels. In order to hide the information between the plaintext images,the correlation between the pixels is greatly reduced.The formula for calculating the correlation between pixels is as follows:

    Herexandyare the gray values of two adjacent pixels. In this paper, 2000 pairs of pixels were selected to test the ‘Lena’,‘Cameraman’ and ‘House’ gray images and the ‘Lena’ color image in clear images with Eq. (10). Figures 7–12 show the correlation between ciphertext images in the horizontal,vertical and diagonal directions.

    Table 3 shows the correlation coefficients of the three plaintext images ‘Lena’, ‘Cameraman’, and ‘House’ and the three directions of the ciphertext image. When the correlation coefficient is close to zero, the proposed algorithm can resist statistical analysis. Experiments show that the algorithm is feasible.

    Table 4 shows the plaintext image of the three channels of the ‘Lena’ color image and the correlation coefficients in three directions of the ciphertext image. When the correlation coefficient is close to zero, the proposed algorithm can resist statistical analysis. Experiments show that the algorithm is feasible.

    Table 2. The χ2 evaluation results of ciphertext images.

    Table 3. Correlations of the plain-image(PI)and the corresponding cipher image(CCI)between adjacent pixels.

    Table 4. Correlations of the color plain-image(CPI)and the corresponding cipher image(CCI)between adjacent pixels.

    Fig.7. Correlation analysis: (a)plaintext‘Lena’;(b)horizontal correlation of plain image;(c)vertical correlation of plain image;(d)diagonal correlation of plain image; (e)ciphertext of‘Lena’; (f)horizontal correlation of ciphered image; (g)horizontal correlation of ciphered image; (h)diagonal correlation of ciphered image.

    Fig. 8. Correlation analysis: (a) plaintext ‘Cameraman’; (b) horizontal correlation of plain image; (c) vertical correlation of plain image; (d) diagonal correlation of plain image; (e) ciphertext of ‘Cameraman’; (f) horizontal correlation of ciphered image; (g) horizontal correlation of ciphered image; (h)diagonal correlation of ciphered image.

    Fig.9. Correlation analysis: (a)plaintext‘House’;(b)horizontal correlation of plain image;(c)vertical correlation of plain image;(d)diagonal correlation of plain image;(e)ciphertext of‘House’;(f)horizontal correlation of ciphered image;(g)horizontal correlation of ciphered image;(h)diagonal correlation of ciphered image.

    Fig. 10. Correlation analysis: (a) plaintext of R component; (b) horizontal distribution for R component; (c) vertical distribution for R component; (d)diagonal distribution for R component; (e) ciphertext of R component; (f) horizontal distribution for ciphered R component; (g) vertical distribution for ciphered R component;(h)diagonal distribution for ciphered R component.

    Fig.11. Correlation analysis:(a)plaintext of G component;(b)horizontal distribution for G component;(c)vertical distribution for G component;(d)diagonal distribution for G component; (e) ciphertext of G component; (f) horizontal distribution for ciphered G component; (g) vertical distribution for ciphered G component;(h)diagonal distribution for ciphered G component.

    Fig.12. Correlation analysis: (a)plaintext of B component;(b)horizontal distribution for B component;(c)vertical distribution for B component;(d)diagonal distribution for B component; (e) ciphertext of B component; (f) horizontal distribution for ciphered B component; (g) vertical distribution for ciphered B component;(h)diagonal distribution for ciphered B component.

    6.3. Information entropy analysis

    Information entropy is used to reflect the degree of confusion in an image. It is calculated as follows:

    wherep(si)represents the probability of occurrence ofsi. For an image, the ideal value for information entropy is 8. Table 5 shows the plaintext images of the three grayscale images‘Lena’,‘Cameraman’and‘House’and the color image‘Lena’and the information entropy of the ciphertext images. Experiments show that the information entropy of all ciphertext images is close to 8, which means that the cipher image of the algorithm has good randomness.

    6.4. Differential attack analysis

    The number of pixels change rate(NPCR)and unified average changing intensity (UACI) randomness tests are commonly used to evaluate the ability of an encrypted image to resist differential attacks. NPCR and UACI are calculated as follows:

    hereWandHrepresent,respectively,the width and height of the image andc1andc2are the two ciphertext images after the original plaintext image changes by one pixel value. Ifc1(i,j)/=c2(i,j),thenD(i,j)=1,otherwiseD(i,j)=0. Table 6 shows the NPCR and UACI values for the three grayscale images‘Lena’,‘Cameraman’and‘House’and the color image‘Lena’. The ideal value of NPCR is 99.6094%and for UACI it is 33.4635%. It can be seen from Table 7 that the NPCR and UACI values of this algorithm are closer to ideal values than those of most algorithms.

    6.5. Robust analysis

    Images are vulnerable to hijacking, tampering or destruction during transmission,so we usually use noise-adding methods to evaluate whether the encryption algorithm is robust.[34]Figure 13 shows the decryption effect after adding noise to the encrypted image. Experiments show that the image information can still be obtained after adding noise,which shows that the proposed algorithm has good robustness.

    Table 5. Information entropy of the plain-image (PI) and the cipher-image(CI).

    Table 6. The average NPCR and UACI values with various images.

    Table 7. Comparison of NPCR and UACI for different algorithms for the image‘Lena’.

    Fig. 13. Robust analysis. (a) The encrypted image with 0.01 salt and pepper noise. (b) The encrypted image with 0.05 salt and pepper noise. (c) The encrypted image with 0.01 Gaussian noise. (d)The encrypted image with 0.05 Gaussian noise. (e)The encrypted image with 0.01 speckled noise. (f)The decrypted image with 0.01 salt and pepper noise. (g) The decrypted image with 0.05 salt and pepper noise. (h) The decrypted image with 0.01 Gaussian noise. (i)The decrypted image with 0.05 Gaussian noise. (j)The decrypted image with 0.01 speckled noise.

    6.6. Time analysis

    Encryption time is also a necessary condition for evaluating encryption algorithms. The experimental environment is MATLAB R2016a with AMD Ryzen 5 3500H CPU and 8 GB RAM. We encrypt the ‘Lena’ image 50 times, take the average value and compare it with other algorithms to get Table 8.It can be seen from the table that the encryption time of this algorithm is shorter than that of most of the other algorithms,which shows that encryption of this image is faster.

    Not only experimental time analysis but also theoretical time complexity analysis should be carried out. Assuming the size of the image isM×N, Step 1 generates the hash value whose time complexity isO(512). The required binary tree sequence is obtained in Step 2, with the time complexity ofO(M×N). In Step 3, the binary tree sequence is used to scramble the image, whose time complexity isO(M×N).Step 4 is to iterate the chaotic system and generate two chaotic sequences, whose time complexity is 2O(M×N). In Step 5,the required XOR sequence is generated, whose time complexity isO(M×N). In Step 6 the ciphertext image is obtained from the XOR scrambled image,and its time complexity isO(M×N). Therefore, the time complexity of the algorithm is 2O(M×N). Table 9 compares the time complexity between the present algorithm and other algorithms, and shows the present algorithm is superior to most of the other algorithms.

    Table 8. Time comparisons for different algorithms.

    Table 9. Comparison of time complexity for different algorithms.

    7. Conclusion

    The encryption algorithm proposed in this paper is based on a combination of spatiotemporal chaos and sequential traversal of a binary tree. The key is generated by the plaintext image through the SHA-512 hash function, which increases the sensitivity of the plaintext. The chaotic dynamics of spatiotemporal chaos and the permutation method of order traversal in binary trees effectively increase the image confusion.Diffusion uses an adjacent or exclusive XOR based on chaotic interference values, which makes ciphertext images resistant to differential attacks.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 61672124), the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund (Grant No. MMJJ20170203), Liaoning Province Science and Technology Innovation Leading Talents Program Project (Grant No. XLYC1802013), Key Research and Development Projects of Liaoning Province,China(Grant No.2019020105-JH2/103),and Jinan City‘20 universities’Funding Projects Introducing Innovation Team Program(Grant No.2019GXRC031).

    猜你喜歡
    興元
    情系鄉(xiāng)村振興的最美老干部——艾興元
    Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
    Force-constant-decayed anisotropic network model: An improved method for predicting RNA flexibility
    Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets:A non-volatile memory nanostructure
    An image encryption algorithm based on improved baker transformation and chaotic S-box?
    劉興元小說二題
    劍南文學(2015年1期)2015-02-28 01:14:51
    国产亚洲av高清不卡| 一级a爱视频在线免费观看| 最近在线观看免费完整版| 午夜福利免费观看在线| 十八禁网站免费在线| 午夜免费观看网址| 久久天堂一区二区三区四区| 亚洲精品久久成人aⅴ小说| 美女午夜性视频免费| 成人国产一区最新在线观看| 一区二区三区高清视频在线| 日韩免费av在线播放| 黑人巨大精品欧美一区二区mp4| 国产精品98久久久久久宅男小说| 久久久久国产精品人妻aⅴ院| 亚洲自偷自拍图片 自拍| 好看av亚洲va欧美ⅴa在| 亚洲中文日韩欧美视频| 久久 成人 亚洲| 日本一本二区三区精品| 久久人妻av系列| 人人澡人人妻人| 天堂影院成人在线观看| 久久国产精品人妻蜜桃| 久久久久久久久免费视频了| 91老司机精品| 免费人成视频x8x8入口观看| 国产黄a三级三级三级人| 99精品欧美一区二区三区四区| 久久久久久久久久黄片| 亚洲激情在线av| 欧美午夜高清在线| 国产私拍福利视频在线观看| 在线观看一区二区三区| 久久亚洲精品不卡| www.999成人在线观看| 19禁男女啪啪无遮挡网站| 国产精品日韩av在线免费观看| 女性生殖器流出的白浆| 淫秽高清视频在线观看| 亚洲性夜色夜夜综合| 亚洲性夜色夜夜综合| 欧美日韩乱码在线| 人成视频在线观看免费观看| 狠狠狠狠99中文字幕| 色播亚洲综合网| 啪啪无遮挡十八禁网站| 日韩高清综合在线| 国产精华一区二区三区| 后天国语完整版免费观看| 一级作爱视频免费观看| bbb黄色大片| 少妇裸体淫交视频免费看高清 | 禁无遮挡网站| 亚洲成av人片免费观看| 日日爽夜夜爽网站| 脱女人内裤的视频| 制服人妻中文乱码| 国产激情欧美一区二区| 亚洲 欧美一区二区三区| 亚洲欧美日韩高清在线视频| 淫妇啪啪啪对白视频| 日韩大尺度精品在线看网址| 看免费av毛片| 免费在线观看日本一区| 日日爽夜夜爽网站| 亚洲国产欧美网| 国产伦一二天堂av在线观看| 亚洲va日本ⅴa欧美va伊人久久| 又黄又爽又免费观看的视频| 午夜两性在线视频| 亚洲精品中文字幕在线视频| 国产高清视频在线播放一区| 亚洲精品一区av在线观看| 国产精品久久久av美女十八| 草草在线视频免费看| 色综合亚洲欧美另类图片| 黄色女人牲交| 女生性感内裤真人,穿戴方法视频| 黑丝袜美女国产一区| 99国产综合亚洲精品| 久久天躁狠狠躁夜夜2o2o| www.www免费av| 1024视频免费在线观看| 一级片免费观看大全| 男人的好看免费观看在线视频 | 69av精品久久久久久| 亚洲精品中文字幕一二三四区| 18美女黄网站色大片免费观看| 99riav亚洲国产免费| 久久久国产成人免费| 两人在一起打扑克的视频| www国产在线视频色| 在线播放国产精品三级| 人妻丰满熟妇av一区二区三区| 色播在线永久视频| 亚洲国产日韩欧美精品在线观看 | 亚洲av五月六月丁香网| 熟女电影av网| 丝袜在线中文字幕| 久久久久亚洲av毛片大全| 美女午夜性视频免费| 欧美黄色片欧美黄色片| 亚洲av电影在线进入| 亚洲五月天丁香| 精品久久蜜臀av无| 国产精品一区二区免费欧美| 久久国产亚洲av麻豆专区| 99国产精品99久久久久| 欧美绝顶高潮抽搐喷水| 精品不卡国产一区二区三区| 少妇粗大呻吟视频| 国产三级在线视频| 午夜福利一区二区在线看| 天堂√8在线中文| 少妇裸体淫交视频免费看高清 | 国产又爽黄色视频| 午夜a级毛片| 国产成年人精品一区二区| 日本a在线网址| 一级a爱片免费观看的视频| 久久精品国产亚洲av香蕉五月| 国产91精品成人一区二区三区| 亚洲熟妇熟女久久| 日本免费a在线| www.www免费av| bbb黄色大片| 法律面前人人平等表现在哪些方面| 精品久久久久久久久久免费视频| 国产伦一二天堂av在线观看| 夜夜看夜夜爽夜夜摸| 国产亚洲精品第一综合不卡| 一级a爱片免费观看的视频| 欧美激情 高清一区二区三区| 变态另类丝袜制服| 中文字幕另类日韩欧美亚洲嫩草| 最近最新免费中文字幕在线| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美成人免费av一区二区三区| 免费观看精品视频网站| 久久国产精品影院| 欧美日韩黄片免| 国产av在哪里看| 18禁国产床啪视频网站| 国产欧美日韩精品亚洲av| 国产精品自产拍在线观看55亚洲| av超薄肉色丝袜交足视频| 制服诱惑二区| 亚洲第一欧美日韩一区二区三区| 久久久久久久久免费视频了| 91九色精品人成在线观看| 亚洲精品一卡2卡三卡4卡5卡| 女同久久另类99精品国产91| 一区二区三区激情视频| 久久久国产欧美日韩av| 午夜a级毛片| 亚洲狠狠婷婷综合久久图片| 老鸭窝网址在线观看| 午夜精品在线福利| 欧美中文日本在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 欧美一级a爱片免费观看看 | 国产成人啪精品午夜网站| 午夜免费鲁丝| 不卡av一区二区三区| 久久久久久人人人人人| 国产不卡一卡二| 国产av不卡久久| 亚洲七黄色美女视频| 在线观看日韩欧美| 两个人看的免费小视频| 女性被躁到高潮视频| 18禁观看日本| 国产av一区二区精品久久| 天天添夜夜摸| 亚洲五月婷婷丁香| 亚洲成a人片在线一区二区| 久久热在线av| 99国产精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 妹子高潮喷水视频| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品电影一区二区三区| 老司机深夜福利视频在线观看| 精品国产亚洲在线| 91字幕亚洲| 国产高清激情床上av| 琪琪午夜伦伦电影理论片6080| 欧美在线一区亚洲| 在线观看日韩欧美| 国产亚洲欧美98| 亚洲欧美日韩高清在线视频| 一本综合久久免费| 欧美亚洲日本最大视频资源| 欧美在线黄色| 国产av不卡久久| 麻豆成人午夜福利视频| 男女那种视频在线观看| 久久久久国产精品人妻aⅴ院| 国产精品99久久99久久久不卡| 嫩草影视91久久| 亚洲男人天堂网一区| 欧美成人性av电影在线观看| 久9热在线精品视频| 在线播放国产精品三级| 国产伦一二天堂av在线观看| 亚洲国产欧美日韩在线播放| av欧美777| 亚洲九九香蕉| 麻豆成人午夜福利视频| 91麻豆av在线| 麻豆一二三区av精品| 亚洲五月色婷婷综合| 欧美又色又爽又黄视频| 黄色视频不卡| 十八禁人妻一区二区| 国产视频内射| 亚洲在线自拍视频| 精品福利观看| 国产av在哪里看| 在线免费观看的www视频| 99国产精品一区二区蜜桃av| 免费在线观看成人毛片| www.熟女人妻精品国产| www日本在线高清视频| 男女午夜视频在线观看| 听说在线观看完整版免费高清| 午夜精品在线福利| 中出人妻视频一区二区| 可以在线观看毛片的网站| 国产91精品成人一区二区三区| 精品乱码久久久久久99久播| av视频在线观看入口| 天堂动漫精品| 男女床上黄色一级片免费看| 母亲3免费完整高清在线观看| 亚洲免费av在线视频| 99精品在免费线老司机午夜| 国产亚洲精品久久久久久毛片| 国产精品久久久人人做人人爽| 最近最新中文字幕大全免费视频| 国内精品久久久久久久电影| 在线国产一区二区在线| 大型黄色视频在线免费观看| 国产高清激情床上av| 欧美日韩乱码在线| x7x7x7水蜜桃| 在线国产一区二区在线| 亚洲专区中文字幕在线| 琪琪午夜伦伦电影理论片6080| 99精品久久久久人妻精品| 9191精品国产免费久久| 老司机靠b影院| 亚洲,欧美精品.| 又大又爽又粗| 成人18禁在线播放| 免费无遮挡裸体视频| 亚洲精品在线观看二区| 亚洲中文av在线| 日韩大码丰满熟妇| 国产精品永久免费网站| 白带黄色成豆腐渣| 无遮挡黄片免费观看| 嫩草影院精品99| 亚洲人成伊人成综合网2020| 一级毛片精品| 不卡一级毛片| 黄片小视频在线播放| 亚洲五月天丁香| 黄色丝袜av网址大全| 欧美国产精品va在线观看不卡| 午夜福利在线在线| 久久久精品欧美日韩精品| 非洲黑人性xxxx精品又粗又长| 日日夜夜操网爽| 91字幕亚洲| 久久久久久国产a免费观看| 成年免费大片在线观看| 女人爽到高潮嗷嗷叫在线视频| 久久人人精品亚洲av| 欧美日韩乱码在线| 法律面前人人平等表现在哪些方面| 欧美成人午夜精品| 国产精品久久久久久精品电影 | 9191精品国产免费久久| 亚洲国产看品久久| 欧美黑人巨大hd| 日本在线视频免费播放| 亚洲专区国产一区二区| 国产高清激情床上av| 又大又爽又粗| 黄片播放在线免费| 99久久久亚洲精品蜜臀av| 国产亚洲欧美在线一区二区| x7x7x7水蜜桃| 免费在线观看日本一区| 久久精品人妻少妇| 极品教师在线免费播放| 国产成人欧美在线观看| 国产精品1区2区在线观看.| 国产精品二区激情视频| 久久午夜亚洲精品久久| 国内精品久久久久精免费| 老熟妇仑乱视频hdxx| 欧美性猛交黑人性爽| 日本撒尿小便嘘嘘汇集6| 人人妻人人看人人澡| 18禁观看日本| 俄罗斯特黄特色一大片| 久久这里只有精品19| 国产激情久久老熟女| 欧美日韩精品网址| 国产成年人精品一区二区| e午夜精品久久久久久久| 日韩国内少妇激情av| 巨乳人妻的诱惑在线观看| 69av精品久久久久久| 正在播放国产对白刺激| 久久久久久免费高清国产稀缺| 日韩三级视频一区二区三区| 黄色片一级片一级黄色片| 欧美乱码精品一区二区三区| 色在线成人网| 99久久无色码亚洲精品果冻| 老司机午夜福利在线观看视频| 侵犯人妻中文字幕一二三四区| 国内揄拍国产精品人妻在线 | 亚洲成a人片在线一区二区| 欧美 亚洲 国产 日韩一| 国产一区在线观看成人免费| 亚洲黑人精品在线| 淫妇啪啪啪对白视频| 女人高潮潮喷娇喘18禁视频| 成人午夜高清在线视频 | 精品久久久久久,| 18美女黄网站色大片免费观看| 高潮久久久久久久久久久不卡| 悠悠久久av| 亚洲性夜色夜夜综合| 精品久久蜜臀av无| 精品少妇一区二区三区视频日本电影| 丰满的人妻完整版| 久久九九热精品免费| 热re99久久国产66热| 亚洲片人在线观看| 操出白浆在线播放| 亚洲午夜精品一区,二区,三区| 两个人免费观看高清视频| 久久午夜亚洲精品久久| 亚洲在线自拍视频| 中文亚洲av片在线观看爽| 色综合站精品国产| 老司机午夜福利在线观看视频| 亚洲五月色婷婷综合| 天堂√8在线中文| 免费看日本二区| 一二三四在线观看免费中文在| 国产亚洲欧美在线一区二区| 91麻豆av在线| 黄网站色视频无遮挡免费观看| 国产午夜精品久久久久久| 91麻豆av在线| 少妇粗大呻吟视频| 大型av网站在线播放| 日韩大尺度精品在线看网址| 国产一区在线观看成人免费| 亚洲成av人片免费观看| 人妻丰满熟妇av一区二区三区| 波多野结衣高清无吗| 免费搜索国产男女视频| 黄色毛片三级朝国网站| 中文字幕人成人乱码亚洲影| 亚洲五月天丁香| 久久国产亚洲av麻豆专区| 久久亚洲精品不卡| 99久久精品国产亚洲精品| 日韩中文字幕欧美一区二区| 一二三四社区在线视频社区8| 亚洲一区高清亚洲精品| 国产亚洲av高清不卡| 黄色视频不卡| 特大巨黑吊av在线直播 | 满18在线观看网站| 欧美av亚洲av综合av国产av| videosex国产| 日本三级黄在线观看| 国产一级毛片七仙女欲春2 | 久久国产亚洲av麻豆专区| 中文字幕人成人乱码亚洲影| 三级毛片av免费| 99久久久亚洲精品蜜臀av| 欧美黑人巨大hd| 久久精品亚洲精品国产色婷小说| 黄色视频不卡| www.熟女人妻精品国产| 亚洲av成人不卡在线观看播放网| 1024视频免费在线观看| 国产亚洲精品一区二区www| 国产精品,欧美在线| 成年免费大片在线观看| 中文亚洲av片在线观看爽| 午夜福利免费观看在线| 正在播放国产对白刺激| 亚洲专区中文字幕在线| cao死你这个sao货| 看片在线看免费视频| 国内揄拍国产精品人妻在线 | 黄片播放在线免费| 无遮挡黄片免费观看| 欧美乱妇无乱码| 成人国产综合亚洲| 女生性感内裤真人,穿戴方法视频| 熟女少妇亚洲综合色aaa.| 日韩欧美 国产精品| 亚洲黑人精品在线| 久久久久久久久中文| 深夜精品福利| 婷婷丁香在线五月| 久久久久久免费高清国产稀缺| 日韩欧美免费精品| 夜夜躁狠狠躁天天躁| 99re在线观看精品视频| 99精品久久久久人妻精品| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久久久黄片| av片东京热男人的天堂| 亚洲人成网站在线播放欧美日韩| 亚洲av日韩精品久久久久久密| 国产精品 欧美亚洲| 91成人精品电影| 女警被强在线播放| 国产精品一区二区精品视频观看| 国产精品九九99| 最近最新中文字幕大全电影3 | 亚洲精品粉嫩美女一区| 亚洲国产中文字幕在线视频| 婷婷精品国产亚洲av在线| 在线观看免费日韩欧美大片| 亚洲va日本ⅴa欧美va伊人久久| 国产精品一区二区三区四区久久 | 亚洲 欧美一区二区三区| 久久国产精品男人的天堂亚洲| 欧美日韩一级在线毛片| 一级a爱视频在线免费观看| 久久久久久久午夜电影| 日韩欧美国产在线观看| 欧美成人性av电影在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲熟女毛片儿| 搡老妇女老女人老熟妇| 欧美最黄视频在线播放免费| 亚洲第一av免费看| 国产极品粉嫩免费观看在线| 精品国产亚洲在线| 中亚洲国语对白在线视频| 日韩精品中文字幕看吧| 国产精品爽爽va在线观看网站 | 国产精品一区二区精品视频观看| 在线天堂中文资源库| 在线av久久热| 久久婷婷成人综合色麻豆| 最近最新免费中文字幕在线| 国产亚洲精品一区二区www| 日韩三级视频一区二区三区| 国产精品 欧美亚洲| 老熟妇仑乱视频hdxx| www.www免费av| 亚洲自偷自拍图片 自拍| 亚洲久久久国产精品| 亚洲男人的天堂狠狠| 国产野战对白在线观看| 麻豆国产av国片精品| 久久香蕉精品热| 母亲3免费完整高清在线观看| 国产亚洲精品一区二区www| 婷婷六月久久综合丁香| 中出人妻视频一区二区| 欧美日韩黄片免| 久久精品国产99精品国产亚洲性色| 国产精品1区2区在线观看.| 嫩草影院精品99| 可以在线观看毛片的网站| 深夜精品福利| 级片在线观看| av在线播放免费不卡| 久久久精品国产亚洲av高清涩受| 老司机在亚洲福利影院| 90打野战视频偷拍视频| 国产精品一区二区免费欧美| 国产主播在线观看一区二区| 首页视频小说图片口味搜索| 亚洲一区二区三区色噜噜| 18禁美女被吸乳视频| 热re99久久国产66热| 在线天堂中文资源库| 黑人欧美特级aaaaaa片| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 18禁观看日本| tocl精华| 侵犯人妻中文字幕一二三四区| 色播亚洲综合网| 精品高清国产在线一区| 啦啦啦 在线观看视频| 九色国产91popny在线| 国产精品久久久av美女十八| 国产麻豆成人av免费视频| 亚洲精品中文字幕在线视频| 久久精品成人免费网站| 亚洲av五月六月丁香网| 欧美日韩乱码在线| 中文资源天堂在线| 免费高清在线观看日韩| 成人精品一区二区免费| www.999成人在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲,欧美精品.| 淫妇啪啪啪对白视频| 老汉色av国产亚洲站长工具| 欧美大码av| 99re在线观看精品视频| 亚洲人成伊人成综合网2020| 伊人久久大香线蕉亚洲五| 男人操女人黄网站| 国产99白浆流出| 这个男人来自地球电影免费观看| 超碰成人久久| videosex国产| 日日摸夜夜添夜夜添小说| 亚洲av美国av| 日本一本二区三区精品| 亚洲第一青青草原| 制服人妻中文乱码| 国产精品久久久人人做人人爽| 99热这里只有精品一区 | 叶爱在线成人免费视频播放| 国产精品野战在线观看| 欧美黑人欧美精品刺激| 午夜久久久久精精品| 日韩精品免费视频一区二区三区| 在线av久久热| 免费看a级黄色片| xxxwww97欧美| 伊人久久大香线蕉亚洲五| 久9热在线精品视频| 一区二区三区高清视频在线| 大香蕉久久成人网| 亚洲五月色婷婷综合| 夜夜爽天天搞| 手机成人av网站| 男女视频在线观看网站免费 | 欧美不卡视频在线免费观看 | 成人午夜高清在线视频 | 亚洲人成77777在线视频| 看黄色毛片网站| 成人亚洲精品一区在线观看| 国产精品电影一区二区三区| 黄色视频不卡| 国产激情偷乱视频一区二区| 亚洲人成77777在线视频| 国产亚洲精品综合一区在线观看 | 国产私拍福利视频在线观看| www国产在线视频色| 无遮挡黄片免费观看| 国产区一区二久久| 午夜免费成人在线视频| 久久久久久亚洲精品国产蜜桃av| 99国产极品粉嫩在线观看| 久99久视频精品免费| 自线自在国产av| 国产成人av教育| 色在线成人网| 精品日产1卡2卡| 两个人免费观看高清视频| 欧美中文综合在线视频| 精华霜和精华液先用哪个| 国产激情久久老熟女| 国产免费av片在线观看野外av| 中文在线观看免费www的网站 | 99热只有精品国产| 最新美女视频免费是黄的| 日韩欧美三级三区| 高潮久久久久久久久久久不卡| 国产一区二区激情短视频| 亚洲av片天天在线观看| 制服丝袜大香蕉在线| 搞女人的毛片| 亚洲国产精品成人综合色| 精品少妇一区二区三区视频日本电影| 亚洲精品久久国产高清桃花| 国产午夜福利久久久久久| 亚洲人成电影免费在线| 91字幕亚洲| e午夜精品久久久久久久| 欧美在线黄色| 亚洲国产中文字幕在线视频| 亚洲激情在线av| 高潮久久久久久久久久久不卡| 国产三级黄色录像| 好看av亚洲va欧美ⅴa在| av视频在线观看入口| 老司机深夜福利视频在线观看| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区mp4| 在线观看免费日韩欧美大片| 亚洲一区二区三区色噜噜| 国产精品美女特级片免费视频播放器 | 国产精品综合久久久久久久免费| 欧美日韩福利视频一区二区| 最好的美女福利视频网| 亚洲av电影不卡..在线观看| 久久精品国产清高在天天线| 中文字幕av电影在线播放| 久久中文字幕一级| 亚洲va日本ⅴa欧美va伊人久久|