• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets:A non-volatile memory nanostructure

    2022-02-24 09:38:04JianzhuoZhu朱鍵卓XinyuZhang張?chǎng)斡?/span>XingyuanLi李興元andQiumingPeng彭秋明
    Chinese Physics B 2022年2期
    關(guān)鍵詞:興元

    Jianzhuo Zhu(朱鍵卓), Xinyu Zhang(張?chǎng)斡?, Xingyuan Li(李興元), and Qiuming Peng(彭秋明)

    State Key Laboratory of Metastable Materials Science and Technology and Key Laboratory for Microstructural Material Physics of Hebei Province,Yanshan University,Qinhuangdao 066004,China

    We design a nanostructure composing of two nanoscale graphene sheets parallelly immersed in water.Using molecular dynamics simulations,we demonstrate that the wet/dry state between the graphene sheets can be self-latched;moreover,the wet→dry/dry→wet transition takes place when applying an external electric field perpendicular/parallel to the graphene sheets(E⊥/E‖).This structure works like a flash memory device(a non-volatile memory): the stored information(wet and dry states)of the system can be kept spontaneously,and can also be rewritten by external electric fields.On the one hand,when the distance between the two nanosheets is close to a certain distance, the free energy barriers for the transitions dry→wet and wet→dry can be quite large.As a result, the wet and dry states are self-latched.On the other hand, an E⊥and an E‖will respectively increase and decrease the free energy of the water located in-between the two nanosheets.Consequently,the wet→dry and dry→wet transitions are observed.Our results may be useful for designing novel information memory devices.

    Keywords: wet/dry properties,non-volatile memory nanostructure,molecular dynamics simulations

    Wet/dry properties in nanoscale space play an important role in a number of increasingly relevant issues, such as protein folding/unfolding,[1]water or liquid processing,[2,3]catalysis,[4,5]water permeation in membrane channels,[6,7]as well as energy storage and conversion.[8—11]In this context, holding the wet/dry state and controlling the flow of water into and out of nanoscale slits are two key factors.The infiltration dynamics, the adsorption/desorption oscillation phenomenon, the critical effect on capillary infiltration,and the light-triggered wet transition phenomenon of water in mesoporous thin films have been respectively investigated through experimental studies.[12—15]Xiaoet al.reported a charge- and electric-field-induced water gating based on a nanochannel.[16]Revillaet al.studied the electrowetting phenomena on patterned poly(methylmethacrylate)surfaces using atomic force microscopy.[17]However, much detailed information at the molecular level cannot be obtained through experimental studies,which in turn can be acquired through simulation studies.[18—20]The wet/dry properties of a nanoscale slit have been investigated intensively using molecular dynamics (MD) simulations.[21—33]Huanget al.and Choudhuryet al.studied the wet/dry properties in-between two hydrophobic nanosheets.[21,24—26]They found that the wet and dry states of the system can be self-latched and the wet/dry properties were sensitive to the solute—solvent interaction.Vaitheeswaranetal.,Bratkoet al.and Englandet al.demonstrated that an external electric field had a great impact on the density of water molecules in-between two nanosheets.[27,30—32]

    In this paper,using MD simulations,we demonstrate the wet and dry states self-latching as well as the external electric fields triggered dry→wet and wet→dry transitions in-between two nanosheets immersed in water.When the distance between the two nanosheets is close to a certain distance, the free energy barriers for the transitions dry→wet and wet→dry can be quite large.[25]As a result, the wet and dry states can be self-latched.On the other hand, when an external electric field perpendicular/parallel to the nanosheets is applied, the free energy of the water molecules located in-between the two nanosheets is demonstrated to be increased/decreased.Therefore,the dry/wet state turns out to be the thermodynamic stable state, and the wet→dry/dry→wet transition takes place.This structure works like a flash memory device(a non-volatile memory): the wet and dry states stored in the system not only can be kept spontaneously,but also can be rewritten by external electric fields.

    The model system with two identical rectangular graphene sheets immersed parallelly in water is shown in Fig.1.Graphene sheets of three different sizes were investigated.The dimensions of the small, medium, and large graphene sheets were 20×20, 29×33, and 39×41 nm2, respectively.The distance between the two graphene sheets(D)was 6.16, 6.26, or 6.36.Each atom on the graphene sheets was constrained by a harmonic potential(k=9000 kJ/mol·2)to the initial position.An uniform external electric field perpendicular or parallel to the graphene sheets (E⊥orE‖) with a strength of 0.1 or 0.2 V/nm was exerted on the system.The OPLSAA force field was used for the carbon atoms on the graphene sheets(the type of aromatic carbon),[34]and the extended simple point charge(SPC/E)water model was adopted to model the water molecules.[35]The carbon atoms on the graphene sheets were electrically neutral.The combination of SPC/E water model and graphene sheets has been widely used in classical MD simulations to study the properties of electrical double layer capacitors (EDLC).[36—40]Generally, an external electric field may polarize water molecules.Yehet al.has demonstrated in their work that the difference between the water structures respectively obtained through SPC/E water model and the polarizable water model is rather small under an electric field of less than ~2.8 V/,[41]which is larger than the electric field strength used in this work.Therefore,we may expect that the neglect of water polarizability will not visibly impact the response to the electric field at the field strength we study.In addition, the electrical conductivity of the graphene sheets cannot be modeled in classical MD simulations.Hence, like other researchers,[36—40]we only focus on the intersheet water when the two nanosheets are in the electrostatic equilibrium state, but not in the charging or discharging process.All the MD simulations were performed using the GROMACS 2019.1 simulation package[42]in an NPT ensemble (300 K, 1 bar), with periodic boundary conditions applied in all three directions.The temperature and pressure were maintained using the V-rescale thermostat and Berendsen pressure coupling schemes, respectively.[43,44]For each system, a 300-ns simulation with a time step of 1 fs was performed.The cut-off radii of both the short-range electrostatic and the van der Waals interactions were set to 1.2 nm.The particle mesh Ewald method was applied for calculation of the long-range electrostatic interactions.[45]

    Fig.1.Snapshot of a simulation system.

    Fig.2.(a) The water molecule number n(t) between two medium graphene sheets as a function of simulation time for different D and different initial conditions without an external electric field.The insets are the enlarged diagrams.(b) The water molecule number n(t) between two small graphene sheets as a function of simulation time for D=6.26 without an external electric field.

    The number of water molecules between two medium graphene sheets,n(t), was first studied.For the simulations,different initial conditions were launched for the intersheet regions: for some simulations,the intersheet regions were filled with water (“wet” initial condition); while the intersheet regions were empty for other simulations (“dry” initial condition).In Fig.2(a),we plotn(t)between two medium graphene sheets as a function of time for the systems with differentDand different initial conditions without an external electric field.In the simulation ofD=6.16with a wet initial condition, the system dries in the first 0.4 ns of the simulation,and it remains dry for the rest of the simulation(~299.6 ns);while in the simulation ofD=6.36with a dry initial condition, the system wets rapidly after the start of the simulation,and then it remains wet for the rest ~299.4 ns simulation.Thus, we may say that the dry and wet states are thermodynamically more stable for the systems ofD≤6.16andD≥6.36, respectively.For cases withD=6.26, however, simulations starting from wet initial conditions remain wet and simulations starting from dry initial conditions remain dry.From another perspective, in the case of the medium graphene sheets andD= 6.26, the system can keep the stored information (wet and dry states) spontaneously.The phenomenon of the self-latching of the wet and dry states has also been observed by Huanget al.[25]Both the theory and the simulation studies have demonstrated that there are free energy barriers for the dry→wet and wet→dry transitions in-between nanosheets.[24,25]In the simulations ofD=6.26, the free energy barriers for the transitions dry→wet and wet→dry are too large to be overcome during the 300-ns simulations.As a result, the wet and dry states of the system are self-latched.Furthermore, the free energy barriers for the dry→wet and wet→dry transitions are found to be increased with the solute size.[21,46]Figure 2(b)showsn(t)between two small graphene sheets forD=6.26without an external electric field.During the 300-ns simulation, the transition between the wet and dry states takes place several times, which indicates that the free energy barriers for the dry→wet and wet→dry transitions are lower than those between two medium graphene sheets.

    Figure 3(a) showsn(t) between two medium graphene sheets as a function of simulation time for the systemD=6.26with different external electric fields and with different initial conditions.The system with wet/dry initial state can be switched to the dry/wet state within 10 ns after the start of the simulation by anE⊥/E‖of 0.2 V/nm, and then the system remains dry/wet for the rest of simulation.However,if theE⊥andE‖are reduced to 0.1 V/nm,the wet→dry and dry→wet transitions will not take place during the simulations.This may imply that the dry/wet state is thermodynamically more stable at the presence of anE⊥/E‖.Nevertheless, only anE⊥/E‖larger than a certain value (the critical electric field strength) can help the system overcome the wet→dry/dry→wet transition free energy barrier.For the medium graphene sheets, the critical electric field strength should fall in the range of 0.1—0.2 V/nm.From the perspective of information storage, in the case of medium graphene sheets andD=6.26, the information stored in the system(wet and dry states)can be electrically rewritten.Figure 3(b)showsn(t)between two large graphene sheets as a function of simulation time for the systemD=6.26with different external electric fields and with different initial conditions.The wet→dry/dry→wet transition will not take place even under anE⊥/E‖of 0.2 V/nm for the system with two large graphene sheets, which also implies that the larger of the nanosheets,the higher of the wet→dry and dry→wet transition free energy barriers.[21,46]

    In the case of the medium graphene sheets andD=6.26, the initial state (wet or dry state) can be selflatched during the 300-ns simulations.Furthermore, the wet→dry/dry→wet transition takes place when applying anE⊥/E‖of 0.2 V/nm.That is, anE⊥of 0.2 V/nm makes the system dry; while anE‖of 0.2 V/nm makes the system wet.Vaitheeswaranet al.demonstrated that anE⊥can decrease the density of water between two nanosheets.[30]However,Bratkoet al.demonstrated,in their paper,that anE⊥will increase the density of water between two nanosheets.[27]Englandet al.reported that the increase and decrease of the density of water between two nanosheets under anE⊥can respectively be obtained within their respective certain parameter regimes.[32]Since the distances between the two nanosheets in their works were at or above 8, they have not observed the dry state,and thus have not further observed the wet→dry and dry→wet transitions either.[27,30]Like the flash memory, in the case of the medium graphene sheets andD=6.26,the system can keep stored information (wet and dry states) spontaneously,and can also be electrically erased and reprogrammed.

    Fig.3.The water molecule number n(t)between two medium graphene sheets(a)and two large graphene sheets(b)as a function of simulation time for the system D=6.26 with different external electric fields and with different initial conditions.

    Then, we studied the orientation of the water molecules in-between two medium graphene sheets withD= 6.26when the system is wet.The orientation of the water molecules is characterized by the angles ω and θ.As illustrated in the inset of Fig.4(b),ω is defined as the angle between the water dipole (μ) and the +ydirection, and θ is the angle between the vector μ and the+zdirection.The distributions of angles ω and θ are respectively displayed in Figs.4(a)and 4(b).And the snapshots of the water molecules in the intersheet region under different external electric fields are shown in Figs.4(c)—4(e),respectively.When applying aE‖of 0.2 V/nm,the distribution of ω changes much,while the distribution of θ changes little.TheE‖induces the dipoles of the water molecules in the intersheet region to align along the direction ofE‖, and makes the orientation of the water molecules more ordered(see Fig.4(d)).If anE⊥of 0.2 V/nm is applied,the distribution of ω changes little,and the distribution of θ changes slightly.TheE⊥makes the water dipoles tilt slightly towards to the+zdirection.In addition, we calculated the number of water molecules (Nwater), the average number of hydrogen bond formed by a water molecule with other water molecules(NHB),and the average interaction potential of a water molecule with other water molecules (Pwater) in the intersheet region when the system is wet or dry (Table 1).Two water molecules are considered to form a hydrogen bond if the O···O distance is less than 0.35 nm,the H—O···O angle is smaller than 30°,as well as the H···O distance is less than 0.25 nm.[47,48]When the system is dry,theE⊥/E‖decreases/increases theNHB.SoPwateris reduced/enhanced, andNwateris decreased/increased as well.It should be noted that the very few water molecules in the intersheet region should result from the water molecules near the edges of the nanosheets.When the system is wet,both theE⊥and theE‖decrease theNHB.On the other hand, anE‖of 0.2 V/nm makes the orientation of the water molecules more ordered (see Fig.4(d)).The neater arrangement of water molecules may help the intersheet region accommodate more water molecules, which implies more neighbor water molecules for a water molecule in the intersheet region.More neighbor water molecules should be beneficial for the intersheet water to obtain a strongerPwater.No matter the intersheet region is wet or dry,anE⊥/E‖of 0.2 V/nm reduces/enhances thePwaterof water molecules in the intersheet region.As a consequence,the dry/wet state becomes thermodynamically more stable when anE⊥/E‖of 0.2 V/nm is applied.Therefore,the wet→dry/dry→wet transition takes place under anE⊥/E‖of 0.2 V/nm.

    Fig.4.Probability distributions of angles ω (a)and θ (b)as well as the snapshots(c)—(e)of water molecules in-between two medium graphene sheets with D=6.26 when the system is wet under different external electric fields.

    Table 1.Properties of water molecules in-between two medium graphene sheets with D=6.26 when the system is dry or wet.

    Table 1.Properties of water molecules in-between two medium graphene sheets with D=6.26 when the system is dry or wet.

    E⊥/E‖ (V/nm) Dry Wet Nwater NHB Pwater (kJ/mol) Nwater NHB Pwater (kJ/mol)0.2/0 1.728 1.779 —51.07 102.5 2.880 —79.01 0/0 2.224 1.839 —52.94 104.6 2.917 —80.90 0/0.2 3.040 1.920 —54.57 106.2 2.890 —81.70

    To conclude, the wet/dry properties in-between two nanoscale graphene sheets immerged in water have been studied using MD simulations.When having a proper size and a properD, the pair of graphene sheets can work like a flash memory device (a non-volatile memory): the wet and dry states between the nanosheets can be self-latched; moreover, the wet→dry/dry→wet transition will take place when anE⊥/E‖of proper magnitude is applied.The self-latching of the wet and dry states results from the large free energy barriers for the wet→dry and dry→wet transitions.On the other hand, anE⊥/E‖increases/decreases the free energy of the water located in the intersheet region, which makes the dry/wet state to be the thermodynamic stable state.Therefore,the wet→dry/dry→wet transition takes place.Our results may help understand information storage mechanisms of organism,and may also help people design novel information memory devices.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant No.11704328).

    猜你喜歡
    興元
    Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
    情系鄉(xiāng)村振興的最美老干部——艾興元
    An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
    Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
    Force-constant-decayed anisotropic network model: An improved method for predicting RNA flexibility
    A secure image protection algorithm by steganography and encryption using the 2D-TSCC*
    An image encryption algorithm based on improved baker transformation and chaotic S-box?
    Fractal sorting vector-based least significant bit chaotic permutation for image encryption?
    Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2*
    鳳凰淚
    金沙江文藝(2018年1期)2018-11-14 02:09:33
    亚洲精品国产成人久久av| 日韩国内少妇激情av| a在线观看视频网站| 国产免费av片在线观看野外av| 国产精品一区二区三区四区免费观看 | 99久国产av精品| 欧美日韩中文字幕国产精品一区二区三区| 国产午夜福利久久久久久| 黄色丝袜av网址大全| a在线观看视频网站| 日韩欧美三级三区| 亚洲成人免费电影在线观看| 亚洲人成网站在线播| 日本爱情动作片www.在线观看 | 高清毛片免费观看视频网站| 久久精品国产清高在天天线| 女同久久另类99精品国产91| 国产 一区 欧美 日韩| 给我免费播放毛片高清在线观看| 他把我摸到了高潮在线观看| 一区二区三区激情视频| 国产大屁股一区二区在线视频| 免费观看的影片在线观看| 亚洲av成人av| 午夜福利高清视频| 国产探花在线观看一区二区| 国产欧美日韩一区二区精品| 99热只有精品国产| 不卡一级毛片| 免费一级毛片在线播放高清视频| 日韩亚洲欧美综合| 国产成年人精品一区二区| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利成人在线免费观看| 午夜亚洲福利在线播放| 国产欧美日韩精品亚洲av| 老熟妇仑乱视频hdxx| 小蜜桃在线观看免费完整版高清| 欧美xxxx性猛交bbbb| 成人国产麻豆网| 变态另类成人亚洲欧美熟女| 国产大屁股一区二区在线视频| 久9热在线精品视频| 91在线精品国自产拍蜜月| 亚洲精品色激情综合| 亚州av有码| 国产一区二区三区在线臀色熟女| 亚洲国产精品成人综合色| 午夜福利视频1000在线观看| 国内精品宾馆在线| 俄罗斯特黄特色一大片| 高清日韩中文字幕在线| 国产精品无大码| av福利片在线观看| 级片在线观看| 国产精品嫩草影院av在线观看 | 精品福利观看| 蜜桃久久精品国产亚洲av| 国产高清视频在线观看网站| 在现免费观看毛片| 国产免费av片在线观看野外av| 九九在线视频观看精品| 人妻丰满熟妇av一区二区三区| 日本黄色片子视频| 国产精品久久视频播放| 国产精品久久久久久精品电影| 亚洲成人免费电影在线观看| 真人做人爱边吃奶动态| 无人区码免费观看不卡| 最近中文字幕高清免费大全6 | 看免费成人av毛片| 精品久久久久久久久久久久久| 国产欧美日韩一区二区精品| 成人av在线播放网站| 超碰av人人做人人爽久久| 亚洲18禁久久av| 嫩草影视91久久| 国产一区二区三区视频了| 尾随美女入室| 久久久久久久久久久丰满 | 中国美女看黄片| 天堂√8在线中文| 亚洲av免费在线观看| 国产午夜精品久久久久久一区二区三区 | 国产爱豆传媒在线观看| 黄色一级大片看看| 日本一本二区三区精品| 亚洲av熟女| 婷婷色综合大香蕉| 亚洲国产日韩欧美精品在线观看| 最后的刺客免费高清国语| 五月伊人婷婷丁香| 人人妻人人看人人澡| 久9热在线精品视频| 精品国产三级普通话版| 国产精品99久久久久久久久| 国产麻豆成人av免费视频| 天堂动漫精品| 久久香蕉精品热| 国产成人a区在线观看| 国产精品久久视频播放| 国产高清激情床上av| 亚洲成人免费电影在线观看| 在线看三级毛片| av中文乱码字幕在线| 国产av一区在线观看免费| 天堂√8在线中文| 成人特级黄色片久久久久久久| 成人欧美大片| 麻豆av噜噜一区二区三区| 简卡轻食公司| 久久午夜亚洲精品久久| 我要搜黄色片| 久久热精品热| 久久精品国产99精品国产亚洲性色| 男女视频在线观看网站免费| 88av欧美| 91午夜精品亚洲一区二区三区 | 午夜精品一区二区三区免费看| 韩国av在线不卡| 少妇猛男粗大的猛烈进出视频 | 夜夜夜夜夜久久久久| 亚洲黑人精品在线| 哪里可以看免费的av片| 99国产极品粉嫩在线观看| 国产黄片美女视频| 国产色婷婷99| 国产视频内射| 久久久久久久精品吃奶| 香蕉av资源在线| 亚洲精品一区av在线观看| 国产毛片a区久久久久| 亚洲三级黄色毛片| 国产麻豆成人av免费视频| 色5月婷婷丁香| 欧美国产日韩亚洲一区| 春色校园在线视频观看| 精品久久久久久久久av| 国产乱人视频| 99久久九九国产精品国产免费| 国产又黄又爽又无遮挡在线| 国产成人av教育| 啪啪无遮挡十八禁网站| 久久久久久久久大av| 亚洲美女黄片视频| 我的老师免费观看完整版| 亚洲国产精品合色在线| 国产又黄又爽又无遮挡在线| 亚洲欧美激情综合另类| 亚洲黑人精品在线| 亚洲内射少妇av| 国产 一区精品| .国产精品久久| 婷婷精品国产亚洲av| 免费看日本二区| 狂野欧美激情性xxxx在线观看| 国产男靠女视频免费网站| av黄色大香蕉| 最近视频中文字幕2019在线8| 亚洲成人免费电影在线观看| 亚洲人成网站在线播| 99国产精品一区二区蜜桃av| 亚洲精品在线观看二区| 免费人成在线观看视频色| 精品欧美国产一区二区三| 久久99热这里只有精品18| 免费无遮挡裸体视频| a级一级毛片免费在线观看| 精品久久久久久久久久久久久| 极品教师在线视频| 麻豆国产av国片精品| 最近最新免费中文字幕在线| 啪啪无遮挡十八禁网站| 中文字幕熟女人妻在线| 亚洲av成人av| 亚洲综合色惰| 国产不卡一卡二| 日日啪夜夜撸| 国产免费一级a男人的天堂| 国产精品1区2区在线观看.| 亚洲精华国产精华液的使用体验 | 桃色一区二区三区在线观看| 国产中年淑女户外野战色| 国产淫片久久久久久久久| 欧美成人一区二区免费高清观看| а√天堂www在线а√下载| 69av精品久久久久久| 成人特级av手机在线观看| 自拍偷自拍亚洲精品老妇| 五月伊人婷婷丁香| 久久精品国产清高在天天线| 色综合站精品国产| 国产国拍精品亚洲av在线观看| 亚洲av成人av| 亚洲性夜色夜夜综合| 亚洲国产精品成人综合色| 欧美激情在线99| 69av精品久久久久久| 免费高清视频大片| 亚洲一级一片aⅴ在线观看| 色噜噜av男人的天堂激情| 国产男靠女视频免费网站| 国产极品精品免费视频能看的| 动漫黄色视频在线观看| 黄色日韩在线| 日韩国内少妇激情av| 久久久久久久久久成人| 中文字幕高清在线视频| 亚洲va日本ⅴa欧美va伊人久久| 精品不卡国产一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 我的老师免费观看完整版| 午夜免费成人在线视频| 国产主播在线观看一区二区| 国产高清视频在线观看网站| 黄色视频,在线免费观看| 免费搜索国产男女视频| 成年人黄色毛片网站| 欧美xxxx性猛交bbbb| 亚洲最大成人手机在线| 国产亚洲av嫩草精品影院| 午夜a级毛片| 亚洲经典国产精华液单| 久久久久国产精品人妻aⅴ院| 中文字幕人妻熟人妻熟丝袜美| 97超级碰碰碰精品色视频在线观看| 热99re8久久精品国产| 国产成人影院久久av| 最后的刺客免费高清国语| 亚洲五月天丁香| 欧美激情在线99| 嫩草影院新地址| 91在线精品国自产拍蜜月| 超碰av人人做人人爽久久| 狂野欧美激情性xxxx在线观看| 88av欧美| 国产精品人妻久久久影院| 久久这里只有精品中国| 亚洲美女视频黄频| 男女下面进入的视频免费午夜| 国产熟女欧美一区二区| 国产白丝娇喘喷水9色精品| 黄色配什么色好看| 亚洲在线自拍视频| 99热这里只有是精品50| 日本一本二区三区精品| 亚洲欧美激情综合另类| 亚洲人与动物交配视频| 热99re8久久精品国产| 久99久视频精品免费| 亚洲国产色片| 国产欧美日韩一区二区精品| 午夜老司机福利剧场| 超碰av人人做人人爽久久| 国产 一区精品| 国产爱豆传媒在线观看| 亚洲无线观看免费| 天天一区二区日本电影三级| 国产黄片美女视频| 国产精品乱码一区二三区的特点| 欧美精品啪啪一区二区三区| 亚洲欧美日韩东京热| 人妻制服诱惑在线中文字幕| 99久久九九国产精品国产免费| 日本熟妇午夜| 欧美不卡视频在线免费观看| 女同久久另类99精品国产91| 欧美区成人在线视频| 国产午夜福利久久久久久| 国产精品久久久久久久电影| 国产黄片美女视频| 少妇高潮的动态图| 亚洲欧美日韩东京热| 一个人看的www免费观看视频| 成人国产综合亚洲| 国产精品1区2区在线观看.| 国产毛片a区久久久久| 黄色配什么色好看| 久久久久国产精品人妻aⅴ院| 白带黄色成豆腐渣| 成人精品一区二区免费| 99久久成人亚洲精品观看| 在线免费观看不下载黄p国产 | 午夜免费激情av| 亚洲av免费高清在线观看| 国模一区二区三区四区视频| 69av精品久久久久久| 成人午夜高清在线视频| 精品久久久久久久末码| 97超级碰碰碰精品色视频在线观看| 婷婷丁香在线五月| 成年女人毛片免费观看观看9| 国产精品久久久久久久久免| 亚洲人成网站在线播| 校园春色视频在线观看| 亚洲不卡免费看| 日本一本二区三区精品| 国产精品野战在线观看| 日日摸夜夜添夜夜添av毛片 | 老师上课跳d突然被开到最大视频| 欧美国产日韩亚洲一区| 成人美女网站在线观看视频| 少妇的逼水好多| 色综合婷婷激情| 亚洲最大成人中文| 亚洲专区国产一区二区| 成人特级黄色片久久久久久久| 大型黄色视频在线免费观看| 亚洲国产精品sss在线观看| 免费av毛片视频| 男女之事视频高清在线观看| 免费看av在线观看网站| www.www免费av| 毛片一级片免费看久久久久 | 日本黄色片子视频| 亚洲性久久影院| 少妇高潮的动态图| 久久热精品热| 床上黄色一级片| 可以在线观看的亚洲视频| 日韩大尺度精品在线看网址| 永久网站在线| 他把我摸到了高潮在线观看| 欧美zozozo另类| 免费看av在线观看网站| 国产精品不卡视频一区二区| 两个人的视频大全免费| 色吧在线观看| 久久久久久久精品吃奶| 麻豆av噜噜一区二区三区| 国产精品野战在线观看| 精品一区二区三区视频在线观看免费| 日韩中字成人| 嫩草影院新地址| 91麻豆av在线| 国产精品人妻久久久久久| 1000部很黄的大片| 美女黄网站色视频| 日韩欧美精品免费久久| 欧美高清性xxxxhd video| 久久精品国产亚洲av涩爱 | 在现免费观看毛片| 色尼玛亚洲综合影院| 国产精品国产高清国产av| 日本与韩国留学比较| 床上黄色一级片| 能在线免费观看的黄片| 免费观看精品视频网站| 成人特级黄色片久久久久久久| 亚洲综合色惰| 久久久久久久精品吃奶| 中出人妻视频一区二区| 亚洲,欧美,日韩| 亚洲精品一区av在线观看| 综合色av麻豆| 热99re8久久精品国产| 免费av观看视频| 欧美又色又爽又黄视频| 91久久精品国产一区二区三区| 精品一区二区三区视频在线| 国产精品一区二区免费欧美| 国产精品亚洲一级av第二区| 国内揄拍国产精品人妻在线| 久久久久久久精品吃奶| 午夜福利成人在线免费观看| 国产精品乱码一区二三区的特点| 亚洲自拍偷在线| 国内毛片毛片毛片毛片毛片| 男人狂女人下面高潮的视频| 伦精品一区二区三区| 又粗又爽又猛毛片免费看| 欧美日韩中文字幕国产精品一区二区三区| 能在线免费观看的黄片| 小蜜桃在线观看免费完整版高清| 久久热精品热| 中文字幕熟女人妻在线| 99热6这里只有精品| 亚洲性久久影院| 亚洲欧美日韩无卡精品| 天美传媒精品一区二区| 久久久国产成人精品二区| 国产伦在线观看视频一区| 美女免费视频网站| 99国产精品一区二区蜜桃av| 亚洲av电影不卡..在线观看| 99久久九九国产精品国产免费| 搡女人真爽免费视频火全软件 | 男人舔奶头视频| 深爱激情五月婷婷| 老司机午夜福利在线观看视频| 国内精品一区二区在线观看| 久久精品久久久久久噜噜老黄 | 欧美日韩乱码在线| 又黄又爽又刺激的免费视频.| 亚洲自拍偷在线| 在现免费观看毛片| 精品国内亚洲2022精品成人| 久久精品人妻少妇| 观看美女的网站| 国产av麻豆久久久久久久| 一级a爱片免费观看的视频| 最近最新免费中文字幕在线| 级片在线观看| 999久久久精品免费观看国产| 免费高清视频大片| 欧美色欧美亚洲另类二区| 国产免费男女视频| 国产免费av片在线观看野外av| 久久久久国内视频| 九色国产91popny在线| 亚洲成人久久性| 91久久精品国产一区二区三区| 99热这里只有是精品在线观看| 欧美人与善性xxx| 3wmmmm亚洲av在线观看| 一区二区三区免费毛片| 久久人妻av系列| 国产乱人视频| 国产伦人伦偷精品视频| 欧美国产日韩亚洲一区| 免费观看在线日韩| 亚洲国产欧美人成| 久久99热6这里只有精品| 少妇高潮的动态图| 我的女老师完整版在线观看| 简卡轻食公司| 欧美日韩国产亚洲二区| 国内揄拍国产精品人妻在线| 久久久久九九精品影院| 免费在线观看日本一区| 国产男靠女视频免费网站| 日韩av在线大香蕉| 久久国产精品人妻蜜桃| 国产三级中文精品| 亚洲黑人精品在线| 亚洲欧美日韩高清在线视频| 人人妻人人澡欧美一区二区| 国产精品女同一区二区软件 | 国产精品一区二区性色av| 亚洲av日韩精品久久久久久密| 男人狂女人下面高潮的视频| 亚洲人成网站在线播放欧美日韩| 亚洲内射少妇av| 国产精品久久电影中文字幕| 三级国产精品欧美在线观看| 极品教师在线免费播放| 色尼玛亚洲综合影院| 国产免费一级a男人的天堂| 超碰av人人做人人爽久久| 真实男女啪啪啪动态图| 男人舔奶头视频| 久久天躁狠狠躁夜夜2o2o| 亚洲avbb在线观看| 国产精品国产高清国产av| 变态另类丝袜制服| 欧洲精品卡2卡3卡4卡5卡区| 成人毛片a级毛片在线播放| 99九九线精品视频在线观看视频| 在线播放国产精品三级| 人妻夜夜爽99麻豆av| 免费观看人在逋| 啦啦啦韩国在线观看视频| av国产免费在线观看| 久9热在线精品视频| 婷婷亚洲欧美| 国产一区二区在线av高清观看| 成熟少妇高潮喷水视频| 99久久久亚洲精品蜜臀av| 欧美一区二区亚洲| 真实男女啪啪啪动态图| 久久人人精品亚洲av| 久久九九热精品免费| 特级一级黄色大片| 长腿黑丝高跟| 亚洲av不卡在线观看| 身体一侧抽搐| 两个人视频免费观看高清| 亚洲欧美日韩高清在线视频| 欧美日韩精品成人综合77777| 久久国内精品自在自线图片| 尾随美女入室| 亚洲av美国av| 蜜桃亚洲精品一区二区三区| 身体一侧抽搐| 欧美激情在线99| 99久久精品一区二区三区| 一a级毛片在线观看| 一进一出抽搐动态| av天堂中文字幕网| 我要看日韩黄色一级片| 99热这里只有是精品50| av国产免费在线观看| 亚洲成人久久爱视频| 国语自产精品视频在线第100页| 国产黄a三级三级三级人| 亚洲图色成人| 日本五十路高清| 性色avwww在线观看| 欧美绝顶高潮抽搐喷水| 国产av不卡久久| 精品久久久久久久久久久久久| 人人妻,人人澡人人爽秒播| 午夜福利视频1000在线观看| 内射极品少妇av片p| 精品久久久久久久久av| av黄色大香蕉| 欧美日韩精品成人综合77777| 熟女人妻精品中文字幕| 婷婷精品国产亚洲av| 极品教师在线免费播放| 日韩欧美在线二视频| 欧美一区二区精品小视频在线| 欧美成人a在线观看| 欧美日本视频| 日本精品一区二区三区蜜桃| 亚洲国产精品久久男人天堂| 国产午夜精品久久久久久一区二区三区 | 亚洲人成网站高清观看| www日本黄色视频网| 中文字幕精品亚洲无线码一区| 日本成人三级电影网站| 一区二区三区四区激情视频 | 淫秽高清视频在线观看| 欧美一级a爱片免费观看看| 高清日韩中文字幕在线| 极品教师在线视频| 日本与韩国留学比较| 别揉我奶头~嗯~啊~动态视频| 女同久久另类99精品国产91| 最近中文字幕高清免费大全6 | 熟女电影av网| 亚洲av熟女| 亚洲av五月六月丁香网| 嫩草影院入口| 欧美不卡视频在线免费观看| 一个人观看的视频www高清免费观看| 在线国产一区二区在线| АⅤ资源中文在线天堂| 精品人妻一区二区三区麻豆 | 色综合婷婷激情| 国产欧美日韩精品亚洲av| 欧美高清性xxxxhd video| 久久国产乱子免费精品| 欧美中文日本在线观看视频| 国产高清视频在线播放一区| 国产成人影院久久av| 波野结衣二区三区在线| 岛国在线免费视频观看| 久久精品国产亚洲av涩爱 | 色综合婷婷激情| 国产一区二区亚洲精品在线观看| 亚洲人成网站高清观看| 99久久精品热视频| 色av中文字幕| 亚洲成人中文字幕在线播放| 女人被狂操c到高潮| 免费看a级黄色片| 久久久久性生活片| 亚洲电影在线观看av| 最后的刺客免费高清国语| 一个人看的www免费观看视频| 99国产精品一区二区蜜桃av| 亚洲无线观看免费| 国产一区二区三区在线臀色熟女| 美女被艹到高潮喷水动态| 国产男人的电影天堂91| 国产精品一区二区免费欧美| 精品一区二区免费观看| 九九爱精品视频在线观看| 国产 一区精品| 一级av片app| 精品人妻视频免费看| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清无吗| 51国产日韩欧美| 国产爱豆传媒在线观看| 麻豆成人午夜福利视频| 国产免费一级a男人的天堂| 国产真实乱freesex| 悠悠久久av| 久99久视频精品免费| ponron亚洲| 国产成人aa在线观看| 国产爱豆传媒在线观看| 人妻少妇偷人精品九色| 一区二区三区高清视频在线| 亚洲国产色片| 老熟妇仑乱视频hdxx| 国产精品一区www在线观看 | 日韩欧美 国产精品| 亚洲欧美日韩高清专用| 日本-黄色视频高清免费观看| 日韩欧美精品免费久久| 在线观看免费视频日本深夜| 一边摸一边抽搐一进一小说| 精品福利观看| 国产精品久久视频播放| 在线a可以看的网站| 高清毛片免费观看视频网站| 熟女电影av网| 国内精品宾馆在线| 人妻夜夜爽99麻豆av| 成人av在线播放网站| 日本免费一区二区三区高清不卡| 一进一出抽搐动态| 日本五十路高清| 男人狂女人下面高潮的视频| 搡老岳熟女国产| 欧美成人免费av一区二区三区| 欧美bdsm另类| 日本在线视频免费播放| 色综合亚洲欧美另类图片| 在线播放国产精品三级| 美女黄网站色视频| 精品久久久久久久久久免费视频|