• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rolling velocity and relative motion of particle detector in local granular flow

    2022-11-21 09:29:18RanLi李然BaoLinLiu劉寶林GangZheng鄭剛andHuiYang楊暉
    Chinese Physics B 2022年11期
    關(guān)鍵詞:鄭剛李然寶林

    Ran Li(李然) Bao-Lin Liu(劉寶林) Gang Zheng(鄭剛) and Hui Yang(楊暉)

    1School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China

    2School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China

    The velocity of a particle detector in granular flow can be regarded as the combination of rolling and sliding velocities.The study of the contribution of rolling velocity and sliding velocity provides a new explanation to the relative motion between the detector and the local granular flow. In this study, a spherical detector using embedded inertial navigation technology is placed in the chute granular flow to study the movement of the detector relative to the granular flow. It is shown by particle image velocimetry(PIV)that the velocity of chute granular flow conforms to Silbert’s formula. And the velocity of the detector is greater than that of the granular flow around it. By decomposing the velocity into sliding and rolling velocity,it is indicated that the movement of the detector relative to the granular flow is mainly caused by rolling.The rolling detail shown by DEM simulation leads to two potential mechanisms based on the position and drive of the detector.

    Keywords: local velocity distribution,rolling velocity,inertial navigation technology,relative velocity dependent(RVD)rolling friction

    1. Introduction

    Traditional granular flow velocity distribution is studied usually[1]by using the monodisperse granular flow for the exploration of flow models[2,3]while the the research of polydisperse particle flow focuses on the mechanism of mixing and segregation.[4,5]However, there is a special particle flow of a few special particles worthy of attention in the nearly monodisperse granular flow,e.g.,rock landslides with accompanying debris flows are examples of such particle flows.[6]The number of special particles cannot form the statistical characteristics to support the segregation and mixing model exploration. The description of the movement of the special particles relative to the granular flow is very lacking. This process can be studied by placing inertial navigation detector into the chute granular flow,which can provide a valuable reference for the study of the movement process of special particles.

    In the absence of a unified framework,granular flows in a chute are commonly divided into three different regimes based on the inertial number.[7]This study focuses on the viscouslike regime. The material flow is more like a liquid with a shear-rate-dependent stress under this regime.[8]

    The local rheology is the most widely recognized mathematical model for viscous-like granular flow in an inclined chute.[9,10]Forterre and Pouliquen[11]and Tripathi and Khakha[12]summarized the local flow velocity distribution model as shown in Fig. 1(a). A granular layer of thicknesshflows down a rough plane inclined at an angle 8°<θ <12°.The force balance for steady uniform flows implies that the ratio between shear stress and normal stress is constant and equal to tanθ. Experimentally or numerically, the mean velocity varies as the power 3/2 of the depth and increases with inclination. The physical mechanism is the nonlinear correlation between the friction coefficientμand the inertial numberI[7,9]in the quasi static and kinetic regime,specifically

    which is shown in Fig.1(b).

    However,this model does not distinguish between the velocity caused by particle sliding and that by particle rolling.The latest research shows that rolling has an important influence on the movement of granular flow.[13,14]

    Wanget al. reported a study on the granular flow layers by using the embedded inertial navigation techniques.[15]This provides a new method of studying particle rolling in a particle flow. Caviezelet al.studied rockfall on Alps by using a detector equipped with a situ sensor,and successfully reconstructed the falling trajectory of the detector.[16,17]Zhuet al.improved the navigation techniques and applied them to the study of the funnel flow particle rolling in the laboratory, and accurately measured the angular velocity distribution of the tracer particles in the funnel flow.[18]It was found that there is a close relationship between rolling and the granular flow velocity distribution. This provides an important reference for the study of the relative particle flow motion of special particles.

    Fig.1. Local flow velocity distribution in chute granular flow:(a)schematic diagram of flat inclined chute and(b)nonlinear correlation between friction coefficient and inertial number.[11,12]

    It should be noted that the PIV method and the xray method will not interfere with the particle flow and are a reliable method to measure the particle flow velocity distribution.[19]Since x-ray may offset the inertial navigation device,the PIV is chosen to measure the velocity distribution of chute granular flow which is used as the baseline. However,there are physical parameters which cannot be obtained by the experimental technology. With the development of computer technology, the discrete element method (DEM) is increasingly used in the granular flow mechanism research field.[20,21]The DEM can track the real-time motion of each particle,and obtain the particle’s rotational motion information.[22]The influence of rolling friction coefficient was investigated in Yu and Saxen’s DEM study of Silo.[23]Tripathiet al.adopted the relative velocity dependent(RVD)rolling friction in quantitative DEM simulation of non-spherical particle.[24]Taking the rolling friction into consideration in the model,the consistency of simulation results and experimental results is improved.

    In this work,the data obtained from DEM simulation validated by spherical detector experiments are used to study the local granular flow,attempting to identify the velocity of particle as the rolling and sliding velocity in local flow velocity so as to provide a new perspective for the study of the movement of special particles relative to granular flow.

    2. Experimental setups

    2.1. Chute granular flow

    Based on the theoretical model,the experimental process in this study can be seen in Fig. 2. The chute granular flow lasted 2.7 s on average and 2.8 s in this experiment served as an example. Att0=0,the baffle is removed and the particles started to move. The velocity distribution is unstable initially but att1=0.6 s, the chute granular flow forms a stable local flow velocity distribution. Aftert2=1.2 s,owing to the inadequate thickness of the particle bed in the chute,the local flow velocity distribution cannot be maintained.

    We use the PIV technique to obtain the velocity on the side wall of the chute, as shown in Fig. 2(d). The detector is used as the special particle of concern (diameter of 30 mm),surrounded by small particles(diameter of 10 mm)inside the chute. The spherical detector can obtain the particle’s acceleration and rotation angular velocity. Therefore, the particle velocities of different initial heights in the chute and the composition of particle velocity under different inclination angles are studied.The position of the spherical detector isZ1,Z2,Z3,...,Z6, with a spacing of 15 mm. The thickness of the filled particles in the chute is 110 mm. The diameter of the filled particles is 10 mm,and the diameter of the spherical detector is 30 mm. To ensure that the velocity of the bottom particle is 0,a rough surface with a coefficient of friction of 0.8 is set as the bottom of the chute. More detailed description of the system is given in Refs.[14,15].

    Fig. 2. Snapshots of chute granular flow, showing granular profile at (a)t0 =0, (b)t1 =0.6 s, chute granular flow formed stable local flow velocity distribution;(c)after t2=1.2 s,local flow velocity distribution failing to be maintained due to the inadequate thickness of the particle bed in the chute;(d)example displaying the granular flow at t=1 s to show the PIV measurement results.

    2.2. Spherical detector based on embedded inertial navigation technology

    The spherical detector is used to measure the angular velocity,acceleration and other movement data during the experiment through using embedded inertial navigation technology.

    Any attitude in three-dimensional space can be represented concisely, intuitively by Euler angles. The aerial sequential Euler angles (shown in Fig. 3(a)) are used to represent the attitude of spherical detectors,φ,χ,Ψ, respectively,as the roll angle,pitch angle,and yaw angle. In the carrier coordinate system of the spherical detector,xbmoves to the right along the horizontal axis,ybmoves forward along the longitudinal axis,andzbmoves along the vertical axis. In the spatial coordinate system (E),xEis the projection ofxbon the horizontal plane,yEis perpendicular toxE,andzEis perpendicular to the horizontal plane.

    Fig. 3. (a) Schematic diagram of attitude angle of spherical detector, with ω′x,ω′y,ω′z,respectively,representing the components of original angular velocity of rolling around the x axis,y axis,and z axis,and ωy being the angular velocity of rolling around the y axis; (b) results from a typical experiment with two detectors placed side by side at Z1.[14,15]

    The Euler angle is adopted in the measurement system to represent the attitude,and a quaternion is used to represent the attitude when it is solved.[25,26]The attitude update equation of the inertial measurement unit(ωx,ωy,andωzare the values that are measured by the gyroscope)is given as follows:

    whereqis the quaternion expression.Nis the unit matrix,Ωnnbis the skew matrix of angular velocity, andTis the time interval.

    Therefore, the attitude of the spherical detector is converted into a quaternion representation through the following equation during the attitude solution:

    After the attitude solution is completed, the attitude is converted into Euler angles throughthe following equation:

    Through multiple experiments, the experimental results of spherical particle wireless measurement technology based on inertial navigation technology are validated and can be used to measure the angular velocity and translational velocity of particles in the chute system.[15,18]

    Figure 3(b)shows a typical experimental results obtained by using two spherical detectors placed atZ1. It can be found that the movement process of the detectors can be divided into stable stage and unstable stage by the rotating speed.[14]To discuss the rolling and sliding of the detector,we focus on the relationship between the particle flow velocity distribution and the special tracer particle velocity characteristic from 0.6 s to 1 s(stable stage).

    2.3. DEM simulation

    2.3.1. DEM contact model

    The most important step in DEM is to choose a reasonable physical contact model. The model of Hertz–Mindlin(no slip)with RVD rolling friction adjusts the calculation method of rolling friction to ensure that three dimensions have the proper functionality without affecting the calculation time. It is especially suitable for strong rotation systems that have strict requirements for particle rotation characteristics.[24]Therefore,in this paper DEM is used based on the model of the Hertz–Mindlin(no slip)with RVD rolling friction contact to simulate the discharge process of spherical particles in a chute.According to the relative rotational velocity between contact particles,the particle rolling friction is calculated as follows:[27]

    where torqueτrepresents the rolling friction of the particles,μris the rolling friction coefficient,Fnis the normal force between particles,R*is the equivalent radius between particles, ?ωrelis the unit vector of relative rotational velocity,E*is the equivalent Young’s modulus,andδnis the normal overlap amount.

    The equivalent radiusR*and the equivalent Young’s modulusE*are calculated from the following equations:

    whereiandjrepresent the two particles in contact,RiandRjare the radii of the contact particles,viandvjare the Poisson’s ratio,EiandEjare the Young’s moduli.

    2.3.2. Simulation setup

    Figure 4(a)shows the theoretical model of chute flow defined three layers based on the velocity distribution.[28]The experimental results presented in Ref. [15] indicate that the rolling contribution rate is an important factor affecting velocity composition.Figure 4(b)shows the simulation chute crosssectional surface sliced into 30×60 grids,and each grid is the smallest statistical unit with a size of 10 mm×20 mm×10 mm.In the simulation, the average movement information of the particles in each grid is used. The simulation process is the same as the experimental process shown in Fig. 2. Three particles (d= 1 cm) in each layer are marked. A detector(d=3 cm)is placed in the granular bed atZpoint,near particle B.

    During the simulation,the time interval for collecting particle motion data is set to be 0.01 s. In order to ensure the stability of experiment,the minimum time step in experiment is set to be 2.71×10-5s,which is less than the Rayleigh time of particle 5.82×10-5s.[29]Other system parameters of DEM simulation are shown in Table 1.

    Among them, the friction coefficient between particlesμp-pis obtained by measuring the repose angle of particle accumulation, and the coefficient of restitutioneis obtained by the particle rebound experiment.[30]

    Fig.4. Simulation based on the velocity layers: (a)schematic model of the chute system and(b)geometry of chute with an initial packed bed.

    Table 1. Physical parameters employed in experiments and simulations.

    3. Results and discussion

    3.1. Relative motion between detector and granular flow

    In the local granular flow model, it is believed that the flow velocityvx(z)is positively correlated withz3/2. The relationship between the flow velocity and the height of the chute can be expressed as(also known as Silbert’s formula)[7]

    whereIis the inertial number which increases with inclination angleθ, increasing,his the thickness of the filling particle,ρis the density of the filling particle,gis the acceleration of gravity,θis the angle between the chute and the ground,andzis the height of the chute. Based on Eq.(8),the calculated velocity of the granular flow is shown by the red line in Fig.5(a)whenθis 12°.

    Fig.5.(a)Comparison between theoretical curve and experimental curve of,chute height versus particle flow velocity,with red line representing velocity based on Eq.(8),where I=0.178,black line denoting averaged velocity measured by PIV method. and blue triangles referring to the velocities measured by using a spherical detector at six marked locations;and(b)curve of chute height versus relative velocity between the detector and the granular flow.

    We use the PIV method to obtain the averaged velocity profile on the side wall of the chute,and the detector to obtain the average velocity of special tracer particle during the stable period. It is shown in Fig.5(a)that the averaged velocity measured by the PIV method is similar to that obtained from the theoretical model,Eq.(8).The red line shows that the granular velocity at the bottom is not 0,whereas in Eq.(8)the grain at the bottom should not slip. This is because the chute does not use particle bed as bottom,so the granular layer at the bottom does not form complete stable state.

    The velocity measured by the detector at different values ofh(as shown by the blue points)is larger than the PIV results and increases linearly. This indicates that the detector moves faster than the surrounding particles. The relative velocity between the detector and the granular flow is shown by Fig.5(b).The biggest difference in velocity appears at the bottom.

    3.2. Rolling velocity and sliding velocity

    During the experiment, it can be observed in Fig. 2 that the particles in the chute have not only sliding motion, but also rolling motion. The velocity of the spherical detector is a combination of sliding velocity and rolling velocity as shown in Fig.6.

    Fig.6. Composition of velocity: sliding velocity vs and rolling velocity vr.

    The velocity along the flow directionvx(z)of the spherical detector can be expressed as

    Fig.7. Curves of chute height versus averaged angular veloci(z)of the spherical detector at different inclination angles.

    Fig. 8. Comparison of particle sliding velocity vs(z) among different values of inclination angle θ,with solid lines representing velocities calculated from Eq.(8),triangles denoting velocities measured by the spherical detector. Inertial number I =0.178 when θ =12°, I =0.140 when θ =10°.I=0.125 when θ =8°.

    As shown in Fig. 8, the sliding velocities measured by detector and calculated from Eq.(8)are matched. At the free surface of the chute,the growth pattern of particle sliding velocityvs(z)tends to be flat. This is one of the characteristics of the local flow model,indicating that the sliding velocity of the detector is mainly driven by the local granular flow. Correspondingly, the velocity of the detector relative to the surrounding particles is mainly due to rolling.

    3.3. Relative motion based on simulation results

    Using the detector and PIV technology,the measurement results show that rolling and relative motion are statistically correlated. For further investigation,the results obtained from the DEM simulation (Fig. 4) are analyzed. The area in the middle of the chute is considered as the area that contains valid granular flow velocity distribution as shown in the inset of Fig.9. The velocities of each particle are shown by the black triangles. Calculations from Eq. (8) are shown by the red line. It can be observed that the simulation results are in line with the experimental results as shown by the blue line(the same as the red line in Fig. 5). The slight difference inIbetween 0.178 in experiment result and 0.182 in simulation result may be due to the ideal shear process obtained by simulation.

    Fig. 9. Simulated velocity distributions, with inset showing measured area,triangles representing velocities of particles in measured area,red line(I =0.182) and blue line (I =0.178) denoting calculations from Eq. (8)based on the simulation and the experimental results.

    By tracking the labeled particles, simulation results provide the accurate trajectories and real-time rolling velocities that cannot be obtained experimentally.

    Figure 10(a)shows the rolling velocities of 3 labeled particles. The rolling velocity of particle A is larger than those of the other two labeled particles. The velocityvxof particle A located in the surface layer (Fig. 4) is significantly higher than those in the other layers. It takes less than 2 s to move out of the chute. This is consistent with the theory presented in Subsection 3.1.

    The velocityωyof particle B is slightly larger than that of particle C in the stable stage. After 1.5 s, the values ofωyof particles B and C are the same. By tracking the labeled particles, it is found that particle B falls in height as it follows granular flow and approaches to particle C in a time between 0.5 s and 1.5 s. This causes relative motion between particle B and the core layer. After 1.5 s, particles B and C follow similar trajectories moving out of the chute. So a similarωyis obtained.

    Because of the difference invx, the particles in different layers have obvious relative motions. The relative motion trajectory is consistent with that of velocityωy.

    Figure 10(b)shows time-dependentωyof the detector and particle B.The detector moves faster,leaving the chute 0.55 s earlier than particle B at a similar initial position. Comparing withωyin the moving duration,the rotation of the detector is more stable and larger than the particle B on average. Several larger pulses in red line indicate that particle B moves intensely when there is a gap.

    Fig. 10. (a) Curve of time-dependent angular velocity ωy of particles A(blue line),B(red line),and C(black line)on surface,core,and basal layer.(b)Curve of time-dependent angular velocity ωy of detector(blue line)and particle B(red line)located at similar initial position.

    Fig. 11. Two potential mechanisms of ωy of detector: (a) detector surrounded by granular flow; (b) detector driven by the unbalanced granular flow;(c)detector starting to surface the granular flow;(d)detector driven by gravity.

    Based on theωy,two potential mechanisms of the detector rolling are presented in Fig. 11. During the stable stage,the detector is surrounded by the granular flow as shown in Fig. 11(a). Because of the difference invxat different values ofh,the detector rolls forward under the drive unbalanced granular flow as shown in Fig.11(b).

    During the unstable stage, the upper part of the detector is not covered by the granular flow. Figure 11(c) shows the moment when the detector surfaces the granular flow. It can be observed thatvxbelow the detector is not uniform. At this stage, the detector is driven by gravity, moving to the region with highervx.

    Further investigation of the detector trajectory shows that the mechanism ofωyof the detector is correlated with the layer at which the detector is located. In the surface and basal layer,the detector has a higher probability of moving upwards. The direction is similar to that shown in Fig. 11(d). In the core layer,the trajectory of the detector is very complex. The motion directions indicated by both mechanisms occur. The relationship between rolling mechanism and time-space will be the focus of further research.

    4. Conclusions

    We experimentally studied a special particle moving in the local granular flow and consider that the velocity of the special particle should be divided into sliding velocityvs(z)and rolling velocityvr(z). Ashincreases, the sliding velocityvs(z) of particles increases, but rolling velocityvr(z)decreases. The velocityvx(z) of particles presents a linear growth,andωy(z)can be obtained by a spherical detector,thus the rolling velocity of the particlevr(z)can be obtained. Two potential mechanisms ofωyare presented based on the DEM simulation with RVD rolling friction model,andωyof the detector changes in different flow stages and layers. In further studies, the relationship between mechanism ofωyand timespace of the detector needs to be analyzed precisely and compared with theoretical models.

    Acknowledgements

    We would like to express our gratitude to Prof. V.Zivkovic from Newcastle University for his careful guidance and help.

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11972212, 12072200, and 12002213).

    猜你喜歡
    鄭剛李然寶林
    《力量》
    Adaptive synchronization of chaotic systems with less measurement and actuation?
    Reptiles Are Great!
    Great Vacation Places
    春曉
    鄭剛辭職,馬仿列接掌北汽新能源
    汽車觀察(2019年2期)2019-03-15 06:00:12
    Analysis on the Pharmacists Intervention Results of the Problems from 2000 Prescriptions of Chinese Herbal Pieces
    Reduced technique for modeling electromagnetic immunity on braid shielding cable bundles?
    “養(yǎng)路鐵人”金寶林
    北方人(2017年10期)2017-07-03 14:07:24
    如果所有的愿望都能成真
    美女大奶头视频| 亚洲人成伊人成综合网2020| 久久影院123| 欧美 亚洲 国产 日韩一| 999久久久国产精品视频| 少妇被粗大的猛进出69影院| 色精品久久人妻99蜜桃| 桃色一区二区三区在线观看| 好看av亚洲va欧美ⅴa在| 亚洲中文字幕日韩| 亚洲,欧美精品.| 亚洲精品中文字幕一二三四区| 无人区码免费观看不卡| 脱女人内裤的视频| 久久久久久人人人人人| 视频区欧美日本亚洲| 香蕉国产在线看| 色尼玛亚洲综合影院| 欧美绝顶高潮抽搐喷水| 日本欧美视频一区| av视频在线观看入口| x7x7x7水蜜桃| 一本综合久久免费| 国产精品久久久久久亚洲av鲁大| 久久精品人人爽人人爽视色| 18禁黄网站禁片午夜丰满| 高潮久久久久久久久久久不卡| 手机成人av网站| 色在线成人网| 亚洲七黄色美女视频| av片东京热男人的天堂| 国产成人精品久久二区二区免费| 神马国产精品三级电影在线观看 | 国产精品久久久久久亚洲av鲁大| 黄色视频,在线免费观看| 欧美日韩福利视频一区二区| 可以在线观看毛片的网站| 在线观看www视频免费| 黄色女人牲交| 制服诱惑二区| 国产精品野战在线观看| av天堂在线播放| 成人免费观看视频高清| 久久久久久亚洲精品国产蜜桃av| 欧美 亚洲 国产 日韩一| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av| svipshipincom国产片| 亚洲国产精品合色在线| 精品人妻在线不人妻| 国产成人精品久久二区二区91| 亚洲成国产人片在线观看| 精品国产国语对白av| 好男人电影高清在线观看| 深夜精品福利| 可以在线观看的亚洲视频| 免费观看精品视频网站| 欧美+亚洲+日韩+国产| 国产精品九九99| 禁无遮挡网站| 日日夜夜操网爽| 中文字幕精品免费在线观看视频| 亚洲精品国产区一区二| av有码第一页| 久久久久久亚洲精品国产蜜桃av| 老熟妇乱子伦视频在线观看| 国产一卡二卡三卡精品| 18禁裸乳无遮挡免费网站照片 | 中文字幕av电影在线播放| 亚洲 欧美 日韩 在线 免费| 欧美激情极品国产一区二区三区| 极品人妻少妇av视频| 色综合婷婷激情| 97碰自拍视频| 黑丝袜美女国产一区| 国内精品久久久久久久电影| 欧美国产精品va在线观看不卡| 波多野结衣av一区二区av| 日韩欧美免费精品| 色综合欧美亚洲国产小说| 在线十欧美十亚洲十日本专区| 日韩成人在线观看一区二区三区| www.999成人在线观看| 色综合亚洲欧美另类图片| 一级毛片高清免费大全| 岛国在线观看网站| 免费在线观看视频国产中文字幕亚洲| 一二三四在线观看免费中文在| 乱人伦中国视频| 亚洲人成77777在线视频| 午夜老司机福利片| 亚洲va日本ⅴa欧美va伊人久久| 日本欧美视频一区| 国产精华一区二区三区| 久久久久久久久中文| 人人妻,人人澡人人爽秒播| 国产精品自产拍在线观看55亚洲| 一卡2卡三卡四卡精品乱码亚洲| 国产精品国产高清国产av| av欧美777| 18美女黄网站色大片免费观看| 黄色丝袜av网址大全| 久久香蕉精品热| 美女高潮喷水抽搐中文字幕| 精品无人区乱码1区二区| 91在线观看av| 国产蜜桃级精品一区二区三区| 久久久久国内视频| 日日爽夜夜爽网站| 国产又爽黄色视频| 母亲3免费完整高清在线观看| 日本三级黄在线观看| 亚洲最大成人中文| 成人国产一区最新在线观看| 日日摸夜夜添夜夜添小说| 国产精品爽爽va在线观看网站 | 久久久久久久午夜电影| 国产单亲对白刺激| 亚洲人成网站在线播放欧美日韩| 在线免费观看的www视频| 精品欧美国产一区二区三| 久久伊人香网站| 一区二区三区国产精品乱码| 天天躁狠狠躁夜夜躁狠狠躁| www.www免费av| 国产精品一区二区免费欧美| 午夜激情av网站| 国产成人系列免费观看| 男女之事视频高清在线观看| 性少妇av在线| 久热爱精品视频在线9| 国产91精品成人一区二区三区| 久久九九热精品免费| 可以在线观看毛片的网站| 国产亚洲精品第一综合不卡| 欧美成人性av电影在线观看| 亚洲欧洲精品一区二区精品久久久| 精品国产超薄肉色丝袜足j| 变态另类丝袜制服| 精品久久蜜臀av无| 日本黄色视频三级网站网址| 大陆偷拍与自拍| 91麻豆av在线| 侵犯人妻中文字幕一二三四区| 亚洲av成人av| 精品久久蜜臀av无| 女人被躁到高潮嗷嗷叫费观| 亚洲av熟女| 亚洲欧洲精品一区二区精品久久久| 欧美亚洲日本最大视频资源| 亚洲av第一区精品v没综合| 国产片内射在线| 亚洲精品国产区一区二| 满18在线观看网站| 欧美最黄视频在线播放免费| 国产真人三级小视频在线观看| 久久天躁狠狠躁夜夜2o2o| 久久人人爽av亚洲精品天堂| 色在线成人网| 波多野结衣一区麻豆| 亚洲国产欧美网| 搡老岳熟女国产| 一级,二级,三级黄色视频| 精品一区二区三区av网在线观看| 国产在线观看jvid| 男人操女人黄网站| 日韩精品中文字幕看吧| 啦啦啦 在线观看视频| 久久精品影院6| 午夜老司机福利片| 亚洲三区欧美一区| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 韩国精品一区二区三区| 日韩av在线大香蕉| 真人做人爱边吃奶动态| av视频免费观看在线观看| 波多野结衣一区麻豆| 搞女人的毛片| 99在线人妻在线中文字幕| 欧美中文日本在线观看视频| 身体一侧抽搐| 人成视频在线观看免费观看| 丝袜美足系列| 亚洲成人国产一区在线观看| 可以免费在线观看a视频的电影网站| 久热爱精品视频在线9| 美女高潮到喷水免费观看| 少妇的丰满在线观看| 国产亚洲av高清不卡| 国产一区二区激情短视频| 成年女人毛片免费观看观看9| 黄网站色视频无遮挡免费观看| 女性生殖器流出的白浆| 日本在线视频免费播放| 波多野结衣av一区二区av| 高清毛片免费观看视频网站| 免费在线观看视频国产中文字幕亚洲| av有码第一页| 国产又爽黄色视频| 欧美色视频一区免费| 中文字幕精品免费在线观看视频| 久久香蕉国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 欧美 日韩 在线 免费| 亚洲精品中文字幕一二三四区| 精品久久久久久久久久免费视频| 国产主播在线观看一区二区| 成人国语在线视频| 99久久久亚洲精品蜜臀av| 91av网站免费观看| 久久久久久久久免费视频了| 久热这里只有精品99| 别揉我奶头~嗯~啊~动态视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av成人一区二区三| 成人三级黄色视频| 在线观看免费午夜福利视频| 麻豆成人av在线观看| 亚洲狠狠婷婷综合久久图片| 亚洲欧美日韩高清在线视频| 国产高清激情床上av| 中文字幕人妻熟女乱码| 又紧又爽又黄一区二区| av视频在线观看入口| 可以在线观看毛片的网站| 在线观看免费视频网站a站| 中文字幕人妻熟女乱码| 亚洲电影在线观看av| 国产一卡二卡三卡精品| 免费看美女性在线毛片视频| 午夜视频精品福利| 国产精品,欧美在线| 久久国产精品男人的天堂亚洲| 国产一区二区三区综合在线观看| www.www免费av| 成人18禁在线播放| 久久精品亚洲熟妇少妇任你| 中文亚洲av片在线观看爽| 一区福利在线观看| 国产成人精品无人区| 成人亚洲精品av一区二区| 97人妻天天添夜夜摸| 久久亚洲精品不卡| 一级,二级,三级黄色视频| 制服人妻中文乱码| 亚洲电影在线观看av| 天堂√8在线中文| 国产极品粉嫩免费观看在线| 国产成人免费无遮挡视频| 乱人伦中国视频| 少妇裸体淫交视频免费看高清 | 国产精品1区2区在线观看.| 啦啦啦韩国在线观看视频| 国产高清videossex| 国产精品香港三级国产av潘金莲| 精品国产乱子伦一区二区三区| 黄色 视频免费看| 人人妻人人爽人人添夜夜欢视频| 午夜精品在线福利| 啦啦啦韩国在线观看视频| 亚洲全国av大片| 国产亚洲欧美在线一区二区| 美女 人体艺术 gogo| 不卡av一区二区三区| av在线播放免费不卡| 亚洲国产精品成人综合色| 中文字幕最新亚洲高清| 国产午夜福利久久久久久| 久久久水蜜桃国产精品网| 日本一区二区免费在线视频| 黑人操中国人逼视频| 99re在线观看精品视频| 欧美乱妇无乱码| 又黄又爽又免费观看的视频| 搡老妇女老女人老熟妇| 久久精品亚洲精品国产色婷小说| 成人亚洲精品一区在线观看| 中文字幕av电影在线播放| 久久天堂一区二区三区四区| 欧美国产日韩亚洲一区| 日韩精品免费视频一区二区三区| 女人被狂操c到高潮| 每晚都被弄得嗷嗷叫到高潮| 禁无遮挡网站| 日韩中文字幕欧美一区二区| 日韩大码丰满熟妇| 国产精品98久久久久久宅男小说| а√天堂www在线а√下载| 中文字幕av电影在线播放| 国产精品,欧美在线| 熟女少妇亚洲综合色aaa.| 欧美日本亚洲视频在线播放| 97超级碰碰碰精品色视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 一区在线观看完整版| 国产亚洲精品久久久久久毛片| 性色av乱码一区二区三区2| 亚洲中文日韩欧美视频| 国产午夜精品久久久久久| 两个人看的免费小视频| 精品国产美女av久久久久小说| 女人被狂操c到高潮| www.自偷自拍.com| 一级作爱视频免费观看| 欧美日韩黄片免| 中亚洲国语对白在线视频| 搞女人的毛片| 精品国产乱码久久久久久男人| 成人精品一区二区免费| 视频区欧美日本亚洲| 久久青草综合色| 1024香蕉在线观看| 亚洲第一电影网av| 国产不卡一卡二| av片东京热男人的天堂| 涩涩av久久男人的天堂| 免费在线观看黄色视频的| 亚洲中文字幕日韩| 青草久久国产| 日本黄色视频三级网站网址| 国产色视频综合| 黑人巨大精品欧美一区二区mp4| 国产高清有码在线观看视频 | 男人的好看免费观看在线视频 | 亚洲自偷自拍图片 自拍| 琪琪午夜伦伦电影理论片6080| 50天的宝宝边吃奶边哭怎么回事| 91精品三级在线观看| 九色国产91popny在线| 欧美黑人精品巨大| 高清在线国产一区| 欧美午夜高清在线| 亚洲精品国产一区二区精华液| 人人妻人人澡欧美一区二区 | 国产又色又爽无遮挡免费看| 免费久久久久久久精品成人欧美视频| 精品国产一区二区三区四区第35| 99久久综合精品五月天人人| 久久国产精品男人的天堂亚洲| 在线av久久热| 精品久久久久久,| 亚洲成a人片在线一区二区| ponron亚洲| 午夜精品在线福利| 午夜视频精品福利| 热99re8久久精品国产| 欧美亚洲日本最大视频资源| 午夜精品在线福利| 久久久久久人人人人人| 黄色片一级片一级黄色片| 99在线视频只有这里精品首页| 亚洲电影在线观看av| 桃红色精品国产亚洲av| 亚洲国产高清在线一区二区三 | 99久久国产精品久久久| 悠悠久久av| 亚洲成av人片免费观看| 欧美亚洲日本最大视频资源| 免费在线观看黄色视频的| 午夜福利高清视频| 免费在线观看亚洲国产| 欧美日本亚洲视频在线播放| 久久久久国产一级毛片高清牌| 国产三级在线视频| 在线av久久热| 久久狼人影院| 多毛熟女@视频| 亚洲精品久久成人aⅴ小说| 欧美中文综合在线视频| 国产精品久久久人人做人人爽| 日韩欧美在线二视频| 久久婷婷人人爽人人干人人爱 | videosex国产| 香蕉久久夜色| 国产成人精品无人区| 又黄又爽又免费观看的视频| 1024视频免费在线观看| 妹子高潮喷水视频| 女警被强在线播放| 亚洲伊人色综图| x7x7x7水蜜桃| 美女免费视频网站| 欧美中文日本在线观看视频| 亚洲片人在线观看| 久久国产精品人妻蜜桃| 19禁男女啪啪无遮挡网站| 黄色毛片三级朝国网站| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 高清黄色对白视频在线免费看| 激情在线观看视频在线高清| 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站在线播放欧美日韩| 一区在线观看完整版| 999久久久国产精品视频| 国产麻豆69| 国产精品久久久久久亚洲av鲁大| 狂野欧美激情性xxxx| 日本欧美视频一区| 伦理电影免费视频| 欧美黄色片欧美黄色片| 麻豆一二三区av精品| 亚洲av日韩精品久久久久久密| 黑人操中国人逼视频| 免费观看人在逋| 免费在线观看视频国产中文字幕亚洲| 一级片免费观看大全| 国产精品免费视频内射| 精品欧美国产一区二区三| 日韩免费av在线播放| 亚洲欧美激情综合另类| 日韩 欧美 亚洲 中文字幕| 欧美另类亚洲清纯唯美| 一进一出好大好爽视频| 我的亚洲天堂| 亚洲av日韩精品久久久久久密| 韩国av一区二区三区四区| 久久中文字幕一级| 国语自产精品视频在线第100页| a在线观看视频网站| 色哟哟哟哟哟哟| av福利片在线| 涩涩av久久男人的天堂| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 窝窝影院91人妻| 久久久精品欧美日韩精品| av电影中文网址| 免费看美女性在线毛片视频| 日日摸夜夜添夜夜添小说| 在线免费观看的www视频| 精品久久久久久成人av| 日韩精品中文字幕看吧| 免费av毛片视频| 可以免费在线观看a视频的电影网站| 免费在线观看影片大全网站| 国产精品 国内视频| 精品卡一卡二卡四卡免费| 欧美av亚洲av综合av国产av| 在线观看午夜福利视频| 国产亚洲精品av在线| 巨乳人妻的诱惑在线观看| 一区二区三区精品91| 在线观看66精品国产| 人成视频在线观看免费观看| 亚洲国产精品合色在线| 黄片大片在线免费观看| ponron亚洲| 久久久久久亚洲精品国产蜜桃av| 久久精品国产亚洲av香蕉五月| 国产精品一区二区免费欧美| 久久久久久国产a免费观看| 国产伦一二天堂av在线观看| 免费人成视频x8x8入口观看| 日韩中文字幕欧美一区二区| 国产精品美女特级片免费视频播放器 | 69av精品久久久久久| 在线观看免费视频日本深夜| 一级作爱视频免费观看| 人人妻人人澡欧美一区二区 | 国产一区二区三区综合在线观看| 精品久久久精品久久久| 亚洲精华国产精华精| 一区二区三区激情视频| 亚洲人成伊人成综合网2020| 亚洲精品久久成人aⅴ小说| 久久人人爽av亚洲精品天堂| 国产精品自产拍在线观看55亚洲| 97人妻天天添夜夜摸| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 免费高清在线观看日韩| 色婷婷久久久亚洲欧美| 两性夫妻黄色片| 亚洲专区中文字幕在线| 成人亚洲精品av一区二区| 日韩欧美三级三区| 91在线观看av| 麻豆av在线久日| 黄色 视频免费看| 欧美丝袜亚洲另类 | 天堂影院成人在线观看| 国产黄a三级三级三级人| 欧美日本视频| 中国美女看黄片| 午夜精品国产一区二区电影| 老司机福利观看| 深夜精品福利| 一本大道久久a久久精品| 老鸭窝网址在线观看| 亚洲精品在线美女| 最新在线观看一区二区三区| 国产av一区二区精品久久| 欧美一级a爱片免费观看看 | 视频区欧美日本亚洲| 岛国在线观看网站| 久9热在线精品视频| 久久国产乱子伦精品免费另类| 日本三级黄在线观看| 19禁男女啪啪无遮挡网站| 欧美性长视频在线观看| 午夜精品在线福利| 天天躁狠狠躁夜夜躁狠狠躁| 9色porny在线观看| 成在线人永久免费视频| 精品不卡国产一区二区三区| 日本一区二区免费在线视频| avwww免费| 精品一区二区三区av网在线观看| 中文字幕另类日韩欧美亚洲嫩草| 女同久久另类99精品国产91| 老司机午夜十八禁免费视频| 久久精品aⅴ一区二区三区四区| 久久青草综合色| 亚洲欧美一区二区三区黑人| 老汉色∧v一级毛片| 可以免费在线观看a视频的电影网站| 精品乱码久久久久久99久播| 99久久99久久久精品蜜桃| 色播亚洲综合网| 午夜福利18| 国产片内射在线| 91成年电影在线观看| 曰老女人黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 美女午夜性视频免费| 免费观看精品视频网站| 满18在线观看网站| 久久久久久人人人人人| 最新在线观看一区二区三区| 99热只有精品国产| 老司机深夜福利视频在线观看| 国产亚洲av嫩草精品影院| 久久久国产欧美日韩av| 最新美女视频免费是黄的| 俄罗斯特黄特色一大片| 国产精品亚洲一级av第二区| 久久这里只有精品19| 色综合亚洲欧美另类图片| 亚洲国产欧美网| 又大又爽又粗| 亚洲自拍偷在线| 久久国产精品人妻蜜桃| 免费女性裸体啪啪无遮挡网站| 妹子高潮喷水视频| 老司机午夜福利在线观看视频| 亚洲av美国av| 精品国产国语对白av| 18禁裸乳无遮挡免费网站照片 | 日韩欧美一区二区三区在线观看| 精品卡一卡二卡四卡免费| 丝袜人妻中文字幕| av天堂在线播放| 久久人妻av系列| 久久中文字幕人妻熟女| 亚洲三区欧美一区| 中文字幕色久视频| 男女做爰动态图高潮gif福利片 | 搡老熟女国产l中国老女人| 动漫黄色视频在线观看| 久久九九热精品免费| 欧美亚洲日本最大视频资源| 久99久视频精品免费| 涩涩av久久男人的天堂| 国产欧美日韩综合在线一区二区| 丝袜在线中文字幕| 午夜精品久久久久久毛片777| 好男人电影高清在线观看| 国产97色在线日韩免费| 精品人妻在线不人妻| 91在线观看av| 制服诱惑二区| av欧美777| 午夜日韩欧美国产| www.www免费av| 国产成人系列免费观看| 国产精品野战在线观看| 免费看十八禁软件| 亚洲欧美日韩无卡精品| 国产精品电影一区二区三区| 午夜福利在线观看吧| 日本五十路高清| 国产日韩一区二区三区精品不卡| 日本a在线网址| 伊人久久大香线蕉亚洲五| 中文字幕最新亚洲高清| 18禁美女被吸乳视频| 天天躁夜夜躁狠狠躁躁| 久久午夜综合久久蜜桃| 少妇裸体淫交视频免费看高清 | 亚洲av电影不卡..在线观看| 久久久久久国产a免费观看| 国产精品亚洲一级av第二区| 成年女人毛片免费观看观看9| 亚洲精品国产精品久久久不卡| 一级黄色大片毛片| 中文字幕色久视频| 成人免费观看视频高清| 日韩中文字幕欧美一区二区| 成熟少妇高潮喷水视频| 国产一区二区激情短视频| 亚洲人成网站在线播放欧美日韩| 亚洲欧美精品综合久久99| 国产精品九九99| 午夜两性在线视频| 久久精品国产99精品国产亚洲性色 | 嫁个100分男人电影在线观看| 一级a爱片免费观看的视频| 男男h啪啪无遮挡| 亚洲成av人片免费观看| 日韩欧美一区视频在线观看| 黑人操中国人逼视频| 欧美人与性动交α欧美精品济南到| 久热这里只有精品99|