• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rolling velocity and relative motion of particle detector in local granular flow

    2022-11-21 09:29:18RanLi李然BaoLinLiu劉寶林GangZheng鄭剛andHuiYang楊暉
    Chinese Physics B 2022年11期
    關(guān)鍵詞:鄭剛李然寶林

    Ran Li(李然) Bao-Lin Liu(劉寶林) Gang Zheng(鄭剛) and Hui Yang(楊暉)

    1School of Health Science and Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China

    2School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China

    The velocity of a particle detector in granular flow can be regarded as the combination of rolling and sliding velocities.The study of the contribution of rolling velocity and sliding velocity provides a new explanation to the relative motion between the detector and the local granular flow. In this study, a spherical detector using embedded inertial navigation technology is placed in the chute granular flow to study the movement of the detector relative to the granular flow. It is shown by particle image velocimetry(PIV)that the velocity of chute granular flow conforms to Silbert’s formula. And the velocity of the detector is greater than that of the granular flow around it. By decomposing the velocity into sliding and rolling velocity,it is indicated that the movement of the detector relative to the granular flow is mainly caused by rolling.The rolling detail shown by DEM simulation leads to two potential mechanisms based on the position and drive of the detector.

    Keywords: local velocity distribution,rolling velocity,inertial navigation technology,relative velocity dependent(RVD)rolling friction

    1. Introduction

    Traditional granular flow velocity distribution is studied usually[1]by using the monodisperse granular flow for the exploration of flow models[2,3]while the the research of polydisperse particle flow focuses on the mechanism of mixing and segregation.[4,5]However, there is a special particle flow of a few special particles worthy of attention in the nearly monodisperse granular flow,e.g.,rock landslides with accompanying debris flows are examples of such particle flows.[6]The number of special particles cannot form the statistical characteristics to support the segregation and mixing model exploration. The description of the movement of the special particles relative to the granular flow is very lacking. This process can be studied by placing inertial navigation detector into the chute granular flow,which can provide a valuable reference for the study of the movement process of special particles.

    In the absence of a unified framework,granular flows in a chute are commonly divided into three different regimes based on the inertial number.[7]This study focuses on the viscouslike regime. The material flow is more like a liquid with a shear-rate-dependent stress under this regime.[8]

    The local rheology is the most widely recognized mathematical model for viscous-like granular flow in an inclined chute.[9,10]Forterre and Pouliquen[11]and Tripathi and Khakha[12]summarized the local flow velocity distribution model as shown in Fig. 1(a). A granular layer of thicknesshflows down a rough plane inclined at an angle 8°<θ <12°.The force balance for steady uniform flows implies that the ratio between shear stress and normal stress is constant and equal to tanθ. Experimentally or numerically, the mean velocity varies as the power 3/2 of the depth and increases with inclination. The physical mechanism is the nonlinear correlation between the friction coefficientμand the inertial numberI[7,9]in the quasi static and kinetic regime,specifically

    which is shown in Fig.1(b).

    However,this model does not distinguish between the velocity caused by particle sliding and that by particle rolling.The latest research shows that rolling has an important influence on the movement of granular flow.[13,14]

    Wanget al. reported a study on the granular flow layers by using the embedded inertial navigation techniques.[15]This provides a new method of studying particle rolling in a particle flow. Caviezelet al.studied rockfall on Alps by using a detector equipped with a situ sensor,and successfully reconstructed the falling trajectory of the detector.[16,17]Zhuet al.improved the navigation techniques and applied them to the study of the funnel flow particle rolling in the laboratory, and accurately measured the angular velocity distribution of the tracer particles in the funnel flow.[18]It was found that there is a close relationship between rolling and the granular flow velocity distribution. This provides an important reference for the study of the relative particle flow motion of special particles.

    Fig.1. Local flow velocity distribution in chute granular flow:(a)schematic diagram of flat inclined chute and(b)nonlinear correlation between friction coefficient and inertial number.[11,12]

    It should be noted that the PIV method and the xray method will not interfere with the particle flow and are a reliable method to measure the particle flow velocity distribution.[19]Since x-ray may offset the inertial navigation device,the PIV is chosen to measure the velocity distribution of chute granular flow which is used as the baseline. However,there are physical parameters which cannot be obtained by the experimental technology. With the development of computer technology, the discrete element method (DEM) is increasingly used in the granular flow mechanism research field.[20,21]The DEM can track the real-time motion of each particle,and obtain the particle’s rotational motion information.[22]The influence of rolling friction coefficient was investigated in Yu and Saxen’s DEM study of Silo.[23]Tripathiet al.adopted the relative velocity dependent(RVD)rolling friction in quantitative DEM simulation of non-spherical particle.[24]Taking the rolling friction into consideration in the model,the consistency of simulation results and experimental results is improved.

    In this work,the data obtained from DEM simulation validated by spherical detector experiments are used to study the local granular flow,attempting to identify the velocity of particle as the rolling and sliding velocity in local flow velocity so as to provide a new perspective for the study of the movement of special particles relative to granular flow.

    2. Experimental setups

    2.1. Chute granular flow

    Based on the theoretical model,the experimental process in this study can be seen in Fig. 2. The chute granular flow lasted 2.7 s on average and 2.8 s in this experiment served as an example. Att0=0,the baffle is removed and the particles started to move. The velocity distribution is unstable initially but att1=0.6 s, the chute granular flow forms a stable local flow velocity distribution. Aftert2=1.2 s,owing to the inadequate thickness of the particle bed in the chute,the local flow velocity distribution cannot be maintained.

    We use the PIV technique to obtain the velocity on the side wall of the chute, as shown in Fig. 2(d). The detector is used as the special particle of concern (diameter of 30 mm),surrounded by small particles(diameter of 10 mm)inside the chute. The spherical detector can obtain the particle’s acceleration and rotation angular velocity. Therefore, the particle velocities of different initial heights in the chute and the composition of particle velocity under different inclination angles are studied.The position of the spherical detector isZ1,Z2,Z3,...,Z6, with a spacing of 15 mm. The thickness of the filled particles in the chute is 110 mm. The diameter of the filled particles is 10 mm,and the diameter of the spherical detector is 30 mm. To ensure that the velocity of the bottom particle is 0,a rough surface with a coefficient of friction of 0.8 is set as the bottom of the chute. More detailed description of the system is given in Refs.[14,15].

    Fig. 2. Snapshots of chute granular flow, showing granular profile at (a)t0 =0, (b)t1 =0.6 s, chute granular flow formed stable local flow velocity distribution;(c)after t2=1.2 s,local flow velocity distribution failing to be maintained due to the inadequate thickness of the particle bed in the chute;(d)example displaying the granular flow at t=1 s to show the PIV measurement results.

    2.2. Spherical detector based on embedded inertial navigation technology

    The spherical detector is used to measure the angular velocity,acceleration and other movement data during the experiment through using embedded inertial navigation technology.

    Any attitude in three-dimensional space can be represented concisely, intuitively by Euler angles. The aerial sequential Euler angles (shown in Fig. 3(a)) are used to represent the attitude of spherical detectors,φ,χ,Ψ, respectively,as the roll angle,pitch angle,and yaw angle. In the carrier coordinate system of the spherical detector,xbmoves to the right along the horizontal axis,ybmoves forward along the longitudinal axis,andzbmoves along the vertical axis. In the spatial coordinate system (E),xEis the projection ofxbon the horizontal plane,yEis perpendicular toxE,andzEis perpendicular to the horizontal plane.

    Fig. 3. (a) Schematic diagram of attitude angle of spherical detector, with ω′x,ω′y,ω′z,respectively,representing the components of original angular velocity of rolling around the x axis,y axis,and z axis,and ωy being the angular velocity of rolling around the y axis; (b) results from a typical experiment with two detectors placed side by side at Z1.[14,15]

    The Euler angle is adopted in the measurement system to represent the attitude,and a quaternion is used to represent the attitude when it is solved.[25,26]The attitude update equation of the inertial measurement unit(ωx,ωy,andωzare the values that are measured by the gyroscope)is given as follows:

    whereqis the quaternion expression.Nis the unit matrix,Ωnnbis the skew matrix of angular velocity, andTis the time interval.

    Therefore, the attitude of the spherical detector is converted into a quaternion representation through the following equation during the attitude solution:

    After the attitude solution is completed, the attitude is converted into Euler angles throughthe following equation:

    Through multiple experiments, the experimental results of spherical particle wireless measurement technology based on inertial navigation technology are validated and can be used to measure the angular velocity and translational velocity of particles in the chute system.[15,18]

    Figure 3(b)shows a typical experimental results obtained by using two spherical detectors placed atZ1. It can be found that the movement process of the detectors can be divided into stable stage and unstable stage by the rotating speed.[14]To discuss the rolling and sliding of the detector,we focus on the relationship between the particle flow velocity distribution and the special tracer particle velocity characteristic from 0.6 s to 1 s(stable stage).

    2.3. DEM simulation

    2.3.1. DEM contact model

    The most important step in DEM is to choose a reasonable physical contact model. The model of Hertz–Mindlin(no slip)with RVD rolling friction adjusts the calculation method of rolling friction to ensure that three dimensions have the proper functionality without affecting the calculation time. It is especially suitable for strong rotation systems that have strict requirements for particle rotation characteristics.[24]Therefore,in this paper DEM is used based on the model of the Hertz–Mindlin(no slip)with RVD rolling friction contact to simulate the discharge process of spherical particles in a chute.According to the relative rotational velocity between contact particles,the particle rolling friction is calculated as follows:[27]

    where torqueτrepresents the rolling friction of the particles,μris the rolling friction coefficient,Fnis the normal force between particles,R*is the equivalent radius between particles, ?ωrelis the unit vector of relative rotational velocity,E*is the equivalent Young’s modulus,andδnis the normal overlap amount.

    The equivalent radiusR*and the equivalent Young’s modulusE*are calculated from the following equations:

    whereiandjrepresent the two particles in contact,RiandRjare the radii of the contact particles,viandvjare the Poisson’s ratio,EiandEjare the Young’s moduli.

    2.3.2. Simulation setup

    Figure 4(a)shows the theoretical model of chute flow defined three layers based on the velocity distribution.[28]The experimental results presented in Ref. [15] indicate that the rolling contribution rate is an important factor affecting velocity composition.Figure 4(b)shows the simulation chute crosssectional surface sliced into 30×60 grids,and each grid is the smallest statistical unit with a size of 10 mm×20 mm×10 mm.In the simulation, the average movement information of the particles in each grid is used. The simulation process is the same as the experimental process shown in Fig. 2. Three particles (d= 1 cm) in each layer are marked. A detector(d=3 cm)is placed in the granular bed atZpoint,near particle B.

    During the simulation,the time interval for collecting particle motion data is set to be 0.01 s. In order to ensure the stability of experiment,the minimum time step in experiment is set to be 2.71×10-5s,which is less than the Rayleigh time of particle 5.82×10-5s.[29]Other system parameters of DEM simulation are shown in Table 1.

    Among them, the friction coefficient between particlesμp-pis obtained by measuring the repose angle of particle accumulation, and the coefficient of restitutioneis obtained by the particle rebound experiment.[30]

    Fig.4. Simulation based on the velocity layers: (a)schematic model of the chute system and(b)geometry of chute with an initial packed bed.

    Table 1. Physical parameters employed in experiments and simulations.

    3. Results and discussion

    3.1. Relative motion between detector and granular flow

    In the local granular flow model, it is believed that the flow velocityvx(z)is positively correlated withz3/2. The relationship between the flow velocity and the height of the chute can be expressed as(also known as Silbert’s formula)[7]

    whereIis the inertial number which increases with inclination angleθ, increasing,his the thickness of the filling particle,ρis the density of the filling particle,gis the acceleration of gravity,θis the angle between the chute and the ground,andzis the height of the chute. Based on Eq.(8),the calculated velocity of the granular flow is shown by the red line in Fig.5(a)whenθis 12°.

    Fig.5.(a)Comparison between theoretical curve and experimental curve of,chute height versus particle flow velocity,with red line representing velocity based on Eq.(8),where I=0.178,black line denoting averaged velocity measured by PIV method. and blue triangles referring to the velocities measured by using a spherical detector at six marked locations;and(b)curve of chute height versus relative velocity between the detector and the granular flow.

    We use the PIV method to obtain the averaged velocity profile on the side wall of the chute,and the detector to obtain the average velocity of special tracer particle during the stable period. It is shown in Fig.5(a)that the averaged velocity measured by the PIV method is similar to that obtained from the theoretical model,Eq.(8).The red line shows that the granular velocity at the bottom is not 0,whereas in Eq.(8)the grain at the bottom should not slip. This is because the chute does not use particle bed as bottom,so the granular layer at the bottom does not form complete stable state.

    The velocity measured by the detector at different values ofh(as shown by the blue points)is larger than the PIV results and increases linearly. This indicates that the detector moves faster than the surrounding particles. The relative velocity between the detector and the granular flow is shown by Fig.5(b).The biggest difference in velocity appears at the bottom.

    3.2. Rolling velocity and sliding velocity

    During the experiment, it can be observed in Fig. 2 that the particles in the chute have not only sliding motion, but also rolling motion. The velocity of the spherical detector is a combination of sliding velocity and rolling velocity as shown in Fig.6.

    Fig.6. Composition of velocity: sliding velocity vs and rolling velocity vr.

    The velocity along the flow directionvx(z)of the spherical detector can be expressed as

    Fig.7. Curves of chute height versus averaged angular veloci(z)of the spherical detector at different inclination angles.

    Fig. 8. Comparison of particle sliding velocity vs(z) among different values of inclination angle θ,with solid lines representing velocities calculated from Eq.(8),triangles denoting velocities measured by the spherical detector. Inertial number I =0.178 when θ =12°, I =0.140 when θ =10°.I=0.125 when θ =8°.

    As shown in Fig. 8, the sliding velocities measured by detector and calculated from Eq.(8)are matched. At the free surface of the chute,the growth pattern of particle sliding velocityvs(z)tends to be flat. This is one of the characteristics of the local flow model,indicating that the sliding velocity of the detector is mainly driven by the local granular flow. Correspondingly, the velocity of the detector relative to the surrounding particles is mainly due to rolling.

    3.3. Relative motion based on simulation results

    Using the detector and PIV technology,the measurement results show that rolling and relative motion are statistically correlated. For further investigation,the results obtained from the DEM simulation (Fig. 4) are analyzed. The area in the middle of the chute is considered as the area that contains valid granular flow velocity distribution as shown in the inset of Fig.9. The velocities of each particle are shown by the black triangles. Calculations from Eq. (8) are shown by the red line. It can be observed that the simulation results are in line with the experimental results as shown by the blue line(the same as the red line in Fig. 5). The slight difference inIbetween 0.178 in experiment result and 0.182 in simulation result may be due to the ideal shear process obtained by simulation.

    Fig. 9. Simulated velocity distributions, with inset showing measured area,triangles representing velocities of particles in measured area,red line(I =0.182) and blue line (I =0.178) denoting calculations from Eq. (8)based on the simulation and the experimental results.

    By tracking the labeled particles, simulation results provide the accurate trajectories and real-time rolling velocities that cannot be obtained experimentally.

    Figure 10(a)shows the rolling velocities of 3 labeled particles. The rolling velocity of particle A is larger than those of the other two labeled particles. The velocityvxof particle A located in the surface layer (Fig. 4) is significantly higher than those in the other layers. It takes less than 2 s to move out of the chute. This is consistent with the theory presented in Subsection 3.1.

    The velocityωyof particle B is slightly larger than that of particle C in the stable stage. After 1.5 s, the values ofωyof particles B and C are the same. By tracking the labeled particles, it is found that particle B falls in height as it follows granular flow and approaches to particle C in a time between 0.5 s and 1.5 s. This causes relative motion between particle B and the core layer. After 1.5 s, particles B and C follow similar trajectories moving out of the chute. So a similarωyis obtained.

    Because of the difference invx, the particles in different layers have obvious relative motions. The relative motion trajectory is consistent with that of velocityωy.

    Figure 10(b)shows time-dependentωyof the detector and particle B.The detector moves faster,leaving the chute 0.55 s earlier than particle B at a similar initial position. Comparing withωyin the moving duration,the rotation of the detector is more stable and larger than the particle B on average. Several larger pulses in red line indicate that particle B moves intensely when there is a gap.

    Fig. 10. (a) Curve of time-dependent angular velocity ωy of particles A(blue line),B(red line),and C(black line)on surface,core,and basal layer.(b)Curve of time-dependent angular velocity ωy of detector(blue line)and particle B(red line)located at similar initial position.

    Fig. 11. Two potential mechanisms of ωy of detector: (a) detector surrounded by granular flow; (b) detector driven by the unbalanced granular flow;(c)detector starting to surface the granular flow;(d)detector driven by gravity.

    Based on theωy,two potential mechanisms of the detector rolling are presented in Fig. 11. During the stable stage,the detector is surrounded by the granular flow as shown in Fig. 11(a). Because of the difference invxat different values ofh,the detector rolls forward under the drive unbalanced granular flow as shown in Fig.11(b).

    During the unstable stage, the upper part of the detector is not covered by the granular flow. Figure 11(c) shows the moment when the detector surfaces the granular flow. It can be observed thatvxbelow the detector is not uniform. At this stage, the detector is driven by gravity, moving to the region with highervx.

    Further investigation of the detector trajectory shows that the mechanism ofωyof the detector is correlated with the layer at which the detector is located. In the surface and basal layer,the detector has a higher probability of moving upwards. The direction is similar to that shown in Fig. 11(d). In the core layer,the trajectory of the detector is very complex. The motion directions indicated by both mechanisms occur. The relationship between rolling mechanism and time-space will be the focus of further research.

    4. Conclusions

    We experimentally studied a special particle moving in the local granular flow and consider that the velocity of the special particle should be divided into sliding velocityvs(z)and rolling velocityvr(z). Ashincreases, the sliding velocityvs(z) of particles increases, but rolling velocityvr(z)decreases. The velocityvx(z) of particles presents a linear growth,andωy(z)can be obtained by a spherical detector,thus the rolling velocity of the particlevr(z)can be obtained. Two potential mechanisms ofωyare presented based on the DEM simulation with RVD rolling friction model,andωyof the detector changes in different flow stages and layers. In further studies, the relationship between mechanism ofωyand timespace of the detector needs to be analyzed precisely and compared with theoretical models.

    Acknowledgements

    We would like to express our gratitude to Prof. V.Zivkovic from Newcastle University for his careful guidance and help.

    Project supported by the National Natural Science Foundation of China (Grant Nos. 11972212, 12072200, and 12002213).

    猜你喜歡
    鄭剛李然寶林
    《力量》
    Adaptive synchronization of chaotic systems with less measurement and actuation?
    Reptiles Are Great!
    Great Vacation Places
    春曉
    鄭剛辭職,馬仿列接掌北汽新能源
    汽車觀察(2019年2期)2019-03-15 06:00:12
    Analysis on the Pharmacists Intervention Results of the Problems from 2000 Prescriptions of Chinese Herbal Pieces
    Reduced technique for modeling electromagnetic immunity on braid shielding cable bundles?
    “養(yǎng)路鐵人”金寶林
    北方人(2017年10期)2017-07-03 14:07:24
    如果所有的愿望都能成真
    www国产在线视频色| 精品久久久久久成人av| 国产真实乱freesex| 日韩大码丰满熟妇| 久久婷婷人人爽人人干人人爱| 人人妻,人人澡人人爽秒播| 国产精品免费视频内射| 两性午夜刺激爽爽歪歪视频在线观看 | 免费在线观看影片大全网站| 免费观看精品视频网站| 观看免费一级毛片| 最近最新中文字幕大全电影3 | www.精华液| 国产亚洲av嫩草精品影院| 中国美女看黄片| 免费女性裸体啪啪无遮挡网站| 久久久水蜜桃国产精品网| 1024香蕉在线观看| 男女做爰动态图高潮gif福利片| 亚洲成人精品中文字幕电影| 午夜福利高清视频| 欧美精品亚洲一区二区| 韩国av一区二区三区四区| 成人精品一区二区免费| 高潮久久久久久久久久久不卡| 久久香蕉精品热| 精华霜和精华液先用哪个| 国产激情久久老熟女| 亚洲av电影在线进入| 高清在线国产一区| 国产精品免费视频内射| 亚洲avbb在线观看| 满18在线观看网站| 国产精品免费视频内射| 国产精品一区二区免费欧美| 好男人在线观看高清免费视频 | 一级毛片精品| 中文字幕人妻熟女乱码| 国产一区二区激情短视频| 午夜视频精品福利| 中文在线观看免费www的网站 | 精品免费久久久久久久清纯| 97人妻精品一区二区三区麻豆 | 午夜福利18| 一本大道久久a久久精品| 午夜成年电影在线免费观看| 午夜免费激情av| 久久久久久大精品| 欧美+亚洲+日韩+国产| 欧美绝顶高潮抽搐喷水| 熟女少妇亚洲综合色aaa.| 制服诱惑二区| 欧美日韩亚洲综合一区二区三区_| 精华霜和精华液先用哪个| 精品国产亚洲在线| 精品国内亚洲2022精品成人| 桃色一区二区三区在线观看| 1024视频免费在线观看| 亚洲精品国产精品久久久不卡| 亚洲专区中文字幕在线| av电影中文网址| 日韩欧美国产在线观看| 午夜激情福利司机影院| 日本a在线网址| 国产精品二区激情视频| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品合色在线| 制服人妻中文乱码| 国产精华一区二区三区| 久久久久久大精品| 丰满的人妻完整版| 亚洲av成人不卡在线观看播放网| 曰老女人黄片| 50天的宝宝边吃奶边哭怎么回事| 狂野欧美激情性xxxx| av超薄肉色丝袜交足视频| 亚洲国产欧洲综合997久久, | 最近在线观看免费完整版| 丝袜美腿诱惑在线| 宅男免费午夜| 久久欧美精品欧美久久欧美| 一二三四在线观看免费中文在| 国产激情欧美一区二区| 欧美人与性动交α欧美精品济南到| 午夜免费观看网址| 男人舔女人的私密视频| 亚洲专区字幕在线| 2021天堂中文幕一二区在线观 | 成人三级黄色视频| 国产一区二区三区视频了| 搞女人的毛片| 啦啦啦观看免费观看视频高清| 免费看日本二区| 国产精品美女特级片免费视频播放器 | 亚洲国产欧洲综合997久久, | 十分钟在线观看高清视频www| 视频在线观看一区二区三区| 黑丝袜美女国产一区| 亚洲第一青青草原| 亚洲成人精品中文字幕电影| 少妇熟女aⅴ在线视频| 黄色毛片三级朝国网站| 午夜免费鲁丝| 伦理电影免费视频| 在线看三级毛片| 国产精品久久电影中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产精品亚洲av一区麻豆| 国产高清有码在线观看视频 | 欧美黄色片欧美黄色片| 黄色视频,在线免费观看| 高清毛片免费观看视频网站| 操出白浆在线播放| 亚洲av电影在线进入| 美女高潮到喷水免费观看| 国产午夜精品久久久久久| 美女高潮到喷水免费观看| 啦啦啦 在线观看视频| 亚洲精品av麻豆狂野| 日韩国内少妇激情av| 亚洲专区字幕在线| www日本在线高清视频| 亚洲av中文字字幕乱码综合 | 亚洲精品国产精品久久久不卡| 久久久国产精品麻豆| 亚洲狠狠婷婷综合久久图片| 淫秽高清视频在线观看| 国内揄拍国产精品人妻在线 | 啦啦啦 在线观看视频| 国产精品二区激情视频| 国产一区二区三区在线臀色熟女| 视频在线观看一区二区三区| 久久性视频一级片| 欧美一级毛片孕妇| 欧美久久黑人一区二区| 精品一区二区三区四区五区乱码| 亚洲成av人片免费观看| 精品日产1卡2卡| 亚洲男人的天堂狠狠| 国产高清videossex| 成人亚洲精品av一区二区| 很黄的视频免费| 日韩有码中文字幕| 成人国语在线视频| 亚洲 欧美一区二区三区| 一区二区三区国产精品乱码| 精品第一国产精品| 精品久久久久久久久久久久久 | 欧美不卡视频在线免费观看 | 在线观看免费视频日本深夜| 亚洲人成网站在线播放欧美日韩| 身体一侧抽搐| 亚洲自拍偷在线| 国产又色又爽无遮挡免费看| 美女免费视频网站| 国产成人系列免费观看| 久久国产乱子伦精品免费另类| 亚洲精品国产区一区二| 麻豆成人av在线观看| 亚洲欧美精品综合一区二区三区| 成人国产综合亚洲| 国产精品香港三级国产av潘金莲| 男女之事视频高清在线观看| 免费在线观看黄色视频的| aaaaa片日本免费| 无人区码免费观看不卡| 精品第一国产精品| 亚洲中文日韩欧美视频| 在线观看66精品国产| 免费看a级黄色片| 亚洲自拍偷在线| 国产又爽黄色视频| 亚洲欧美日韩无卡精品| 美女国产高潮福利片在线看| 韩国av一区二区三区四区| 久久 成人 亚洲| 精品国内亚洲2022精品成人| 亚洲天堂国产精品一区在线| 免费电影在线观看免费观看| 视频区欧美日本亚洲| 精品国产乱码久久久久久男人| av视频在线观看入口| 免费看日本二区| 成人精品一区二区免费| 精品国产亚洲在线| 国产主播在线观看一区二区| 亚洲欧美一区二区三区黑人| 真人一进一出gif抽搐免费| 亚洲av电影不卡..在线观看| 国产免费男女视频| 亚洲精品在线观看二区| 丁香欧美五月| 女性生殖器流出的白浆| 久99久视频精品免费| 啦啦啦观看免费观看视频高清| 老司机深夜福利视频在线观看| 成人国产一区最新在线观看| 韩国精品一区二区三区| 神马国产精品三级电影在线观看 | 好男人电影高清在线观看| 午夜福利18| 久久精品国产清高在天天线| 一二三四社区在线视频社区8| 琪琪午夜伦伦电影理论片6080| 黄色视频,在线免费观看| 亚洲黑人精品在线| 亚洲色图 男人天堂 中文字幕| 黄色片一级片一级黄色片| 成人三级做爰电影| 国产又黄又爽又无遮挡在线| 人人妻人人看人人澡| 曰老女人黄片| 国产一区二区三区视频了| 久久久久久九九精品二区国产 | 在线视频色国产色| 国产主播在线观看一区二区| 国产午夜精品久久久久久| 两个人视频免费观看高清| 俺也久久电影网| 午夜精品久久久久久毛片777| 在线看三级毛片| 国产激情久久老熟女| 黄色a级毛片大全视频| 91在线观看av| 精品福利观看| 欧美亚洲日本最大视频资源| 免费看a级黄色片| 国产私拍福利视频在线观看| 亚洲中文av在线| 99久久无色码亚洲精品果冻| 欧美日韩福利视频一区二区| 亚洲第一欧美日韩一区二区三区| 日本一本二区三区精品| 国产伦在线观看视频一区| 国产乱人伦免费视频| 国内少妇人妻偷人精品xxx网站 | 精品午夜福利视频在线观看一区| 在线播放国产精品三级| 中文在线观看免费www的网站 | 亚洲av片天天在线观看| 一级黄色大片毛片| 精品人妻1区二区| 久久中文看片网| 国产一区二区三区在线臀色熟女| 视频在线观看一区二区三区| 在线看三级毛片| 国产在线精品亚洲第一网站| 国产伦一二天堂av在线观看| 国产黄片美女视频| 亚洲电影在线观看av| 伊人久久大香线蕉亚洲五| 精品国产一区二区三区四区第35| 亚洲久久久国产精品| 国产成人精品无人区| 99在线视频只有这里精品首页| 女人被狂操c到高潮| 啦啦啦韩国在线观看视频| 国产黄片美女视频| av天堂在线播放| 日韩欧美一区二区三区在线观看| 亚洲狠狠婷婷综合久久图片| 桃红色精品国产亚洲av| 狂野欧美激情性xxxx| 中文字幕av电影在线播放| av免费在线观看网站| 999久久久国产精品视频| 日韩欧美一区视频在线观看| 听说在线观看完整版免费高清| 国产成人精品无人区| 午夜激情福利司机影院| 久久人妻av系列| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品亚洲av一区麻豆| 男女那种视频在线观看| 又黄又爽又免费观看的视频| 亚洲av成人不卡在线观看播放网| 黄片小视频在线播放| 国产成人精品久久二区二区91| 午夜激情福利司机影院| 91老司机精品| 国产精品1区2区在线观看.| 99国产极品粉嫩在线观看| 黄色 视频免费看| 亚洲国产精品sss在线观看| 亚洲精品粉嫩美女一区| 久久久久国内视频| 色av中文字幕| 国产熟女xx| 精品电影一区二区在线| 精品乱码久久久久久99久播| 亚洲欧美一区二区三区黑人| aaaaa片日本免费| 窝窝影院91人妻| 在线观看免费视频日本深夜| 男女下面进入的视频免费午夜 | 欧美日韩福利视频一区二区| 久久人妻av系列| 婷婷精品国产亚洲av| 巨乳人妻的诱惑在线观看| 90打野战视频偷拍视频| 制服诱惑二区| 中文在线观看免费www的网站 | 精品福利观看| 美女免费视频网站| 欧美日韩亚洲综合一区二区三区_| av福利片在线| 国产精品久久电影中文字幕| 在线播放国产精品三级| 久久久久免费精品人妻一区二区 | 成人国产一区最新在线观看| 亚洲熟妇中文字幕五十中出| 十八禁人妻一区二区| 日本在线视频免费播放| 美女国产高潮福利片在线看| 日韩成人在线观看一区二区三区| 久久久久久久午夜电影| 99在线视频只有这里精品首页| 最近最新中文字幕大全电影3 | 日本 av在线| 制服丝袜大香蕉在线| 欧美色欧美亚洲另类二区| 国产精品电影一区二区三区| 不卡一级毛片| 久久精品国产清高在天天线| 国产精品 国内视频| 亚洲精品国产一区二区精华液| 亚洲va日本ⅴa欧美va伊人久久| 2021天堂中文幕一二区在线观 | 啦啦啦观看免费观看视频高清| 熟女电影av网| 午夜免费观看网址| netflix在线观看网站| 国产黄色小视频在线观看| 免费在线观看亚洲国产| 色综合婷婷激情| 波多野结衣高清无吗| 国产黄a三级三级三级人| 国产熟女午夜一区二区三区| 午夜免费鲁丝| 999精品在线视频| 国产欧美日韩精品亚洲av| 91国产中文字幕| 国产又黄又爽又无遮挡在线| 亚洲人成网站在线播放欧美日韩| 18禁国产床啪视频网站| 18禁裸乳无遮挡免费网站照片 | 精品少妇一区二区三区视频日本电影| 婷婷六月久久综合丁香| 男女视频在线观看网站免费 | 日韩欧美在线二视频| 国产精品一区二区精品视频观看| 一区二区日韩欧美中文字幕| 亚洲精华国产精华精| 国产av一区在线观看免费| 又紧又爽又黄一区二区| 国产私拍福利视频在线观看| 亚洲五月婷婷丁香| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩黄片免| 亚洲第一青青草原| 成人手机av| 免费在线观看日本一区| 18禁观看日本| 嫩草影院精品99| 少妇的丰满在线观看| 欧美激情久久久久久爽电影| 巨乳人妻的诱惑在线观看| 日韩av在线大香蕉| 高清在线国产一区| 亚洲三区欧美一区| 久久精品影院6| 午夜激情福利司机影院| 在线观看舔阴道视频| 亚洲国产毛片av蜜桃av| 亚洲国产精品成人综合色| www.熟女人妻精品国产| 国产午夜福利久久久久久| 美女高潮喷水抽搐中文字幕| 欧美色视频一区免费| 热re99久久国产66热| 色在线成人网| 免费人成视频x8x8入口观看| 天堂影院成人在线观看| 欧美日韩黄片免| 亚洲无线在线观看| 在线av久久热| 免费无遮挡裸体视频| 日韩欧美三级三区| 免费在线观看黄色视频的| 亚洲国产日韩欧美精品在线观看 | 久久精品夜夜夜夜夜久久蜜豆 | 亚洲第一青青草原| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久中文| 日韩成人在线观看一区二区三区| 亚洲国产精品成人综合色| 91大片在线观看| 精品电影一区二区在线| 久久人妻福利社区极品人妻图片| 久久久久国产一级毛片高清牌| 一区二区日韩欧美中文字幕| 99riav亚洲国产免费| 国产精品电影一区二区三区| 亚洲真实伦在线观看| 欧美在线一区亚洲| 国产aⅴ精品一区二区三区波| ponron亚洲| 少妇裸体淫交视频免费看高清 | 满18在线观看网站| 日韩欧美国产在线观看| 99久久久亚洲精品蜜臀av| 欧美性猛交╳xxx乱大交人| 老司机福利观看| 女同久久另类99精品国产91| 中文字幕人妻丝袜一区二区| 99在线视频只有这里精品首页| 欧美日本视频| 日韩 欧美 亚洲 中文字幕| 在线观看免费日韩欧美大片| 午夜福利成人在线免费观看| 亚洲电影在线观看av| 国产亚洲欧美在线一区二区| 免费在线观看成人毛片| 色婷婷久久久亚洲欧美| 国产av不卡久久| 日本撒尿小便嘘嘘汇集6| 久久久久国产精品人妻aⅴ院| 欧美午夜高清在线| 国产真实乱freesex| 欧美乱码精品一区二区三区| av欧美777| 国产欧美日韩一区二区精品| av电影中文网址| 午夜福利一区二区在线看| 久久香蕉激情| 欧美性长视频在线观看| 美女高潮喷水抽搐中文字幕| 国产视频内射| 麻豆成人av在线观看| videosex国产| 欧美中文综合在线视频| 日韩欧美 国产精品| 中文在线观看免费www的网站 | 亚洲成a人片在线一区二区| 亚洲色图av天堂| 91av网站免费观看| 级片在线观看| 12—13女人毛片做爰片一| 久久中文字幕人妻熟女| svipshipincom国产片| 亚洲精品在线美女| 欧美激情极品国产一区二区三区| 亚洲一区高清亚洲精品| 色婷婷久久久亚洲欧美| 宅男免费午夜| 一区二区三区精品91| 啦啦啦观看免费观看视频高清| 久久狼人影院| 最近在线观看免费完整版| 欧美日韩亚洲综合一区二区三区_| 国语自产精品视频在线第100页| 久久天堂一区二区三区四区| 成熟少妇高潮喷水视频| 成人国产一区最新在线观看| 国产精品久久视频播放| 又黄又爽又免费观看的视频| 亚洲无线在线观看| 国产熟女xx| 欧美日韩中文字幕国产精品一区二区三区| 亚洲一区高清亚洲精品| 久久久久亚洲av毛片大全| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 亚洲精华国产精华精| 少妇熟女aⅴ在线视频| 制服丝袜大香蕉在线| 黑人操中国人逼视频| 啦啦啦 在线观看视频| 精品国内亚洲2022精品成人| 国产成年人精品一区二区| 色尼玛亚洲综合影院| 97人妻精品一区二区三区麻豆 | 一进一出抽搐动态| 欧美亚洲日本最大视频资源| 丝袜人妻中文字幕| 亚洲中文字幕日韩| 又大又爽又粗| 国产精品99久久99久久久不卡| 搞女人的毛片| 国产三级黄色录像| 少妇的丰满在线观看| av免费在线观看网站| 国产欧美日韩精品亚洲av| 国产97色在线日韩免费| 在线观看66精品国产| 国产精品日韩av在线免费观看| 老司机午夜福利在线观看视频| 亚洲中文字幕日韩| 51午夜福利影视在线观看| 亚洲av中文字字幕乱码综合 | 欧美成狂野欧美在线观看| 热re99久久国产66热| av在线播放免费不卡| 欧美日韩福利视频一区二区| 老司机深夜福利视频在线观看| 久久中文看片网| 欧美丝袜亚洲另类 | 免费看日本二区| 久久婷婷成人综合色麻豆| 满18在线观看网站| 国产精品亚洲美女久久久| 久久久久久国产a免费观看| 久久热在线av| 亚洲成人精品中文字幕电影| 女警被强在线播放| 亚洲三区欧美一区| 听说在线观看完整版免费高清| 久久国产精品人妻蜜桃| 国内揄拍国产精品人妻在线 | 女人爽到高潮嗷嗷叫在线视频| 日韩三级视频一区二区三区| 国产又黄又爽又无遮挡在线| 欧美黑人精品巨大| 国产v大片淫在线免费观看| 日本五十路高清| 久99久视频精品免费| 日韩中文字幕欧美一区二区| 欧美在线一区亚洲| 亚洲中文日韩欧美视频| 国产av不卡久久| 淫妇啪啪啪对白视频| 国产精品,欧美在线| 亚洲男人的天堂狠狠| 巨乳人妻的诱惑在线观看| 国产亚洲欧美98| 亚洲 国产 在线| 久99久视频精品免费| 悠悠久久av| 1024手机看黄色片| 999久久久精品免费观看国产| a在线观看视频网站| 老熟妇乱子伦视频在线观看| 日日干狠狠操夜夜爽| 欧美绝顶高潮抽搐喷水| 欧美日韩亚洲综合一区二区三区_| 在线国产一区二区在线| 亚洲av日韩精品久久久久久密| 精品一区二区三区av网在线观看| 亚洲成人国产一区在线观看| 伦理电影免费视频| 久久99热这里只有精品18| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产看品久久| 精品日产1卡2卡| 美女午夜性视频免费| 色av中文字幕| 在线观看一区二区三区| 亚洲av电影不卡..在线观看| av在线播放免费不卡| 熟女少妇亚洲综合色aaa.| 精品国产一区二区三区四区第35| 婷婷丁香在线五月| 国产真人三级小视频在线观看| 色综合欧美亚洲国产小说| 中文字幕人成人乱码亚洲影| 人妻久久中文字幕网| 美女免费视频网站| 成熟少妇高潮喷水视频| 国内揄拍国产精品人妻在线 | 国产精品国产高清国产av| 黄色视频,在线免费观看| 99久久99久久久精品蜜桃| 女生性感内裤真人,穿戴方法视频| 国产精品野战在线观看| 亚洲无线在线观看| 国产亚洲精品av在线| 丝袜美腿诱惑在线| 日韩国内少妇激情av| cao死你这个sao货| 国产精品99久久99久久久不卡| 久久天躁狠狠躁夜夜2o2o| 欧美成人午夜精品| 欧美成人一区二区免费高清观看 | 久久精品成人免费网站| 亚洲人成网站在线播放欧美日韩| 丝袜人妻中文字幕| 中文亚洲av片在线观看爽| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| 后天国语完整版免费观看| 亚洲精品国产区一区二| 精品欧美国产一区二区三| 午夜福利高清视频| 人人妻人人澡人人看| 国产亚洲精品第一综合不卡| 久久久国产成人精品二区| 国产不卡一卡二| √禁漫天堂资源中文www| 国产一卡二卡三卡精品| 91大片在线观看| 美女高潮喷水抽搐中文字幕| 久久青草综合色| 精品久久久久久久毛片微露脸| 一本大道久久a久久精品| 欧美成人性av电影在线观看| 国产精品免费视频内射| 51午夜福利影视在线观看| 成人国产综合亚洲| 日韩av在线大香蕉| 午夜两性在线视频| 男人操女人黄网站| 亚洲专区中文字幕在线| 欧美丝袜亚洲另类 | 极品教师在线免费播放| www日本在线高清视频|