• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reduced technique for modeling electromagnetic immunity on braid shielding cable bundles?

    2017-08-30 08:25:32PeiXiao肖培PingAnDu杜平安BaoLinNie聶寶林andDanRen任丹
    Chinese Physics B 2017年9期
    關(guān)鍵詞:寶林

    Pei Xiao(肖培),Ping-An Du(杜平安),Bao-Lin Nie(聶寶林),and Dan Ren(任丹)

    Department of Mechatronics Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    Reduced technique for modeling electromagnetic immunity on braid shielding cable bundles?

    Pei Xiao(肖培),Ping-An Du(杜平安)?,Bao-Lin Nie(聶寶林),and Dan Ren(任丹)

    Department of Mechatronics Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    In this paper,an efficient multi-conductor simplification technique is proposed to model the electromagnetic immunity on cable bundles within a braid shielding structure over a large frequency range.By grouping together the conductors based on the knowledge of Z-Smith chart,the required computation time is markedly reduced and the complexity of modeling the completely shielding cable bundles is significantly simplified with a good accuracy.After a brief description of the immunity problems in shielding structure,a six-phase procedure is detailed to generate the geometrical characteristics of the reduced cable bundles.Numerical simulation is carried out by using a commercial software CST to validate the efficiency and advantages of the proposed approach.The research addressed in this paper is considered as a simplified modeling technique for the electromagnetic immunity within a shielding structure.

    cable bundles,electromagnetic immunity,braid shielding structure,numerical simulation

    1.Introduction

    In modern industrial domains such as the automotive industry and aviation industry,reliably and efficiently generating a full numerical model of complex real systems has become a difficult task for the designers.[1,2]Numerical modeling method and simulation have been widely used in the electromagnetic compatibility(EMC)analysis.[3–5]It requires a reliable model of the target electrical structure,in particular the model of the cable harness.[6,7]In order to simplify the structural modeling and improve the analytic efficiency,this paper focuses on the reduction technique of braid shielding cable bundles.

    The electromagnetic(EM)coupling mechanism on cable harnesses in a real system has been widely studied based on the theory of multiconductor transmission line networks (MTLN).[8–13]Compared with numerical simulation in calculating EM fields,the MTLN formalism performs better accuracy and needs less computation time.Unfortunately,the MTLN model behaves inefficiently at high frequencies due to the appearance of nonquasi-TEM modes.Hence,many researchers put forward hybrid methods to handle the EM coupling situations on cable harnesses.[14,15]In addition,some researchers adopted measurement approaches to deal with their modeling.[16]However,despite the rapid improvement in computer performance,it is still impossible to perform an accurate computation on the complete model of the whole realistic cable harnesses.

    Previous work on elaborating an EMC model for the cable harness with so called“equivalent cable bundle method (ECBM)”has been reported.On the assumption that the common-mode(CM)response is more critical than the differential-mode response for the EM coupling problems, the ECBM for modeling CM currents on cable bundles at high frequency for automotive applications is proposed for the first time.[17]Then,this technique is extended to model EM emissions of complex cable bundles.[18]Recently,the ECBM has been adopted to model the crosstalk of complex cable bundles[19,20]and calculate the conducted rear-door disturbances at a vehicle level with a huge number of wires.[21,22]

    In this paper,an efficient reduced technique is proposed to handle the modeling of the EM immunity prediction of complex cable bundles within a braid shielding structure.For this new kind of application,the main assumption is the same as that addressed in Ref.[17].The rest of this paper is organized as follows.Section 2 presents the equivalent process of the simplification technique in detail,which contains conductor grouping and equivalent geometrical characteristics.In Section 3,we validate the proposed method with a model of braid shielding 14-conductors by using CST Cable Studio and the FSV technique is used to analyze the comparison between the results from the complete model and those from the reduced model.Finally,some comments on the proposed simplification technique are given in Section 4.

    2.Theory

    2.1.Immunity problems on shielding cable bundles

    Figure 1 illustrates a model of n-conductor bounded in a braid shielding structure and irradiated by an incident EM field.The radiation field excites the induced current along each conductor.For the immunity problems,the huge com-plexity of the whole cable bundles seems to be unreasonable to model when considering the required computer resources. Though previous“ECBM”puts forward a solution to the immunity case that all the equivalent unshielded conductors are located above the infinite ideal conducting plane,it cannot be directly used to simplify the modeling of the coupling prediction of the conductors within the shielding screen.Thus, this paper focuses on a multi conductor reduction technique for modeling immunity problem on shielding cable bundles.The presented technique overcomes the limit to the MTL formalism at high frequency by using three-dimensional(3D)computation codes.

    The generation of the equivalent cross-section geometrical characteristic parameters in the braid shielding structure is quite different from that in the half-free space.As the analytical expressions of self and mutual inductance of the braid shielding mul-ticonductors are difficult to obtain,an approximate model of mul-ticonductors within an ideal conducting cylindrical shield is adopted to compute the electrical parameters.In this paper,we define a central distance d and central angle θ to determine the relative position parameters of the reduced bundles.It should be noted that the shield transfer impedance associated with inductance is not discussed in the simplification technique because the approximate method is used in computing the inductance of braid shielding mul-ticonductors.We do not need to analyze the coupling mechanism by using the shield transfer impedance,because it is considered in the CST simulation.

    The purpose of the approach is to lower the computation time and simplify the modeling process by reducing the mul-ticonductor cable bundles model into four groups shown in Fig.2.For the immunity problems,the provided modeling technique presents a modified six-phase procedure to generate the electrical and geometrical characteristic parameters of the reduced cable bundles,which contains conductor grouping,cable bundle matrices reduction,cross-section geometry modeling and equivalent loads determination.The creation of groups of conductors is based on the knowledge of Z-Smith chart,which provides a convenient way to describe the relationship between load impedance and reflection coefficient. The whole problem is calculated over a large frequency range. Based on the assumption in Ref.[17],the proposed simplification technique provides a way of modeling the CM current induced at the extremity of inner conductors.

    Fig.1.(color online)Illustration of the electromagnetic immunity on braid shielding mul-ticonductor cable bundles model.

    Fig.2.(color online)Cross-section geometries of the complete and reduced cable bundle.

    2.2.Presentation of the procedure

    a)Step 1:Creation of groups of conductors based on ZS mith chart

    In the first step,all the conductors of the complete cable bundle are classified as four groups with respect to the location of normalized terminal loadin Z-Smith chart,whererepresents the terminal impedance and ZCthe equivalent CM characteristic impedance of all conductors,i corresponds to the terminal number(“1”represents the near end terminal and“2”the far end terminal)and j the conductor number as illustrated in Table 1.It should be noted that the management of the cable harness grouping is just to simplify the coupling CM current calculation and the classification method will not affect the overall performance.

    Table 1.Conductor classification table.

    Figure 3 demonstrates the classification of groups of 9-conductor model.The dots in the Z-Smith chart represent near end normalized loads of each conductor,while the asterisks represent far end normalized loads.All the dots and asterisks are included in four sections denoted by I1,I2,II1,and II2.From the characteristic of Z-Smith chart,the terminal load has similar reflective properties in an adjacent area.Here,letwhereare the arbitrary terminal impedances connected to the near ends.Then we can obtain the following inequality:

    wherefis described as the distance between arbitraryandThe criterion of cable bundle grouping can be established by f.Then,we define I1as the area of f<1 with a set of a maximum number points on the graph which satisfy the condition,which means the absolute distance value of the two arbitrary normalized near end terminal loads is less than 1.Then I2the rest normalized near end loads.The II1and II2can be defined in the same manner,which means f<1 in II1and the rest in II2.Thus the 9 conductors can be sorted into 4 groups.

    b)Step 2:Reduced cable bundle matrices

    The second step aims to determine the reduced cable bundle inductance[Leq]and capacitance matrix[Ceq].According to the general MTLN theory,the equations of N-conductor cable bundle can be written as

    On the assumption that the same group CM current Igciequals the sum of the currents induced on each conductor of the group and all the conductors in groupihave the same group voltage Vgci,the reduced cable bundle containing four conductors is established and the equivalent MTLN equations can be modified as

    From Eqs.(1)–(4),the reduced inductance matrix[Leq] and capacitance matrix[Ceq]can be obtained as follows:[23]

    Fig.3.(color online)Criterion of cable bundle grouping based on the Z-Smith chart.

    where group 1 contains conductor 1?α with the total number N1,group 2 conductor(α+1)?β with the total number N2, group 3 conductor(β+1)?ξ with the total number N3,group 4 conductor(ξ+1)?N with the total number N4.

    c)Step 3:Reduced cable bundle cross-section geometry

    The third step is to generate the cross-section of the reduced cable bundle,which consists of six phases.As the inductance parameters of the shielding multiconductor are associated with the structural factors,such as the distance between the analytical conductor and screen,the relative distance among conductors,the calculation of the cross-sectional geometry parameters of equivalent model are obtained thanks to study made in Ref.[24]and the knowledge of the[Leq]and [Ceq]matrices.

    1)Phase 1:Estimate the central distance dibetween each equivalent conductor and the central axis of the braid shielding structure.Distance diof each equivalent conductor corresponds to the average of the distance of all the conductors of the group.

    2)Phase 2:Estimate the radius riof the braid shielding structure.The analytical formula for self-inductance liiof a wire in an ideal perfectly conducting shield is equal toThus,the radius riof each equivalent conductor can be approximated by

    3)Phase 3:The analytical formula of mutual inductance lijbetween two conductors in an ideal perfectly conducting shield can be written as

    Thus,the central angle between two conductors can be approximated by

    4)Phase 4:Optimize the reduced cross-section geometrical parameter di,ri,and θijbased on the dichotomic optimization and exact electrostatic calculations.

    5)Phase 5:Determine the thickness of the dielectric coating surrounding each equivalent conductor while avoiding dielectric coating overlapping.

    6)Phase 6:Calculate and optimize the relative permittivity εrof each wire dielectric coating,which is in accordance with the[Ceq]matrix using an electrostatic calculation.

    Figure 4 shows the corresponding computational process of the proposed simplification technique used to build the cross-section geometry.Computational process for modeling the cross-section geometry of a reduced cable bundle in braid shielding structure.

    Fig.4.Computational process for modeling the cross-section geometry of a reduced cable bundle in braid shielding structure.(a)–(f)Phases 1–6.

    d)Step 4:Reduced cable bundle equivalent terminal loads

    The fourth and the last step consists in computing the terminal loads of the reduced model connected to each equivalent conductor end.Here,the equivalent CM loads are defined as the loads that connect conductor ends to the shield screen. The terminal load connected to an equivalent conductor end is equal to the loads at the same end of all the conductors of the group connected in parallel.

    It should be noted that the previous four-step procedure is used for a simple point-to-point connected shielding cable bundle.Nevertheless,due to the calculation methods of the self and mutual inductance of shielding multiconductor,there are two important restrictions on their applicability.These are that the wires must be widely separated and the dielectric medium surrounding the wires must be homogeneous. The charge distributions around closely spaced wires will be nonuniform around their peripheries but will be approximately uniform for ratios of wire separation to wire-radius 4 and higher.

    3.Validations of reduction technique by numerical models

    In this section,a model of braid shielding 14-conductor is constructed to validate the proposed reduced technique with a commercial tool CST.Please note that in the following simulations the number of the same group conductors is chosen arbitrarily in order to demonstrate the universality of the presented approach to immunity prediction problems.

    3.1.Complete and reduced braid shielding cable bundle description

    As illustrated in Fig.2,a 14-conductor point-to-point connected cable bundle,1-meter long,located in a copper braid shielding structure with a radius of 12 mm and a thickness of 0.5 mm is modeled.Each conductor has a radius of 0.5 mm and is surrounded by dielectric coating with a thickness of 0.2 mm and dielectric constant of εr=2.5 andμr=1. The conductors with a serial number“2,3,4,5,6”are evenly distributed on the circle with a radius of 2 mm,while the conductors with a serial number“6,7,8,9,10,11,12,13,14”on the circle with a radius of 4 mm.The central coordinate of each conductor is presented in Table 2.By using modal analysis,[19]the analytical 14-conductor cable bundle characteristic impedance ZCequals 244.4 ?.The terminal loads connected to the ends of each conductor are described in Table 3. According to the classification method proposed in the first equivalent step,the 14-conductor can be sorted into the following four groups:

    1)group 1:conductors 1,2,12;

    2)group 2:conductors 3,6,14;

    3)group 3:conductors 4,5,7,8;

    4)group 4:conductors 9,10,11,13.

    The p.u.1.inductance matrix[L]and capacitance matrix [C]of the complete model in Fig.5 are

    Table 2.Coordinates of each conductor of the 14-conductor shielding cable bundle(unit:mm).

    Table 3.Terminal loads of the 14-conductor shielding cable bundle.

    Hereafter,inserting Eqs.(11)and(12)into Eqs.(6)and(7),the reduced p.u.1.inductance matrix[Leq]and capacitance matrix [Ceq]can be written as follows:

    Fig.5.(a)Cross-sectional geometry of the 14-conductor complete shielding cable bundle model and(b)the corresponding 4-equivalent conductor reduced shielding cable bundle model.

    After applying the six-phase procedure described in the third step in Section 2,the cross-section geometry of 4-equivalent-conductor model is obtained and illustrated in Fig.5.The equivalent CM terminal loads are calculated and the results are listed in Table 4.In addition,the relevant central distance,radius and central coordinate are listed in Table 5.

    Cross-sectional geometry of the 14-conductor complete shielding cable bundle model and the corresponding 4-equivalent-conductor reduced shielding cable bundle model.

    Table 4.Terminal loads of each conductor of the reduced shielding bundle.

    Table 5.Central coordinate of each conductor of the reduced shielding cable bundle(unit:mm).

    3.2.Comparing results

    The induced CM current at the near and far ends of each cable in frequency domain are calculated by using CST Cable Studio.Based on the co-simulation technique,the adopted numerical approach uses the TLM technique to analyze the electric field around the conductors and then use AC result solver to compute the coupling to terminal loads.These computations correspond to the case of a plane wave illumination with a 1 V/m magnitude,the propagation direction 45°with respect to the reference conducting ground plane and the electric field direction parallel to the conductor.Figures 6–9 illustrate the comparison between the CM currents obtained at the ends of the complete cable bundle and the reduced cable bundle.

    Using the feature selective validation(FSV)technique, it provides a way to validate computational electro magnetics(CEM)and predict the assessment of EMC data.[25,26]The FSV technique is used to evaluate the results between the complete model and the simplified model.The FSV technique shows a measure of the“quality”of the correlation between the two sets of data according to specific criteria.Among those measure indicators,we mainly focus on the total amplitude difference measure(ADMtot),the total feature difference measure(FDMtot),and the total global difference measure(GDMtot).These are available as numerical values and can be converted into a natural language descriptor on a sixlevel scale:excellent(0–0.1),very good(0.1–0.2),good(0.2–0.4),fair(0.4–0.8),poor(0.8–1.6),and very poor(>1.6).

    The FSV evaluation results of Figs.6–9 are listed in Table 6.From the visual evaluation,it is obviously found that the agreement between the reduced and complete model results is still satisfactory.Thus,it is demonstrated that the proposed simplification technique can be successfully used to model the CM currents on braid shielding multiconductor cable bundles.

    Fig.6.(color online)Comparison of the CM current in frequency domain on cable 1 between the complete(conductors 1,2,12)and reduced cable bundle model:(a)near end;(b)far end.

    Fig.7.(color online)Comparison of the CM current in frequency domain on cable 2 between the complete(conductors 3,6,14)and reduced cable bundle model:(a)near end;(b)far end.

    Fig.8.(color online)Comparison of the CM current in frequency domain on cable 3 between the complete(conductor4,5,7,8)and reduced cable bundle model:(a)near end;(b)far end.

    Fig.9.(color online)Comparison of the CM current in frequency domain on cable 4 between the complete(conductor 9,10,11,13)and reduced cable bundle model:(a)near end;(b)far end.

    Table 6.FSV evaluation of results in Figs.6–9.

    Several reasons are identified to explain the degradation of the agreement at some frequency points.In particular,we suspect the modeling of the cross-section geometry,which is determined by an approximated method.As the terminal loads involve inductance and capacitance,the impedance value is associated with frequency.In this paper,we use the mean value over frequency(0–3 GHz)of the terminal loads of the complete model to represent the equivalent loads.

    3.3.Comparison of analysis time

    Table 7 shows the computation times for both types of cable bundle models,calculated by CST Cable Studio.The CST simulation configuration is set to satisfy a convergence criterion and all of the computations are completed by a desktop computer with Intel(R)Xeon(R)CPUE3-1231 v3@3.40 GHz and 32 G RAM under Windows 7.From the table,it is obviously found that the reduced model behaves better in efficiency.Furthermore,it greatly simplifies the modeling process at the expense of certain calculation accuracy.

    Table 7.Analysis time of the simplified and complete model.

    4.Conclusions

    In this paper,we propose a simplification technique to model the EM immunity problem on braid shielding multi-conductor cable bundles.In order to conveniently describe the relationship between load impedance and reflection coefficient,a new method of conductors grouping based on the knowledge of Z-Smith chart is presented.Then,a modified six-phase equivalent process is detailed.For the generation of the equivalent cross-section geometrical characteristic parameters,a central distance d and central angle θ are defined and calculated by an approximate method to determine the relative position parameters of the reduced bundle.After that,a coated 14-conductor model is proposed to validate the addressed approach by using the CST.

    On the assumption that the CM current response is more critical than the differential-mode response for the EM coupling problems,our technique mainly focuses on the CM currents induced at the terminals of cable bundle.The purpose of the approach is to lower the computation time and simplify the modeling process.The simulation results confirm the possibility to model braid shielding cable bundle.From the analytical process,it can be expected that the bigger.

    [1]Egot-Lemaire S,Klingler M,Lafon F,Koné L and Baranowski S 2012 IEEE Trans.Electromag.Compat.54 1222

    [2]Ren D,Du P A,Nie B N,Cao Z and Liu W K 2014 Acta Phys.Sin.63 120701(in Chinese)

    [3]Jiao C Q and Li Y Y 2015 Chin.Phys.B 24 104101

    [4]Luo J W,Du P A,Ren D and Nie B L 2015 Acta Phys.Sin.64 010701 (in Chinese)

    [5]Cao Z,Du P A,Nie B L,Ren D and Zhang Q D 2014 Acta Phys.Sin. 63 124102(in Chinese)

    [6]Arianos S,Francavilla M A,Righero M and Vipiana 2014 IEEE Trans. Electromag.Compat.56 844

    [7]Ridel M and Parmantier J P 2014 International Symposium on Electromagnetic Compatibility,May 12–16,2014,Tokyo,Japan,p.21

    [8]Xie H Y,Li Y,Qiao H L and Wang J G 2015 Chin.Phys.B 24 060501

    [9]Jobava R G,Gheonjian A L,Hippeli J and Chiqovani G 2014 IEEE Trans.Electromag.Compat.56 1420

    [10]Baum C E,Liu T K and Tesche F M 1978 Interaction Note 350 467547

    [11]Wu Z J,Wang L F and Liao C L 2009 Acta Phys.Sin.58 6146(in Chinese)

    [12]Wan J R,Liu Y P and Zhou H L 2010 Acta Phys.Sin.59 2948(in Chinese)

    [13]Sun Y X,Zhuo Q K,Jiang Q H and Li Q 2015 Acta Phys.Sin.64 44102 (in Chinese)

    [14]Ferrieres X,Parmantier J P,Bertuol S and Ruddle A R 2004 IEEE Trans.Electromag.Compat.46 624

    [15]Bautista M A E,Francavilla M A,Vipiana F and Vecchi G 2014 IEEE Trans.Antennas Propag.62 1523

    [16]Li G,Hess G,Hoeckele R and Davidson 2015 IEEE Trans.Electromag. Compat.57 827

    [17]Andrieu G,Koné L,Bocquet F and Démoulin B 2008 IEEE Trans. Electromag.Compat.50 175

    [18]Andrieu G,Reineix A,Bunlon X and Parmantier J P 2009 IEEE Trans. Electromag.Compat.51 108

    [19]Li Z,Shao Z J,Ding J and Niu Z Y 2011 IEEE Trans.Electromag. Compat.53 1040

    [20]Li Z,Liu L L,Yan J and Xu A W 2013 IEEE Trans.Electromag.Compat.55 975

    [21]Belkhelfa S,Lefouili M and Drissi K E K 2015 IEEE Trans.Magn.51 1

    [22]Ridel M and Parmantier J P 2012 Proceedings ESA Workshop on Aerospace EMC,May 21–23,2012,Venice,Italy,p.1

    [23]Zheng Y L 2011 Analysis of Automotive Wiring Harness Equivalent Modeland Its Application in Electromagnetic Compatibility Simulation (Ph.D.Dissertation)(Chongqing:Chongqing University)(in Chinese)

    [24]Paul C R 2008 Analysis of Multiconductor Transmission Lines(New Jersey:John Wileyamp;Sons)p.196

    [25]Duffy A P,Martin A J M,Orlandi A and Antonini G 2006 IEEE Trans. Electromag.Compat.48 449

    [26]Orlandi A,Duffy A P,Archambeault B and Antonini G 2006 IEEE Trans.Electromag.Compat.48 460

    17 February 2017;revised manuscript

    31 March 2017;published online 27 July 2017)

    10.1088/1674-1056/26/9/094102

    ?Project supported by the National Natural Science Foundation of China(Grant No.51675086)and the National Defense Pre-Research Foundation of China (Grant No.6140758010116DZ02002).

    ?Corresponding author.E-mail:dupingan@uestc.edu.cn

    ?2017 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn

    猜你喜歡
    寶林
    姜寶林作品
    Rolling velocity and relative motion of particle detector in local granular flow
    小學(xué)語(yǔ)文低年級(jí)繪本閱讀教學(xué)策略探析
    《力量》
    孫寶林履新約翰迪爾中國(guó)區(qū)總裁
    “養(yǎng)路鐵人”金寶林
    北方人(2017年10期)2017-07-03 14:07:24
    冰城白樺樹(shù)
    都市(2016年9期)2016-11-22 03:18:49
    老車(chē)夫
    12 Liver and Biliary System
    觀摩·啟示·反思——從基層合唱排練看閻寶林教授教學(xué)體系的嚴(yán)謹(jǐn)與辯證
    人人妻人人澡欧美一区二区| 视频区欧美日本亚洲| 99久久无色码亚洲精品果冻| 首页视频小说图片口味搜索| 性欧美人与动物交配| 中文字幕另类日韩欧美亚洲嫩草| 女同久久另类99精品国产91| 变态另类成人亚洲欧美熟女| 妹子高潮喷水视频| 曰老女人黄片| 91在线观看av| 不卡av一区二区三区| 久久精品国产综合久久久| 中文资源天堂在线| 色老头精品视频在线观看| 免费无遮挡裸体视频| 免费无遮挡裸体视频| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久亚洲av鲁大| 巨乳人妻的诱惑在线观看| 草草在线视频免费看| 亚洲片人在线观看| 亚洲激情在线av| 中文字幕人妻丝袜一区二区| 成人免费观看视频高清| 亚洲一码二码三码区别大吗| 久久亚洲真实| 午夜精品在线福利| 99久久精品国产亚洲精品| 婷婷丁香在线五月| 精品久久久久久久人妻蜜臀av| 岛国在线观看网站| 国产又色又爽无遮挡免费看| 国产精品久久视频播放| 人人澡人人妻人| 国产亚洲av高清不卡| 国产免费av片在线观看野外av| 啪啪无遮挡十八禁网站| 91大片在线观看| 国产精品免费视频内射| 天堂动漫精品| 一进一出抽搐动态| 一区二区三区国产精品乱码| 久久久国产欧美日韩av| 大型av网站在线播放| 亚洲第一欧美日韩一区二区三区| 美女国产高潮福利片在线看| 精品国产美女av久久久久小说| 日本 欧美在线| 亚洲avbb在线观看| 老司机在亚洲福利影院| 亚洲av美国av| 无人区码免费观看不卡| 国产激情偷乱视频一区二区| av中文乱码字幕在线| 一个人免费在线观看的高清视频| 精品欧美一区二区三区在线| 精品少妇一区二区三区视频日本电影| 国产精品二区激情视频| 男人的好看免费观看在线视频 | 窝窝影院91人妻| 老汉色∧v一级毛片| 十八禁网站免费在线| 国产av又大| 50天的宝宝边吃奶边哭怎么回事| 中文字幕久久专区| 欧美日本亚洲视频在线播放| 色播亚洲综合网| 美女扒开内裤让男人捅视频| 精品少妇一区二区三区视频日本电影| 色综合亚洲欧美另类图片| 亚洲国产欧美一区二区综合| 日本一本二区三区精品| 亚洲专区中文字幕在线| 国产一区二区在线av高清观看| 精品熟女少妇八av免费久了| 欧美日本视频| 99re在线观看精品视频| 亚洲精华国产精华精| 久久伊人香网站| 一二三四在线观看免费中文在| 国产高清激情床上av| 母亲3免费完整高清在线观看| 亚洲男人的天堂狠狠| 欧美不卡视频在线免费观看 | 国产精品精品国产色婷婷| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品av在线| 男女午夜视频在线观看| 人成视频在线观看免费观看| 国产aⅴ精品一区二区三区波| 欧美成人午夜精品| 久久香蕉国产精品| 国产单亲对白刺激| 黑人巨大精品欧美一区二区mp4| 欧美激情 高清一区二区三区| tocl精华| 成人永久免费在线观看视频| 久久99热这里只有精品18| 18禁裸乳无遮挡免费网站照片 | 日韩精品免费视频一区二区三区| 国产亚洲av嫩草精品影院| 50天的宝宝边吃奶边哭怎么回事| 国产野战对白在线观看| 久久精品91无色码中文字幕| 黄色毛片三级朝国网站| 男女午夜视频在线观看| 亚洲精品久久国产高清桃花| 窝窝影院91人妻| 亚洲av成人不卡在线观看播放网| av视频在线观看入口| www.精华液| 午夜两性在线视频| a级毛片a级免费在线| 性欧美人与动物交配| 白带黄色成豆腐渣| 一二三四社区在线视频社区8| 中文字幕人妻熟女乱码| 亚洲自偷自拍图片 自拍| 一区福利在线观看| 亚洲精华国产精华精| av福利片在线| 日韩欧美三级三区| 成人免费观看视频高清| 51午夜福利影视在线观看| 黑人欧美特级aaaaaa片| 久久精品国产综合久久久| 精品一区二区三区视频在线观看免费| 波多野结衣av一区二区av| 男女床上黄色一级片免费看| 亚洲国产精品成人综合色| 在线观看日韩欧美| 国产高清videossex| 好看av亚洲va欧美ⅴa在| 精品一区二区三区视频在线观看免费| 久久99热这里只有精品18| 日本a在线网址| e午夜精品久久久久久久| 一级毛片高清免费大全| 亚洲片人在线观看| 三级毛片av免费| 日本熟妇午夜| 99精品欧美一区二区三区四区| 可以在线观看的亚洲视频| 男男h啪啪无遮挡| 熟妇人妻久久中文字幕3abv| 精品无人区乱码1区二区| 日本三级黄在线观看| 欧美最黄视频在线播放免费| 亚洲午夜精品一区,二区,三区| 欧美+亚洲+日韩+国产| 天天添夜夜摸| 久久精品国产99精品国产亚洲性色| 亚洲av成人一区二区三| 黄色 视频免费看| 男女下面进入的视频免费午夜 | 大香蕉久久成人网| www.熟女人妻精品国产| 国产乱人伦免费视频| 国产成人系列免费观看| 国产av不卡久久| 久久精品91无色码中文字幕| 狂野欧美激情性xxxx| 免费无遮挡裸体视频| 国产91精品成人一区二区三区| 一级片免费观看大全| 99久久综合精品五月天人人| 老司机在亚洲福利影院| www日本黄色视频网| 一夜夜www| 视频在线观看一区二区三区| 亚洲av电影不卡..在线观看| 变态另类成人亚洲欧美熟女| 亚洲av美国av| 1024视频免费在线观看| 99热6这里只有精品| 久久国产亚洲av麻豆专区| 亚洲专区中文字幕在线| 久久久国产精品麻豆| 一进一出抽搐动态| 我的亚洲天堂| 老司机在亚洲福利影院| 精品久久久久久,| 9191精品国产免费久久| 欧美日韩亚洲国产一区二区在线观看| 成人国产综合亚洲| 精品久久久久久,| 别揉我奶头~嗯~啊~动态视频| 久久久久国产一级毛片高清牌| 成人永久免费在线观看视频| 亚洲国产精品999在线| 免费人成视频x8x8入口观看| 亚洲精品国产一区二区精华液| 亚洲一区中文字幕在线| 国内揄拍国产精品人妻在线 | 欧美另类亚洲清纯唯美| 一级a爱视频在线免费观看| 亚洲精品在线观看二区| 国产成人精品久久二区二区91| 日韩欧美在线二视频| 一级a爱视频在线免费观看| 美女高潮喷水抽搐中文字幕| 男人操女人黄网站| 国产亚洲欧美精品永久| 亚洲精品av麻豆狂野| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 在线观看日韩欧美| 中文字幕av电影在线播放| 久久久久久九九精品二区国产 | 日韩视频一区二区在线观看| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久人妻蜜臀av| 亚洲全国av大片| videosex国产| 国内精品久久久久久久电影| 亚洲专区字幕在线| 国产又色又爽无遮挡免费看| 久久亚洲真实| 国产av一区在线观看免费| 少妇粗大呻吟视频| 在线天堂中文资源库| 天堂√8在线中文| 99热只有精品国产| 叶爱在线成人免费视频播放| 一级作爱视频免费观看| 国产v大片淫在线免费观看| 亚洲人成网站高清观看| 欧美不卡视频在线免费观看 | 中文字幕久久专区| 手机成人av网站| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产| 麻豆av在线久日| 91老司机精品| 国产一级毛片七仙女欲春2 | 亚洲国产中文字幕在线视频| 90打野战视频偷拍视频| 国产麻豆成人av免费视频| 99国产精品99久久久久| 一进一出抽搐gif免费好疼| 午夜福利一区二区在线看| 麻豆av在线久日| 国产在线精品亚洲第一网站| 午夜免费成人在线视频| 大型av网站在线播放| 丰满人妻熟妇乱又伦精品不卡| 亚洲电影在线观看av| 19禁男女啪啪无遮挡网站| 成年免费大片在线观看| 丁香六月欧美| 黄色成人免费大全| www日本黄色视频网| 99国产精品一区二区蜜桃av| 窝窝影院91人妻| 久久国产精品男人的天堂亚洲| 极品教师在线免费播放| 亚洲国产精品久久男人天堂| 久久国产精品影院| 国产精品九九99| 日韩一卡2卡3卡4卡2021年| 国内精品久久久久久久电影| netflix在线观看网站| 精华霜和精华液先用哪个| 99久久无色码亚洲精品果冻| 国产成人一区二区三区免费视频网站| 少妇熟女aⅴ在线视频| av在线播放免费不卡| 免费人成视频x8x8入口观看| 国内久久婷婷六月综合欲色啪| 一本大道久久a久久精品| 久久国产乱子伦精品免费另类| 91av网站免费观看| 亚洲免费av在线视频| 色婷婷久久久亚洲欧美| av欧美777| 久久天躁狠狠躁夜夜2o2o| 正在播放国产对白刺激| 亚洲中文字幕一区二区三区有码在线看 | 国产高清激情床上av| 两性夫妻黄色片| 看黄色毛片网站| 亚洲国产毛片av蜜桃av| 最近最新免费中文字幕在线| 一本精品99久久精品77| 国产精品综合久久久久久久免费| 黑丝袜美女国产一区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲五月色婷婷综合| 国产一区二区激情短视频| 真人一进一出gif抽搐免费| 观看免费一级毛片| 国产高清视频在线播放一区| 精品国产乱码久久久久久男人| 国产又黄又爽又无遮挡在线| 亚洲熟女毛片儿| 国产免费男女视频| 在线观看66精品国产| 久久精品aⅴ一区二区三区四区| 午夜免费激情av| 免费观看精品视频网站| 男女午夜视频在线观看| 免费搜索国产男女视频| 啦啦啦观看免费观看视频高清| 99国产极品粉嫩在线观看| av视频在线观看入口| 欧美激情 高清一区二区三区| 亚洲成人久久爱视频| 欧美精品啪啪一区二区三区| av在线天堂中文字幕| 看片在线看免费视频| 亚洲久久久国产精品| 黄色丝袜av网址大全| 一a级毛片在线观看| 国产97色在线日韩免费| 午夜福利在线在线| 97超级碰碰碰精品色视频在线观看| 国产午夜福利久久久久久| 久久天躁狠狠躁夜夜2o2o| 欧美日韩瑟瑟在线播放| 18禁美女被吸乳视频| 女人爽到高潮嗷嗷叫在线视频| 欧美激情极品国产一区二区三区| 日日夜夜操网爽| 国产成年人精品一区二区| 精品久久久久久久久久久久久 | 嫩草影视91久久| 青草久久国产| 久久精品91蜜桃| av超薄肉色丝袜交足视频| 老司机深夜福利视频在线观看| 成在线人永久免费视频| 中文资源天堂在线| 欧美激情高清一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 久久中文字幕人妻熟女| 香蕉久久夜色| 欧美激情高清一区二区三区| 熟妇人妻久久中文字幕3abv| 亚洲精品中文字幕一二三四区| 欧美乱码精品一区二区三区| 久久久久久久午夜电影| 精品久久久久久久人妻蜜臀av| 变态另类丝袜制服| 麻豆一二三区av精品| 亚洲熟妇熟女久久| 真人做人爱边吃奶动态| 亚洲av日韩精品久久久久久密| 窝窝影院91人妻| 久久精品影院6| 久久久久久久久免费视频了| 天堂√8在线中文| 亚洲欧美日韩高清在线视频| 中文字幕人妻丝袜一区二区| 成人一区二区视频在线观看| 美女高潮到喷水免费观看| 精品国产乱子伦一区二区三区| 在线免费观看的www视频| 国产高清videossex| 亚洲国产看品久久| 久久伊人香网站| av欧美777| 午夜久久久在线观看| 国产真人三级小视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美激情久久久久久爽电影| 午夜久久久久精精品| 色播在线永久视频| 亚洲国产毛片av蜜桃av| 听说在线观看完整版免费高清| 在线播放国产精品三级| 777久久人妻少妇嫩草av网站| 19禁男女啪啪无遮挡网站| 亚洲av电影不卡..在线观看| 国产爱豆传媒在线观看 | 最近最新中文字幕大全免费视频| 中文字幕久久专区| 日本 av在线| e午夜精品久久久久久久| 999久久久精品免费观看国产| 欧美成人性av电影在线观看| 精品国内亚洲2022精品成人| 在线观看一区二区三区| 女警被强在线播放| 亚洲专区国产一区二区| 成在线人永久免费视频| 午夜免费鲁丝| 久久99热这里只有精品18| 久久久久久亚洲精品国产蜜桃av| 亚洲精品中文字幕在线视频| 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看 | 最近最新免费中文字幕在线| 又黄又粗又硬又大视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品久久久人人做人人爽| e午夜精品久久久久久久| 自线自在国产av| 一边摸一边抽搐一进一小说| 日韩国内少妇激情av| a级毛片a级免费在线| 高潮久久久久久久久久久不卡| 国产蜜桃级精品一区二区三区| 国产97色在线日韩免费| 黄网站色视频无遮挡免费观看| 欧美日韩亚洲综合一区二区三区_| 亚洲国产精品久久男人天堂| 丝袜在线中文字幕| 丁香欧美五月| bbb黄色大片| 18禁观看日本| 欧美乱妇无乱码| 免费无遮挡裸体视频| 亚洲av电影在线进入| 午夜成年电影在线免费观看| 在线视频色国产色| 给我免费播放毛片高清在线观看| 国产人伦9x9x在线观看| 亚洲国产看品久久| 中文字幕精品亚洲无线码一区 | 自线自在国产av| 大香蕉久久成人网| 手机成人av网站| 久久人妻福利社区极品人妻图片| 美女大奶头视频| 变态另类丝袜制服| 观看免费一级毛片| 香蕉av资源在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲 国产 在线| 久久午夜亚洲精品久久| 午夜两性在线视频| 久久精品91无色码中文字幕| 又黄又爽又免费观看的视频| 18禁美女被吸乳视频| 亚洲国产日韩欧美精品在线观看 | 午夜福利成人在线免费观看| 亚洲熟女毛片儿| 麻豆av在线久日| 亚洲专区国产一区二区| 一个人观看的视频www高清免费观看 | 久久性视频一级片| 亚洲精品一卡2卡三卡4卡5卡| 51午夜福利影视在线观看| 国产精品野战在线观看| 国产av不卡久久| 九色国产91popny在线| 色综合亚洲欧美另类图片| 国产区一区二久久| www.自偷自拍.com| 大香蕉久久成人网| 中文亚洲av片在线观看爽| 欧美zozozo另类| 中文资源天堂在线| 国产三级黄色录像| 午夜免费鲁丝| 国产精品免费一区二区三区在线| 午夜福利成人在线免费观看| 亚洲国产毛片av蜜桃av| 两人在一起打扑克的视频| 好男人电影高清在线观看| 国产熟女午夜一区二区三区| 黄网站色视频无遮挡免费观看| 中亚洲国语对白在线视频| 天天一区二区日本电影三级| 久久中文字幕人妻熟女| 久久久久久久久中文| 日韩三级视频一区二区三区| 91老司机精品| 亚洲成人国产一区在线观看| www.熟女人妻精品国产| 久久狼人影院| 国产单亲对白刺激| 久久国产乱子伦精品免费另类| www国产在线视频色| 久久人人精品亚洲av| 97超级碰碰碰精品色视频在线观看| www.自偷自拍.com| 日本一区二区免费在线视频| 日韩免费av在线播放| 黄色片一级片一级黄色片| 成人国产一区最新在线观看| 国产精品亚洲av一区麻豆| 少妇被粗大的猛进出69影院| 成人一区二区视频在线观看| 日本a在线网址| 熟女电影av网| 中文字幕精品亚洲无线码一区 | 国产麻豆成人av免费视频| 美女免费视频网站| 黑人欧美特级aaaaaa片| 国产精品av久久久久免费| 天天一区二区日本电影三级| 成年人黄色毛片网站| 男女午夜视频在线观看| 午夜久久久久精精品| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩瑟瑟在线播放| 亚洲色图 男人天堂 中文字幕| 欧美日本亚洲视频在线播放| 日韩欧美国产在线观看| 久久香蕉国产精品| 亚洲午夜精品一区,二区,三区| 欧美成狂野欧美在线观看| 国产亚洲精品第一综合不卡| 欧美大码av| 90打野战视频偷拍视频| 不卡av一区二区三区| 亚洲一码二码三码区别大吗| 曰老女人黄片| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 国产熟女xx| 精品乱码久久久久久99久播| 国产久久久一区二区三区| 久久久国产欧美日韩av| 日韩有码中文字幕| 国产精品综合久久久久久久免费| 在线观看日韩欧美| 久久久久久九九精品二区国产 | 99久久国产精品久久久| 91成人精品电影| 99久久精品国产亚洲精品| 在线视频色国产色| 欧美另类亚洲清纯唯美| 日韩欧美三级三区| 国内精品久久久久精免费| 欧美午夜高清在线| 最近最新中文字幕大全电影3 | 国产成人欧美在线观看| 啦啦啦免费观看视频1| 午夜成年电影在线免费观看| 国产欧美日韩一区二区三| 在线播放国产精品三级| 91麻豆精品激情在线观看国产| 亚洲人成网站高清观看| 国产精品一区二区三区四区久久 | 精品电影一区二区在线| 国产国语露脸激情在线看| 日本五十路高清| 精品久久蜜臀av无| 草草在线视频免费看| 精品久久久久久久久久久久久 | 操出白浆在线播放| 亚洲精品在线观看二区| 久久久久国产一级毛片高清牌| 日韩 欧美 亚洲 中文字幕| 色尼玛亚洲综合影院| 久久精品国产清高在天天线| 欧美一级a爱片免费观看看 | 国产成人精品久久二区二区91| 一级a爱视频在线免费观看| 18禁裸乳无遮挡免费网站照片 | 国产精品爽爽va在线观看网站 | 男人舔女人下体高潮全视频| 欧美国产日韩亚洲一区| 国产欧美日韩一区二区三| 午夜免费鲁丝| 久久久久久大精品| 久久精品亚洲精品国产色婷小说| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产欧美日韩在线播放| 国产成人一区二区三区免费视频网站| 村上凉子中文字幕在线| 国产亚洲欧美精品永久| 国产蜜桃级精品一区二区三区| 黄片播放在线免费| 国产午夜精品久久久久久| 久久精品国产综合久久久| 亚洲狠狠婷婷综合久久图片| 亚洲自偷自拍图片 自拍| 母亲3免费完整高清在线观看| 亚洲av五月六月丁香网| 母亲3免费完整高清在线观看| 麻豆成人av在线观看| 给我免费播放毛片高清在线观看| 99久久久亚洲精品蜜臀av| 无人区码免费观看不卡| 午夜福利18| 欧美日韩亚洲国产一区二区在线观看| 一进一出好大好爽视频| 中文字幕av电影在线播放| 香蕉丝袜av| 亚洲欧美精品综合一区二区三区| 制服诱惑二区| 此物有八面人人有两片| 国产v大片淫在线免费观看| 丰满的人妻完整版| 99精品在免费线老司机午夜| 黑丝袜美女国产一区| 免费无遮挡裸体视频| 久久九九热精品免费| 神马国产精品三级电影在线观看 | 国产人伦9x9x在线观看| 久久香蕉国产精品| 欧美绝顶高潮抽搐喷水| 亚洲五月天丁香| 国产一区二区三区视频了| 午夜老司机福利片| 美女午夜性视频免费| 天堂影院成人在线观看| 99在线人妻在线中文字幕| 亚洲专区字幕在线| 嫁个100分男人电影在线观看| 巨乳人妻的诱惑在线观看| 看黄色毛片网站| 欧美成狂野欧美在线观看| 久久精品aⅴ一区二区三区四区| 女人爽到高潮嗷嗷叫在线视频| 久久香蕉激情| 精品国产美女av久久久久小说| 日韩国内少妇激情av| 午夜激情福利司机影院| 亚洲,欧美精品.| 欧美 亚洲 国产 日韩一|