• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical study on topological superconductor candidate Sr-doped Bi2Se3

    2022-11-21 09:30:06JialunLiu劉佳倫ChennanWang王晨南TongLin林桐LiyeCao曹立葉LeiWang王蕾JiajiLi李佳吉ZhenTao陶鎮(zhèn)NanShen申娜RinaWu烏日娜AifangFang房愛芳NanlinWang王楠林andRongyanChen陳榮艷
    Chinese Physics B 2022年11期
    關(guān)鍵詞:王蕾

    Jialun Liu(劉佳倫) Chennan Wang(王晨南) Tong Lin(林桐) Liye Cao(曹立葉) Lei Wang(王蕾)Jiaji Li(李佳吉) Zhen Tao(陶鎮(zhèn)) Nan Shen(申娜) Rina Wu(烏日娜) Aifang Fang(房愛芳)Nanlin Wang(王楠林) and Rongyan Chen(陳榮艷)

    1Center for Advanced Quantum Studies and Department of Physics,Beijing Normal University,Beijing 100875,China

    2International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China

    3Collaborative Innovation Center of Quantum Matter,Beijing 100871,China

    Utilizing infrared spectroscopy,we study the charge dynamics of the topological superconductor candidate SrxBi2Se3.The frequency-dependent reflectivity R(ω) demonstrates metallic feature and the scattering rate of the free carriers decreases with temperature decreasing. The plasma edge shows a slight blue shift upon cooling, similar to the behavior of CuxBi2Se3. As the carrier concentration n obtained by Hall resistivity increases slightly with the decreasing temperature,the effective mass is proved to increase as well, which is in contrast with that of CuxBi2Se3. We also perform the ultrafast pump-probe study on the Sr0.2Bi2Se3 compounds. Resembling its parent compound Bi2Se3,three distinct relaxation processes are found to contribute to the transient reflectivity. However,the deduced relaxation times are quite different. In addition,the electron-optical-phonon coupling constant is identified to be λ =0.88.

    Keywords: topological superconductor,infrared spectroscopy,ultrafast spectroscopy

    1. Introduction

    In recent years,topological superconductors(TSCs)have attracted a great deal of attention due to their great significance in both fundamental research and potential application in quantum computing.[1–9]A TSC can have a full gapped superconducting bulk state together with a topologically protected gapless surface state. Majorana quasiparticles, which is crucial to the future fault-tolerant quantum computer, are believed to exist in the surface state of TSCs.[10]Up to date,searching for TSC materials is still an important task since there are only a few candidates discovered.

    In 2010,Horet al.[11]found that superconductivity could be realized in the layered topological insulator Bi2Se3by Cu intercalation. The obtained CuxBi2Se3was soon proposed to be a topological superconductor with a full gap and an oddparity paring symmetry by theoretical calculation.[3,12]Experimentally, a zero-bias conductance peak expected for a topological superconductor was observed by point-contact spectroscopy, possibly due to Majarona fermions.[13]Although a scanning tunneling microscope measurement suggests that CuxBi2Se3is a conventional s-wave superconductor,[14]further investigations demonstrate that it is more likely to be caused by an odd-parity superconductivity with a cylindrical Fermi surface.[15]More importantly, a twofold symmetry of the superconductivity is broadly identified by a large number of angle-resolved experiments in spite of its threefold symmetric lattice,which provides strong bulk evidence on the topological superconductivity.[16,17]Similar behaviors are revealed in the Sr[18–23]and Nb[3,24–26]doped Bi2Se3as well, and this spontaneous rotational-symmetry breaking or nematicity was found to persist even above the superconducting transition temperature in SrxBi2Se3,inferring the underlying connection between nematicity and unconventional superconductivity.

    So far, there are still a lot of controversial issues in understanding the superconductivity inMxBi2Se3(M=Cu, Sr,and Nb). Among them, CuxBi2Se3is very sensitive to air and intrinsically inhomogeneous, so it has a rather low superconducting volume fraction (~56%).[27]In contrast, the SrxBi2Se3compound exhibits excellent stability in air[28]and has a much larger shielding volume fraction (~91.5% at 0.5 K),[29]therefore it is more extensively studied. Additionally, although SrxBi2Se3hosts the lowest carrier density (~1019cm-3), its superconducting phase transition temperature(~2.9 K)[28,30]is very close to that of CuxBi2Se3(~3.8 K)[11]and NbxBi2Se3(~3 K). In this paper, we use infrared spectroscopy and ultrafast pump-probe technique to study the optical responses of SrxBi2Se3in both equilibrium and nonequilibrium state.We find a very slight blue shift of the plasma edge, which is associated with the simultaneous variation of the concentration and effective mass of the itinerate carriers.In addition, the electron-phonon coupling strength is yielded by our time resolved measurements.

    2. Experimental

    Single crystals of SrxBi2Se3for nominal concentrationsx= 0.20 were synthesized by the flux method.[28]The obtained crystals were easily cleaved with a silvery shining mirror-like surface. The typical dimensions of the obtained single crystals are about 3×2.5×0.5 mm3, as shown in the inset of Fig.1(a). The x-ray diffraction(XRD)measurements were conducted along the basal plane and the results are shown in Fig.1(a),which indicate the samples are of high purity and the surface is along the(00l)plane.

    The temperature-dependent resistivityρ(T)and magnetizationMwere measured in a Quantum Design physical property measurement system(PPMS),as shown in Figs.1(b)and 1(c).The resistivityρ(T)decreases with temperature decreasing in the normal state.It begins to drop dramatically at around 2.85 K and approaches zero at around 2.6 K, remarking the superconducting phase transition. A diamagnetic signal was observed in the magnetic susceptibility at the same time. The large residual resistivity value of~110 and the narrow superconducting transition width both indicate the high quality of our single crystalline samples. Hall effect measurements were also performed in the PPMS with the temperature ranging from 300 K to 2 K in perpendicular magnetic fields up to±9 T. In the case that the orientation of the Hall electrode is not applied strictly perpendicular to the direction of the current in the basal plane of Sr0.2Bi2Se3single crystals,the Hall resistivity is defined asρxy=[ρxy(+B)-ρxy(-B)]/2, whereρxy(+B)andρxy(-B)are the Hall resistance measured by increasing and decreasing the magnetic fields,respectively.

    Infrared spectroscopic studies were performed on the asgrown shinny surfaces of Sr0.2Bi2Se3single crystals with a Bruker IFS 80V in the frequency range from 30 to 25000 cm-1and as a function of temperature. In the measurement of frequency-dependent reflectivityR(ω), either gold or aluminum coating techniques are adopted in order to eliminate the impact of microscopic surface textures of the single crystalline compound. The real part of the optical conductivityσ1(ω)is derived through the Kramers–Kronig transformation of the reflectivityR(ω), which is extrapolated by a Hagen–Rubens relation to zero at the low frequency end, and x-ray scattering functions[31]for the high energy extrapolations.

    Ultrafast optical pump-probe spectroscopy of Sr0.2Bi2Se3was performed between 4 and 150 K.In this study,we used a femtosecond Ti:sapphire amplifier as the light source for probe beam,which can produce an 800 nm pulsed laser at 1 kHz repetition. The pump beam with a wavelength of 400 nm is obtained through the ultraviolet frequency doubling BBO crystal.The 100 fs time duration of the laser pulses enables ultrashort time-resolved measurement. The pump intensity was set to be~2 μJ/cm2and the probe intensity was 10 times lower.

    Fig. 1. (a) XRD pattern of Sr0.2Bi2Se3 single crystal. The inset is a photo of the single crystal. (b) The resistivity ρ(T) as a function of temperature in the range of 1.8–3.4 K.The inset shows the resistivity ρ(T)as a function of temperature in the 0–300 K range.(c)Magnetization M as a function of temperature in the 0–20 K range.

    3. Results and discussion

    The frequency-dependent reflectivityR(ω) is displayed in Fig. 2(a). It can be seen thatR(ω) approaches unit at low frequencies and increases with decreasing temperature in the far infrared region,showing a typical metallic response.As the frequency increases,R(ω) drops rapidly and reaches a minimum around 790 cm-1at 300 K, which is usually called a“screened” plasma edge. The sharpness of the plasma edge indicates a good metallic property while the small edge minimum corresponds to a low carrier density. According to a previous report,[32]the reflectivity of Bi2Se3and CuxBi2Se3displays plasma edges as well. Their edge minima locate at around 550 cm-1and 1150 cm-1, respectively. The intermediate value for Sr0.2Bi2Se3obtained in our measurements demonstrates that the Sr intercalation has indeed introduced free carriers into the parent compound Bi2Se3,but not as much as Cu doping.

    As shown in Fig. 2(b), the real part of the optical conductivityσ1shows a Drude component at the low energy range, reflecting the metallic nature of Sr0.2Bi2Se3. The zero-frequency conductivity increases upon cooling, consistent with the behavior of the resistivityρ(T). Moreover, the Drude component becomes more sharp as temperature decreases, indicating the reduction of the scattering rate of free carriers. To qualitatively study the evolution of the physical properties,we decompose the real part of the optical conductivityσ1according to the Drude–Lorentz model:

    whereωpandγDare the plasma frequency and scattering rate of the itinerate carriers, whileωj,γjandSjare the resonant frequency,damping and strength of thejth Lorentz oscillators,respectively. The first term on the right-hand side of Eq.(1)is the Drude component modeling intraband transitions of free electrons while the second Lorentz term describes interband transitions across energy gaps.

    A representative example of the fitting results ofσ1(ω)at 10 K is plotted in the inset of Fig. 2(b), where one Durde and four Lorentz terms are employed. The four interband transitions,centered at 5300 cm-1,8000 cm-1,12640 cm-1,and 23920 cm-1,are basically temperature independent. It is worth noting that these four Lorentz peaks located very closely to that of CuxBi2Se3,which suggests that the band structure of the parent compound Bi2Se3is quite stable against doping,providing a solid platform to realize topological superconductivity.

    Fig. 2. (a) Reflectivity of Sr0.2Bi2Se3 single crystals in the frequency range of 0–1500 cm-1 at different temperatures. The inset shows the reflectivity in the frequency range of 0–25000 cm-1. (b) The real part of the optical conductivity σ1 and (c) the energy loss function Im[-1/ε(ω)] of the Sr0.2Bi2Se3 single crystal. The inset of (b) shows the real part of the optical conductivity σ1 in the frequency range of 0–25000 cm-1 at different temperatures.

    Shifts of plasma frequency were also observed in the Bi2Se3and CuxBi2Se3materials. Bi2Se3shows a red shift and CuxBi2Se3exhibits a blue shift with temperature decreasing. The redshift of Bi2Se3was ascribed to the decreasing carrier density, which is caused by the reduction of thermal excitations. However,Hall experiments reveal that the carrier density of CuxBi2Se3remains unchanged with temperature decreasing,[8]so Tao and coauthors attributed its blueshift to the reduction of effective mass,induced by the shift of Fermi level relative to the band structure. In order to verify whether the blueshift of SrxBi2Se3shares a similar underling mechanism with CuxBi2Se3,we performed the Hall resistivity measurement on SrxBi2Se3.

    Fig. 3. The carrier concentration and Hall coefficient versus temperature. The upper inset is a photograph of the sample and the lower inset shows its Hall resistivity versus applied magnetic field at different temperatures.

    Now that we know the values of carrier concentrationnand the screened plasma frequencyω′p,the evolution of effective massm*with temperature could be obtained. The ratio ofm*from 300 K to 10 K is estimated to be about 0.625,which indicates an increase ofm*upon cooling. By comparison,the effective mass of CuxBi2Se3was reported to decrease fromm*=0.4215meat 300 K tom*=0.3888meat 10 K, which was ascribed to the change of dispersion nearEF. Adopting a plasma frequencyωp= 1674 cm-1and a carrier densityn= 3.03×1019cm-3, the effective mass of Sr0.2Bi2Se3at 10 K is calculated to be 0.970me, which is much larger than the value of CuxBi2Se3. As the carrier density of Sr0.2Bi2Se3is very close to that of Bi2Se3and much smaller than that of CuxBi2Se3, the Fermi level of SrxBi2Se3is supposed to be much closer to that of Bi2Se3. Especially, the effective mass of Sr0.2Bi2Se3nearly approached the static electron massmeat 4 K,suggesting that the Fermi level locates near a parabolic band. Considering that there are multiple conduction and valence bands near the Fermi level located at different momentum positions in the Brillouin zone,there may be a thermal redistribution between bands with different effective masses,as proposed by Parket al.[33]The differences between SrxBi2Se3and CuxBi2Se3reveal the complexity of the band structure near the Fermi level.

    In order to get more information about the bulk band structure of Sr0.2Bi2Se3, we also performed ultrafast pumpprobe measurements. Figure 4(a) shows the photoinduced reflectivity ΔR/Rin long (main panel) and short (inset)timescales at room temperature. Its overall profile highly resembles that of the parent compound Bi2Se3.[34,35]First of all,two strong oscillations could be resolved. The slow one with a frequency lower than 0.1 THz is almost temperature independent and most likely resulted from the coherent longitudinal acoustic phonons. The second fast oscillation located atωfast=2.17 THz at room temperature,which is slightly higher than that observed in Bi2Se3(2.15 THz), inferring the structure modulation caused by the Sr intercalation. Furthermore,a very gentle softening ofωfastwith temperature increasing is illustrated in Fig.4(c),owing to the thermal effect.

    Fig. 4. (a) The transient reflectivity ΔR/R of Sr0.2Bi2Se3 at room temperature over long (main panel) and short (inset) timescales. (b) The fitting results of ΔR/R at 4 K.The black and red solid line represent the experimental and fitting data,respectively. The three dotted lines are the three exponential functions used for fitting. The red arrow marks the kink shown in the rising edge. (c)The frequency of the fast oscillation as a function of temperature.

    The transient reflectivity ΔR/Rdisplays a sharp rise persisting until 0.5 ps, which is much longer than most conventional semiconductors and metals(~300 fs).[36]According to the two-temperature model, this process is usually governed by the thermalization of carriers through electron–electron interactions.[37,38]Especially,a kink can be resolved at around 0.3 ps,indicating more than one relaxation channels. Following the procedure used to deal with the parent compound,[34]we find that the non-oscillating part of our data can be well reproduced by three-exponential decay as well. The fitting results at 4 K are shown in Fig.4(b).

    Similar to Bi2Se3, one negative amplitudeA2and two positive amplitudesA1andA3are yielded by fitting. The first (third) relaxation channel is assigned to be governed by the couplings between the excited quasiparticles and optical (acoustic) phonon modes in Bi2Se3, whereas the second one is suggested to be related to the defect-induced charge trapping.[34]Here, we believe these three channels work for Sr0.2Bi2Se3as well,due to their remarkable similarity. However, the corresponding relaxation times of Sr0.2Bi2Se3are identified to beτ1= 0.095±0.01 ps,τ2= 0.15±0.02 ps,andτ3=0.80±0.05 ps, which are quite different from the values for the parent compound (τ1=0.11±0.02 ps,τ2=0.32±0.03 ps, andτ3=2.3±0.2 ps). It is worth remarking that the fitting values of the parameters depend partly on the choices of initial values,and the above results are the best outcome we could obtain.

    In time-resolved ultrafast spectroscopy, it is well known that the thermal relaxation rate (γT= 1/τ) for the excited quasiparticles returning back to local equilibrium state via electron-phonon interaction satisfiesγT=3ˉhλ〈Ω2〉πkBT,[38,39]whereλis the electron–phonon coupling constant, andΩis the phonon frequency, andkBis the Boltzmann constant, andTeis the electron temperature after photo-excitation. Since the relaxation timesτ1andτ3are mainly determined by the electron-phonon coupling process, their smaller values compared to the parent compound indicate that both the electron–optical-phonon coupling and electron–acoustic-phonon coupling are enhanced by the Sr doping, which agrees well with the results of Raman measurements.[40]At the same time,Sr doping will introduce more defects into the system,which may probably lead to decrease ofτ2.

    Since the fast oscillation observed in our measurement is very close to the optical A1gmode,[40–42]we can obtain the electron-optical phonon coupling constant by adoptingΩ1=2.22 THz at 4 K. The quasiparticle temperatureTecould be calculated by

    4. Conclusion

    In summary, we have performed infrared spectroscopy and ultrafast time-resolved optical spectroscopy on the topological superconductor candidate Sr0.2Bi2Se3. The equilibrium optical response of Sr0.2Bi2Se3is characterized by a slight blue shift of the plasma frequency with temperature decreasing. As the carrier density is demonstrated to increase upon cooling by Hall measurements, the effective mass is proved to show a similar trend, which is different from the behavior of CuxBi2Se3. Since the Fermi level of Sr0.2Bi2Se3is lower than that of CuxBi2Se3and closer to the conduction band minimum, we believe this difference is caused by the complex band structure near the Fermi level. Our nonequilibrium measurements reveal three relaxation channels in SrxBi2Se3, similar to the spectra of its parent compound Bi2Se3. However,the relaxation times are quite different due to the change of electron-phonon coupling strength and introduction of defected by Sr doping. We also obtain the electronoptical-phonon coupling constantλ=0.88.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12074042 and 11704033), the National Key Research and Development Program of China(Grant Nos. 2021YFA1400400 and 2016YFA0302300), and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    王蕾
    Experimental research based on a C-band compact transit-time oscillator with a novel diode loading an embedded soft magnetic material and shielding structure
    母愛流長
    歌海(2022年4期)2022-11-27 05:57:32
    Hamiltonian Bi-integrable Couplings for the Counterpart of the AKNS Soliton Hierarchy
    First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst?
    你那么好,卻帶著暗戀的疤
    Physicochemical Properties of Poly (Vinyl Alcohol)/Chitosan/Soluble Starch Composite Hydrogel
    百鳥衣圖案
    大東方(2018年3期)2018-09-10 14:16:16
    終點(diǎn)
    上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院 王蕾教授簡介
    例談數(shù)學(xué)解題之構(gòu)造法
    一边摸一边做爽爽视频免费| 男的添女的下面高潮视频| 97人妻天天添夜夜摸| netflix在线观看网站| 97精品久久久久久久久久精品| www.自偷自拍.com| 熟女av电影| 精品久久久久久久毛片微露脸 | 亚洲午夜精品一区,二区,三区| 国产男女超爽视频在线观看| 无遮挡黄片免费观看| 丝袜美足系列| 亚洲国产中文字幕在线视频| 国产精品人妻久久久影院| 十分钟在线观看高清视频www| 色精品久久人妻99蜜桃| 91精品伊人久久大香线蕉| 日本vs欧美在线观看视频| 一区二区三区精品91| 视频区欧美日本亚洲| 色网站视频免费| 啦啦啦 在线观看视频| 少妇裸体淫交视频免费看高清 | 精品一区在线观看国产| 精品国产国语对白av| 国产精品 国内视频| 国产伦人伦偷精品视频| 精品国产乱码久久久久久男人| 欧美日韩综合久久久久久| 久久久国产欧美日韩av| 亚洲国产欧美一区二区综合| 国产精品.久久久| 午夜福利乱码中文字幕| 十八禁高潮呻吟视频| 中文字幕制服av| 亚洲欧美日韩另类电影网站| netflix在线观看网站| 美女视频免费永久观看网站| 亚洲成色77777| 在线观看一区二区三区激情| 欧美亚洲日本最大视频资源| 欧美成人午夜精品| 亚洲一区中文字幕在线| 亚洲午夜精品一区,二区,三区| 精品国产一区二区久久| 777久久人妻少妇嫩草av网站| 精品少妇久久久久久888优播| 色视频在线一区二区三区| 免费一级毛片在线播放高清视频 | 国产精品人妻久久久影院| 大片电影免费在线观看免费| 欧美精品av麻豆av| 欧美国产精品一级二级三级| 黄色怎么调成土黄色| 国产99久久九九免费精品| 高清不卡的av网站| 色视频在线一区二区三区| av福利片在线| 亚洲国产最新在线播放| 国产成人av激情在线播放| 国产视频首页在线观看| 免费久久久久久久精品成人欧美视频| www.精华液| 在线观看免费日韩欧美大片| 在线亚洲精品国产二区图片欧美| 黑人巨大精品欧美一区二区蜜桃| 老熟女久久久| 人人妻,人人澡人人爽秒播 | avwww免费| 热99久久久久精品小说推荐| 国产高清不卡午夜福利| 久久天躁狠狠躁夜夜2o2o | 国产亚洲午夜精品一区二区久久| 国产精品一区二区精品视频观看| 自拍欧美九色日韩亚洲蝌蚪91| 黄色毛片三级朝国网站| 曰老女人黄片| 婷婷成人精品国产| 97在线人人人人妻| 女人被躁到高潮嗷嗷叫费观| 天堂俺去俺来也www色官网| 午夜视频精品福利| 久久久久久久国产电影| 中文字幕亚洲精品专区| 天堂俺去俺来也www色官网| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲av片在线观看秒播厂| 久久亚洲精品不卡| 精品亚洲成国产av| 亚洲av电影在线观看一区二区三区| 亚洲,一卡二卡三卡| 中国国产av一级| 国产精品一区二区免费欧美 | 亚洲熟女精品中文字幕| 国产欧美日韩综合在线一区二区| 日本一区二区免费在线视频| 在线观看免费午夜福利视频| 1024视频免费在线观看| 国产亚洲一区二区精品| 国产无遮挡羞羞视频在线观看| www.自偷自拍.com| 午夜影院在线不卡| avwww免费| 男人添女人高潮全过程视频| 久久亚洲精品不卡| 十八禁网站网址无遮挡| 少妇裸体淫交视频免费看高清 | 两性夫妻黄色片| 老鸭窝网址在线观看| 国产精品国产三级专区第一集| 别揉我奶头~嗯~啊~动态视频 | 大香蕉久久网| 久久国产精品男人的天堂亚洲| 亚洲欧美精品综合一区二区三区| 一级a爱视频在线免费观看| 纯流量卡能插随身wifi吗| 男人添女人高潮全过程视频| 久久精品人人爽人人爽视色| 免费看十八禁软件| 国产一区亚洲一区在线观看| netflix在线观看网站| 9热在线视频观看99| 欧美成狂野欧美在线观看| 久久精品亚洲av国产电影网| 色94色欧美一区二区| 男人舔女人的私密视频| 国产爽快片一区二区三区| 午夜精品国产一区二区电影| 午夜视频精品福利| 成人国产一区最新在线观看 | 丰满迷人的少妇在线观看| 男女国产视频网站| av电影中文网址| 国产精品免费视频内射| 免费看av在线观看网站| 巨乳人妻的诱惑在线观看| 欧美黄色片欧美黄色片| 久久女婷五月综合色啪小说| 男女下面插进去视频免费观看| 伊人亚洲综合成人网| 欧美精品一区二区免费开放| 大香蕉久久成人网| 菩萨蛮人人尽说江南好唐韦庄| 国产精品秋霞免费鲁丝片| 各种免费的搞黄视频| 午夜免费鲁丝| 老司机在亚洲福利影院| 日韩一本色道免费dvd| 免费看十八禁软件| 欧美日韩成人在线一区二区| 欧美日韩视频高清一区二区三区二| 国产成人欧美在线观看 | 久久精品亚洲av国产电影网| 2018国产大陆天天弄谢| 亚洲欧美一区二区三区久久| 国产91精品成人一区二区三区 | 亚洲国产精品国产精品| 欧美在线黄色| 999久久久国产精品视频| 91字幕亚洲| 亚洲国产毛片av蜜桃av| videosex国产| 亚洲色图 男人天堂 中文字幕| av天堂久久9| 亚洲专区国产一区二区| 国产一区有黄有色的免费视频| 成人免费观看视频高清| 久久九九热精品免费| √禁漫天堂资源中文www| 久久精品亚洲熟妇少妇任你| 女人高潮潮喷娇喘18禁视频| 日韩熟女老妇一区二区性免费视频| 午夜av观看不卡| 50天的宝宝边吃奶边哭怎么回事| 色婷婷久久久亚洲欧美| 妹子高潮喷水视频| 亚洲精品一区蜜桃| 亚洲伊人久久精品综合| 亚洲精品乱久久久久久| 成年人免费黄色播放视频| 久久精品人人爽人人爽视色| 别揉我奶头~嗯~啊~动态视频 | 欧美精品一区二区免费开放| e午夜精品久久久久久久| 欧美中文综合在线视频| 国产不卡av网站在线观看| 另类亚洲欧美激情| 肉色欧美久久久久久久蜜桃| 99热网站在线观看| 中文字幕av电影在线播放| 亚洲 国产 在线| 免费在线观看完整版高清| 99精国产麻豆久久婷婷| 午夜av观看不卡| 精品一区二区三区四区五区乱码 | 看免费av毛片| 亚洲欧美日韩另类电影网站| 国产主播在线观看一区二区 | 欧美国产精品va在线观看不卡| 波多野结衣av一区二区av| 午夜福利免费观看在线| 波多野结衣一区麻豆| 黄片播放在线免费| 日韩中文字幕欧美一区二区 | 9色porny在线观看| 一级黄色大片毛片| 男女无遮挡免费网站观看| 免费观看av网站的网址| 香蕉国产在线看| 亚洲成av片中文字幕在线观看| 国产精品.久久久| 青草久久国产| 精品久久久久久电影网| 久久 成人 亚洲| 蜜桃国产av成人99| 国产精品九九99| 老司机午夜十八禁免费视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品国产精品| 亚洲中文av在线| 日韩伦理黄色片| 91精品伊人久久大香线蕉| 久久精品国产a三级三级三级| 亚洲成人国产一区在线观看 | 日韩av免费高清视频| 国产成人a∨麻豆精品| 丝袜在线中文字幕| av网站免费在线观看视频| 欧美精品av麻豆av| 性色av一级| 在线观看免费视频网站a站| 国产精品九九99| 成人手机av| 啦啦啦在线观看免费高清www| 永久免费av网站大全| 国产精品一区二区在线观看99| 日韩一本色道免费dvd| 欧美日韩一级在线毛片| 欧美乱码精品一区二区三区| 国产免费又黄又爽又色| 老鸭窝网址在线观看| 欧美少妇被猛烈插入视频| 国产片特级美女逼逼视频| 日韩制服丝袜自拍偷拍| 叶爱在线成人免费视频播放| 中文精品一卡2卡3卡4更新| 一级黄片播放器| 一本一本久久a久久精品综合妖精| 亚洲人成电影免费在线| 精品久久久精品久久久| 欧美+亚洲+日韩+国产| 在线天堂中文资源库| 男人操女人黄网站| 国产熟女欧美一区二区| 国产亚洲欧美在线一区二区| 亚洲av国产av综合av卡| 国产麻豆69| 手机成人av网站| 一二三四社区在线视频社区8| 操出白浆在线播放| 不卡av一区二区三区| 在线观看一区二区三区激情| 一级毛片黄色毛片免费观看视频| 一级毛片 在线播放| 97人妻天天添夜夜摸| 久久av网站| 日本色播在线视频| av在线播放精品| 久久久久久久国产电影| 亚洲精品一二三| 亚洲激情五月婷婷啪啪| 校园人妻丝袜中文字幕| 另类亚洲欧美激情| 欧美黄色淫秽网站| 丝瓜视频免费看黄片| 久久天躁狠狠躁夜夜2o2o | 亚洲 国产 在线| 国产一区二区激情短视频 | 老鸭窝网址在线观看| 成人国语在线视频| 亚洲av在线观看美女高潮| 国产成人影院久久av| av不卡在线播放| 色94色欧美一区二区| 国产精品一区二区在线不卡| 亚洲欧美日韩另类电影网站| 国产精品 国内视频| 中文字幕精品免费在线观看视频| 国产精品九九99| 亚洲精品国产色婷婷电影| 亚洲精品一区蜜桃| 国产麻豆69| 丝袜在线中文字幕| 欧美日韩视频精品一区| 另类精品久久| 久久精品亚洲av国产电影网| 国产精品国产三级国产专区5o| 国产在线免费精品| 亚洲精品久久午夜乱码| 久久久欧美国产精品| 大码成人一级视频| 天天影视国产精品| xxx大片免费视频| 韩国精品一区二区三区| 人人妻人人澡人人看| 丰满饥渴人妻一区二区三| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 岛国毛片在线播放| 校园人妻丝袜中文字幕| 久久亚洲国产成人精品v| 高清av免费在线| 精品亚洲成国产av| 在线av久久热| 久久久国产欧美日韩av| 亚洲精品乱久久久久久| 欧美精品高潮呻吟av久久| 亚洲av成人精品一二三区| 免费在线观看影片大全网站 | 我要看黄色一级片免费的| 国产亚洲欧美在线一区二区| 久久99热这里只频精品6学生| 91麻豆精品激情在线观看国产 | 老司机影院成人| 最近中文字幕2019免费版| 亚洲,一卡二卡三卡| 亚洲男人天堂网一区| 伦理电影免费视频| 国产精品久久久人人做人人爽| 一级片'在线观看视频| av在线app专区| 亚洲人成电影免费在线| 18禁观看日本| 久久精品久久久久久噜噜老黄| 老汉色∧v一级毛片| 麻豆av在线久日| 亚洲午夜精品一区,二区,三区| 久久人妻熟女aⅴ| 人妻人人澡人人爽人人| 黄频高清免费视频| 我要看黄色一级片免费的| 国产精品一区二区在线观看99| 国精品久久久久久国模美| 久久精品国产亚洲av涩爱| 欧美久久黑人一区二区| 国产精品久久久人人做人人爽| 熟女少妇亚洲综合色aaa.| 国产日韩欧美在线精品| 高清av免费在线| 精品国产一区二区三区四区第35| 久久久国产一区二区| 国产一区有黄有色的免费视频| 精品久久久久久电影网| 久久精品国产a三级三级三级| 国产国语露脸激情在线看| 国产欧美日韩一区二区三区在线| 别揉我奶头~嗯~啊~动态视频 | 免费日韩欧美在线观看| 国语对白做爰xxxⅹ性视频网站| 国产精品麻豆人妻色哟哟久久| 日韩av不卡免费在线播放| 日日爽夜夜爽网站| 熟女av电影| 久久久国产一区二区| 亚洲国产毛片av蜜桃av| 色婷婷av一区二区三区视频| 亚洲专区中文字幕在线| 色精品久久人妻99蜜桃| 欧美性长视频在线观看| 国产欧美日韩精品亚洲av| 国产精品三级大全| 久久久国产欧美日韩av| 久久精品亚洲av国产电影网| 人妻人人澡人人爽人人| 岛国毛片在线播放| 久久久久久久久免费视频了| 赤兔流量卡办理| 啦啦啦在线观看免费高清www| 97在线人人人人妻| 成人黄色视频免费在线看| 久久人人爽人人片av| 一级毛片黄色毛片免费观看视频| 久久国产亚洲av麻豆专区| 久久亚洲精品不卡| 亚洲伊人久久精品综合| 国产无遮挡羞羞视频在线观看| 亚洲欧美一区二区三区黑人| 看免费av毛片| 80岁老熟妇乱子伦牲交| 少妇人妻 视频| 国产无遮挡羞羞视频在线观看| 99国产精品一区二区蜜桃av | 9色porny在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久久久人妻精品电影 | 99国产精品一区二区三区| 欧美黄色片欧美黄色片| 99精品久久久久人妻精品| 女性被躁到高潮视频| 深夜精品福利| 女警被强在线播放| 9热在线视频观看99| 久久人妻福利社区极品人妻图片 | 美女大奶头黄色视频| 99九九在线精品视频| 99国产综合亚洲精品| 2021少妇久久久久久久久久久| 男女免费视频国产| 曰老女人黄片| 国产精品偷伦视频观看了| 老汉色∧v一级毛片| 国产欧美日韩综合在线一区二区| 亚洲伊人色综图| 七月丁香在线播放| av欧美777| 欧美大码av| 人人妻人人爽人人添夜夜欢视频| xxxhd国产人妻xxx| 大陆偷拍与自拍| 婷婷色综合www| 一级毛片黄色毛片免费观看视频| 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 99热全是精品| 观看av在线不卡| 久久精品国产a三级三级三级| 欧美黄色淫秽网站| 日韩精品免费视频一区二区三区| 久久久精品94久久精品| 中文字幕人妻丝袜一区二区| 亚洲,一卡二卡三卡| 国产免费现黄频在线看| 国产精品久久久久成人av| 亚洲欧美精品自产自拍| 少妇 在线观看| 国产精品成人在线| 亚洲av在线观看美女高潮| 可以免费在线观看a视频的电影网站| 99国产精品99久久久久| 美女高潮到喷水免费观看| 午夜91福利影院| 国产熟女欧美一区二区| 丝袜美足系列| 日韩,欧美,国产一区二区三区| 亚洲欧洲日产国产| 亚洲av在线观看美女高潮| 一级,二级,三级黄色视频| 高清黄色对白视频在线免费看| 一级,二级,三级黄色视频| 高潮久久久久久久久久久不卡| 又大又黄又爽视频免费| 国产精品久久久久久精品电影小说| 久久中文字幕一级| 午夜福利视频精品| 欧美黑人精品巨大| 七月丁香在线播放| 韩国高清视频一区二区三区| 精品国产一区二区三区久久久樱花| 日本猛色少妇xxxxx猛交久久| www.自偷自拍.com| 国产精品偷伦视频观看了| 亚洲国产最新在线播放| 亚洲第一青青草原| 18禁裸乳无遮挡动漫免费视频| 女人被躁到高潮嗷嗷叫费观| 亚洲黑人精品在线| 9191精品国产免费久久| 高清视频免费观看一区二区| 欧美中文综合在线视频| 欧美精品高潮呻吟av久久| 两人在一起打扑克的视频| 三上悠亚av全集在线观看| 日本av免费视频播放| 亚洲三区欧美一区| 久久精品成人免费网站| 欧美日韩精品网址| 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲 | 男人爽女人下面视频在线观看| 免费观看人在逋| 91九色精品人成在线观看| 亚洲av电影在线进入| 亚洲中文日韩欧美视频| 大香蕉久久网| 国产免费视频播放在线视频| 亚洲欧美精品自产自拍| 亚洲熟女毛片儿| 精品国产一区二区久久| 久久精品aⅴ一区二区三区四区| 久久人人爽av亚洲精品天堂| 国产精品av久久久久免费| 亚洲精品一卡2卡三卡4卡5卡 | 首页视频小说图片口味搜索 | 亚洲中文日韩欧美视频| 男的添女的下面高潮视频| 美女视频免费永久观看网站| 成年女人毛片免费观看观看9 | 欧美日韩亚洲国产一区二区在线观看 | 一区二区三区精品91| 亚洲图色成人| 高清av免费在线| 精品一品国产午夜福利视频| 2018国产大陆天天弄谢| 亚洲午夜精品一区,二区,三区| 午夜影院在线不卡| e午夜精品久久久久久久| 在线亚洲精品国产二区图片欧美| 伊人亚洲综合成人网| 午夜激情av网站| 日韩一本色道免费dvd| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av高清一级| 无限看片的www在线观看| 一级毛片黄色毛片免费观看视频| 一本综合久久免费| 欧美激情高清一区二区三区| 中文字幕精品免费在线观看视频| 中文字幕人妻丝袜制服| 亚洲成人手机| 成人亚洲欧美一区二区av| 午夜福利影视在线免费观看| 少妇裸体淫交视频免费看高清 | 国产成人系列免费观看| 午夜久久久在线观看| 欧美激情极品国产一区二区三区| 久久精品亚洲熟妇少妇任你| 日本色播在线视频| 男人添女人高潮全过程视频| 国产av国产精品国产| 永久免费av网站大全| 午夜视频精品福利| 亚洲精品国产一区二区精华液| 国产欧美亚洲国产| a 毛片基地| 人人妻人人澡人人看| 一区二区日韩欧美中文字幕| 热re99久久国产66热| 麻豆av在线久日| 亚洲av在线观看美女高潮| 伦理电影免费视频| 人体艺术视频欧美日本| 性色av一级| 中文字幕色久视频| 欧美日本中文国产一区发布| 亚洲国产精品成人久久小说| 国产国语露脸激情在线看| 两个人免费观看高清视频| 午夜日韩欧美国产| 欧美亚洲 丝袜 人妻 在线| 精品亚洲成国产av| 色视频在线一区二区三区| 亚洲国产精品一区二区三区在线| 少妇粗大呻吟视频| 国产精品欧美亚洲77777| 90打野战视频偷拍视频| 欧美成人午夜精品| 国产成人欧美在线观看 | 热99国产精品久久久久久7| 香蕉国产在线看| 国产xxxxx性猛交| 日日爽夜夜爽网站| 久久天躁狠狠躁夜夜2o2o | 男女国产视频网站| 99国产综合亚洲精品| 久久久久久免费高清国产稀缺| 精品久久蜜臀av无| 国产精品九九99| 久久国产精品影院| 成人国语在线视频| 亚洲国产日韩一区二区| 丝袜脚勾引网站| 极品人妻少妇av视频| 午夜福利,免费看| 老司机影院成人| 视频区图区小说| 国产不卡av网站在线观看| 夜夜骑夜夜射夜夜干| 国产一区二区三区av在线| 亚洲第一av免费看| 99国产精品99久久久久| 亚洲人成电影观看| 巨乳人妻的诱惑在线观看| 黄色毛片三级朝国网站| 丝袜人妻中文字幕| 国产精品久久久av美女十八| 啦啦啦在线免费观看视频4| 麻豆av在线久日| 午夜福利视频在线观看免费| 色视频在线一区二区三区| 亚洲黑人精品在线| 十八禁高潮呻吟视频| 亚洲欧美日韩高清在线视频 | 51午夜福利影视在线观看| 晚上一个人看的免费电影| 男女国产视频网站| 性色av乱码一区二区三区2| 欧美日韩亚洲高清精品| 国产高清videossex| 欧美日韩亚洲综合一区二区三区_| 美女视频免费永久观看网站| √禁漫天堂资源中文www| 亚洲九九香蕉| 在线亚洲精品国产二区图片欧美| 国产人伦9x9x在线观看| 大话2 男鬼变身卡| 久久人人97超碰香蕉20202| 国产一区二区 视频在线| 永久免费av网站大全| 97在线人人人人妻| 国产99久久九九免费精品| 久久精品成人免费网站| 午夜影院在线不卡| 精品卡一卡二卡四卡免费| 波多野结衣一区麻豆| 久久久欧美国产精品|