• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical study on topological superconductor candidate Sr-doped Bi2Se3

    2022-11-21 09:30:06JialunLiu劉佳倫ChennanWang王晨南TongLin林桐LiyeCao曹立葉LeiWang王蕾JiajiLi李佳吉ZhenTao陶鎮(zhèn)NanShen申娜RinaWu烏日娜AifangFang房愛芳NanlinWang王楠林andRongyanChen陳榮艷
    Chinese Physics B 2022年11期
    關(guān)鍵詞:王蕾

    Jialun Liu(劉佳倫) Chennan Wang(王晨南) Tong Lin(林桐) Liye Cao(曹立葉) Lei Wang(王蕾)Jiaji Li(李佳吉) Zhen Tao(陶鎮(zhèn)) Nan Shen(申娜) Rina Wu(烏日娜) Aifang Fang(房愛芳)Nanlin Wang(王楠林) and Rongyan Chen(陳榮艷)

    1Center for Advanced Quantum Studies and Department of Physics,Beijing Normal University,Beijing 100875,China

    2International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China

    3Collaborative Innovation Center of Quantum Matter,Beijing 100871,China

    Utilizing infrared spectroscopy,we study the charge dynamics of the topological superconductor candidate SrxBi2Se3.The frequency-dependent reflectivity R(ω) demonstrates metallic feature and the scattering rate of the free carriers decreases with temperature decreasing. The plasma edge shows a slight blue shift upon cooling, similar to the behavior of CuxBi2Se3. As the carrier concentration n obtained by Hall resistivity increases slightly with the decreasing temperature,the effective mass is proved to increase as well, which is in contrast with that of CuxBi2Se3. We also perform the ultrafast pump-probe study on the Sr0.2Bi2Se3 compounds. Resembling its parent compound Bi2Se3,three distinct relaxation processes are found to contribute to the transient reflectivity. However,the deduced relaxation times are quite different. In addition,the electron-optical-phonon coupling constant is identified to be λ =0.88.

    Keywords: topological superconductor,infrared spectroscopy,ultrafast spectroscopy

    1. Introduction

    In recent years,topological superconductors(TSCs)have attracted a great deal of attention due to their great significance in both fundamental research and potential application in quantum computing.[1–9]A TSC can have a full gapped superconducting bulk state together with a topologically protected gapless surface state. Majorana quasiparticles, which is crucial to the future fault-tolerant quantum computer, are believed to exist in the surface state of TSCs.[10]Up to date,searching for TSC materials is still an important task since there are only a few candidates discovered.

    In 2010,Horet al.[11]found that superconductivity could be realized in the layered topological insulator Bi2Se3by Cu intercalation. The obtained CuxBi2Se3was soon proposed to be a topological superconductor with a full gap and an oddparity paring symmetry by theoretical calculation.[3,12]Experimentally, a zero-bias conductance peak expected for a topological superconductor was observed by point-contact spectroscopy, possibly due to Majarona fermions.[13]Although a scanning tunneling microscope measurement suggests that CuxBi2Se3is a conventional s-wave superconductor,[14]further investigations demonstrate that it is more likely to be caused by an odd-parity superconductivity with a cylindrical Fermi surface.[15]More importantly, a twofold symmetry of the superconductivity is broadly identified by a large number of angle-resolved experiments in spite of its threefold symmetric lattice,which provides strong bulk evidence on the topological superconductivity.[16,17]Similar behaviors are revealed in the Sr[18–23]and Nb[3,24–26]doped Bi2Se3as well, and this spontaneous rotational-symmetry breaking or nematicity was found to persist even above the superconducting transition temperature in SrxBi2Se3,inferring the underlying connection between nematicity and unconventional superconductivity.

    So far, there are still a lot of controversial issues in understanding the superconductivity inMxBi2Se3(M=Cu, Sr,and Nb). Among them, CuxBi2Se3is very sensitive to air and intrinsically inhomogeneous, so it has a rather low superconducting volume fraction (~56%).[27]In contrast, the SrxBi2Se3compound exhibits excellent stability in air[28]and has a much larger shielding volume fraction (~91.5% at 0.5 K),[29]therefore it is more extensively studied. Additionally, although SrxBi2Se3hosts the lowest carrier density (~1019cm-3), its superconducting phase transition temperature(~2.9 K)[28,30]is very close to that of CuxBi2Se3(~3.8 K)[11]and NbxBi2Se3(~3 K). In this paper, we use infrared spectroscopy and ultrafast pump-probe technique to study the optical responses of SrxBi2Se3in both equilibrium and nonequilibrium state.We find a very slight blue shift of the plasma edge, which is associated with the simultaneous variation of the concentration and effective mass of the itinerate carriers.In addition, the electron-phonon coupling strength is yielded by our time resolved measurements.

    2. Experimental

    Single crystals of SrxBi2Se3for nominal concentrationsx= 0.20 were synthesized by the flux method.[28]The obtained crystals were easily cleaved with a silvery shining mirror-like surface. The typical dimensions of the obtained single crystals are about 3×2.5×0.5 mm3, as shown in the inset of Fig.1(a). The x-ray diffraction(XRD)measurements were conducted along the basal plane and the results are shown in Fig.1(a),which indicate the samples are of high purity and the surface is along the(00l)plane.

    The temperature-dependent resistivityρ(T)and magnetizationMwere measured in a Quantum Design physical property measurement system(PPMS),as shown in Figs.1(b)and 1(c).The resistivityρ(T)decreases with temperature decreasing in the normal state.It begins to drop dramatically at around 2.85 K and approaches zero at around 2.6 K, remarking the superconducting phase transition. A diamagnetic signal was observed in the magnetic susceptibility at the same time. The large residual resistivity value of~110 and the narrow superconducting transition width both indicate the high quality of our single crystalline samples. Hall effect measurements were also performed in the PPMS with the temperature ranging from 300 K to 2 K in perpendicular magnetic fields up to±9 T. In the case that the orientation of the Hall electrode is not applied strictly perpendicular to the direction of the current in the basal plane of Sr0.2Bi2Se3single crystals,the Hall resistivity is defined asρxy=[ρxy(+B)-ρxy(-B)]/2, whereρxy(+B)andρxy(-B)are the Hall resistance measured by increasing and decreasing the magnetic fields,respectively.

    Infrared spectroscopic studies were performed on the asgrown shinny surfaces of Sr0.2Bi2Se3single crystals with a Bruker IFS 80V in the frequency range from 30 to 25000 cm-1and as a function of temperature. In the measurement of frequency-dependent reflectivityR(ω), either gold or aluminum coating techniques are adopted in order to eliminate the impact of microscopic surface textures of the single crystalline compound. The real part of the optical conductivityσ1(ω)is derived through the Kramers–Kronig transformation of the reflectivityR(ω), which is extrapolated by a Hagen–Rubens relation to zero at the low frequency end, and x-ray scattering functions[31]for the high energy extrapolations.

    Ultrafast optical pump-probe spectroscopy of Sr0.2Bi2Se3was performed between 4 and 150 K.In this study,we used a femtosecond Ti:sapphire amplifier as the light source for probe beam,which can produce an 800 nm pulsed laser at 1 kHz repetition. The pump beam with a wavelength of 400 nm is obtained through the ultraviolet frequency doubling BBO crystal.The 100 fs time duration of the laser pulses enables ultrashort time-resolved measurement. The pump intensity was set to be~2 μJ/cm2and the probe intensity was 10 times lower.

    Fig. 1. (a) XRD pattern of Sr0.2Bi2Se3 single crystal. The inset is a photo of the single crystal. (b) The resistivity ρ(T) as a function of temperature in the range of 1.8–3.4 K.The inset shows the resistivity ρ(T)as a function of temperature in the 0–300 K range.(c)Magnetization M as a function of temperature in the 0–20 K range.

    3. Results and discussion

    The frequency-dependent reflectivityR(ω) is displayed in Fig. 2(a). It can be seen thatR(ω) approaches unit at low frequencies and increases with decreasing temperature in the far infrared region,showing a typical metallic response.As the frequency increases,R(ω) drops rapidly and reaches a minimum around 790 cm-1at 300 K, which is usually called a“screened” plasma edge. The sharpness of the plasma edge indicates a good metallic property while the small edge minimum corresponds to a low carrier density. According to a previous report,[32]the reflectivity of Bi2Se3and CuxBi2Se3displays plasma edges as well. Their edge minima locate at around 550 cm-1and 1150 cm-1, respectively. The intermediate value for Sr0.2Bi2Se3obtained in our measurements demonstrates that the Sr intercalation has indeed introduced free carriers into the parent compound Bi2Se3,but not as much as Cu doping.

    As shown in Fig. 2(b), the real part of the optical conductivityσ1shows a Drude component at the low energy range, reflecting the metallic nature of Sr0.2Bi2Se3. The zero-frequency conductivity increases upon cooling, consistent with the behavior of the resistivityρ(T). Moreover, the Drude component becomes more sharp as temperature decreases, indicating the reduction of the scattering rate of free carriers. To qualitatively study the evolution of the physical properties,we decompose the real part of the optical conductivityσ1according to the Drude–Lorentz model:

    whereωpandγDare the plasma frequency and scattering rate of the itinerate carriers, whileωj,γjandSjare the resonant frequency,damping and strength of thejth Lorentz oscillators,respectively. The first term on the right-hand side of Eq.(1)is the Drude component modeling intraband transitions of free electrons while the second Lorentz term describes interband transitions across energy gaps.

    A representative example of the fitting results ofσ1(ω)at 10 K is plotted in the inset of Fig. 2(b), where one Durde and four Lorentz terms are employed. The four interband transitions,centered at 5300 cm-1,8000 cm-1,12640 cm-1,and 23920 cm-1,are basically temperature independent. It is worth noting that these four Lorentz peaks located very closely to that of CuxBi2Se3,which suggests that the band structure of the parent compound Bi2Se3is quite stable against doping,providing a solid platform to realize topological superconductivity.

    Fig. 2. (a) Reflectivity of Sr0.2Bi2Se3 single crystals in the frequency range of 0–1500 cm-1 at different temperatures. The inset shows the reflectivity in the frequency range of 0–25000 cm-1. (b) The real part of the optical conductivity σ1 and (c) the energy loss function Im[-1/ε(ω)] of the Sr0.2Bi2Se3 single crystal. The inset of (b) shows the real part of the optical conductivity σ1 in the frequency range of 0–25000 cm-1 at different temperatures.

    Shifts of plasma frequency were also observed in the Bi2Se3and CuxBi2Se3materials. Bi2Se3shows a red shift and CuxBi2Se3exhibits a blue shift with temperature decreasing. The redshift of Bi2Se3was ascribed to the decreasing carrier density, which is caused by the reduction of thermal excitations. However,Hall experiments reveal that the carrier density of CuxBi2Se3remains unchanged with temperature decreasing,[8]so Tao and coauthors attributed its blueshift to the reduction of effective mass,induced by the shift of Fermi level relative to the band structure. In order to verify whether the blueshift of SrxBi2Se3shares a similar underling mechanism with CuxBi2Se3,we performed the Hall resistivity measurement on SrxBi2Se3.

    Fig. 3. The carrier concentration and Hall coefficient versus temperature. The upper inset is a photograph of the sample and the lower inset shows its Hall resistivity versus applied magnetic field at different temperatures.

    Now that we know the values of carrier concentrationnand the screened plasma frequencyω′p,the evolution of effective massm*with temperature could be obtained. The ratio ofm*from 300 K to 10 K is estimated to be about 0.625,which indicates an increase ofm*upon cooling. By comparison,the effective mass of CuxBi2Se3was reported to decrease fromm*=0.4215meat 300 K tom*=0.3888meat 10 K, which was ascribed to the change of dispersion nearEF. Adopting a plasma frequencyωp= 1674 cm-1and a carrier densityn= 3.03×1019cm-3, the effective mass of Sr0.2Bi2Se3at 10 K is calculated to be 0.970me, which is much larger than the value of CuxBi2Se3. As the carrier density of Sr0.2Bi2Se3is very close to that of Bi2Se3and much smaller than that of CuxBi2Se3, the Fermi level of SrxBi2Se3is supposed to be much closer to that of Bi2Se3. Especially, the effective mass of Sr0.2Bi2Se3nearly approached the static electron massmeat 4 K,suggesting that the Fermi level locates near a parabolic band. Considering that there are multiple conduction and valence bands near the Fermi level located at different momentum positions in the Brillouin zone,there may be a thermal redistribution between bands with different effective masses,as proposed by Parket al.[33]The differences between SrxBi2Se3and CuxBi2Se3reveal the complexity of the band structure near the Fermi level.

    In order to get more information about the bulk band structure of Sr0.2Bi2Se3, we also performed ultrafast pumpprobe measurements. Figure 4(a) shows the photoinduced reflectivity ΔR/Rin long (main panel) and short (inset)timescales at room temperature. Its overall profile highly resembles that of the parent compound Bi2Se3.[34,35]First of all,two strong oscillations could be resolved. The slow one with a frequency lower than 0.1 THz is almost temperature independent and most likely resulted from the coherent longitudinal acoustic phonons. The second fast oscillation located atωfast=2.17 THz at room temperature,which is slightly higher than that observed in Bi2Se3(2.15 THz), inferring the structure modulation caused by the Sr intercalation. Furthermore,a very gentle softening ofωfastwith temperature increasing is illustrated in Fig.4(c),owing to the thermal effect.

    Fig. 4. (a) The transient reflectivity ΔR/R of Sr0.2Bi2Se3 at room temperature over long (main panel) and short (inset) timescales. (b) The fitting results of ΔR/R at 4 K.The black and red solid line represent the experimental and fitting data,respectively. The three dotted lines are the three exponential functions used for fitting. The red arrow marks the kink shown in the rising edge. (c)The frequency of the fast oscillation as a function of temperature.

    The transient reflectivity ΔR/Rdisplays a sharp rise persisting until 0.5 ps, which is much longer than most conventional semiconductors and metals(~300 fs).[36]According to the two-temperature model, this process is usually governed by the thermalization of carriers through electron–electron interactions.[37,38]Especially,a kink can be resolved at around 0.3 ps,indicating more than one relaxation channels. Following the procedure used to deal with the parent compound,[34]we find that the non-oscillating part of our data can be well reproduced by three-exponential decay as well. The fitting results at 4 K are shown in Fig.4(b).

    Similar to Bi2Se3, one negative amplitudeA2and two positive amplitudesA1andA3are yielded by fitting. The first (third) relaxation channel is assigned to be governed by the couplings between the excited quasiparticles and optical (acoustic) phonon modes in Bi2Se3, whereas the second one is suggested to be related to the defect-induced charge trapping.[34]Here, we believe these three channels work for Sr0.2Bi2Se3as well,due to their remarkable similarity. However, the corresponding relaxation times of Sr0.2Bi2Se3are identified to beτ1= 0.095±0.01 ps,τ2= 0.15±0.02 ps,andτ3=0.80±0.05 ps, which are quite different from the values for the parent compound (τ1=0.11±0.02 ps,τ2=0.32±0.03 ps, andτ3=2.3±0.2 ps). It is worth remarking that the fitting values of the parameters depend partly on the choices of initial values,and the above results are the best outcome we could obtain.

    In time-resolved ultrafast spectroscopy, it is well known that the thermal relaxation rate (γT= 1/τ) for the excited quasiparticles returning back to local equilibrium state via electron-phonon interaction satisfiesγT=3ˉhλ〈Ω2〉πkBT,[38,39]whereλis the electron–phonon coupling constant, andΩis the phonon frequency, andkBis the Boltzmann constant, andTeis the electron temperature after photo-excitation. Since the relaxation timesτ1andτ3are mainly determined by the electron-phonon coupling process, their smaller values compared to the parent compound indicate that both the electron–optical-phonon coupling and electron–acoustic-phonon coupling are enhanced by the Sr doping, which agrees well with the results of Raman measurements.[40]At the same time,Sr doping will introduce more defects into the system,which may probably lead to decrease ofτ2.

    Since the fast oscillation observed in our measurement is very close to the optical A1gmode,[40–42]we can obtain the electron-optical phonon coupling constant by adoptingΩ1=2.22 THz at 4 K. The quasiparticle temperatureTecould be calculated by

    4. Conclusion

    In summary, we have performed infrared spectroscopy and ultrafast time-resolved optical spectroscopy on the topological superconductor candidate Sr0.2Bi2Se3. The equilibrium optical response of Sr0.2Bi2Se3is characterized by a slight blue shift of the plasma frequency with temperature decreasing. As the carrier density is demonstrated to increase upon cooling by Hall measurements, the effective mass is proved to show a similar trend, which is different from the behavior of CuxBi2Se3. Since the Fermi level of Sr0.2Bi2Se3is lower than that of CuxBi2Se3and closer to the conduction band minimum, we believe this difference is caused by the complex band structure near the Fermi level. Our nonequilibrium measurements reveal three relaxation channels in SrxBi2Se3, similar to the spectra of its parent compound Bi2Se3. However,the relaxation times are quite different due to the change of electron-phonon coupling strength and introduction of defected by Sr doping. We also obtain the electronoptical-phonon coupling constantλ=0.88.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12074042 and 11704033), the National Key Research and Development Program of China(Grant Nos. 2021YFA1400400 and 2016YFA0302300), and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    王蕾
    Experimental research based on a C-band compact transit-time oscillator with a novel diode loading an embedded soft magnetic material and shielding structure
    母愛流長
    歌海(2022年4期)2022-11-27 05:57:32
    Hamiltonian Bi-integrable Couplings for the Counterpart of the AKNS Soliton Hierarchy
    First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst?
    你那么好,卻帶著暗戀的疤
    Physicochemical Properties of Poly (Vinyl Alcohol)/Chitosan/Soluble Starch Composite Hydrogel
    百鳥衣圖案
    大東方(2018年3期)2018-09-10 14:16:16
    終點(diǎn)
    上海交通大學(xué)醫(yī)學(xué)院附屬瑞金醫(yī)院 王蕾教授簡介
    例談數(shù)學(xué)解題之構(gòu)造法
    国产欧美日韩一区二区精品| 狂野欧美白嫩少妇大欣赏| 高清毛片免费观看视频网站| aaaaa片日本免费| 国产成人a区在线观看| 波野结衣二区三区在线| 色综合亚洲欧美另类图片| 丝袜美腿在线中文| 欧美3d第一页| 99久久99久久久精品蜜桃| 国产极品精品免费视频能看的| 婷婷六月久久综合丁香| 欧美黑人巨大hd| 女人被狂操c到高潮| 人妻丰满熟妇av一区二区三区| 精品不卡国产一区二区三区| 日本 欧美在线| 91午夜精品亚洲一区二区三区 | 一级黄片播放器| 国产精品伦人一区二区| 免费在线观看日本一区| 欧美不卡视频在线免费观看| 日韩免费av在线播放| 久久香蕉精品热| 欧美日韩黄片免| 婷婷六月久久综合丁香| 午夜福利免费观看在线| 两个人视频免费观看高清| bbb黄色大片| 国产高清三级在线| 免费在线观看日本一区| 国内精品一区二区在线观看| 在线天堂最新版资源| 一进一出抽搐gif免费好疼| 少妇被粗大猛烈的视频| 九色成人免费人妻av| 一本久久中文字幕| 最新在线观看一区二区三区| 亚洲欧美精品综合久久99| 午夜免费男女啪啪视频观看 | 51国产日韩欧美| 久久国产精品人妻蜜桃| 色5月婷婷丁香| 三级国产精品欧美在线观看| av天堂在线播放| 成熟少妇高潮喷水视频| 亚洲成av人片在线播放无| 日本黄大片高清| 久久99热这里只有精品18| 最近中文字幕高清免费大全6 | 国产国拍精品亚洲av在线观看| 久久久久久久精品吃奶| 午夜福利在线观看吧| 精品欧美国产一区二区三| 亚洲成a人片在线一区二区| 欧美日韩中文字幕国产精品一区二区三区| 国产毛片a区久久久久| 黄色丝袜av网址大全| 国产成人啪精品午夜网站| av黄色大香蕉| 亚洲一区二区三区不卡视频| 国产爱豆传媒在线观看| 国产私拍福利视频在线观看| 丰满的人妻完整版| 婷婷亚洲欧美| 精品人妻偷拍中文字幕| 国产一区二区三区视频了| 中文字幕av成人在线电影| 深夜精品福利| 亚洲国产精品成人综合色| 久久久久国内视频| 岛国在线免费视频观看| 午夜老司机福利剧场| 欧美色视频一区免费| 亚洲第一欧美日韩一区二区三区| 老女人水多毛片| 日韩欧美在线乱码| 在线a可以看的网站| 亚洲成人久久性| 国产一区二区在线观看日韩| 久久人人爽人人爽人人片va | 亚洲精品影视一区二区三区av| 欧美日韩福利视频一区二区| 成年免费大片在线观看| 免费在线观看日本一区| 中文亚洲av片在线观看爽| 亚洲av免费在线观看| 日本一二三区视频观看| 国内精品久久久久精免费| 亚洲一区二区三区色噜噜| 亚洲av成人av| 欧美黑人巨大hd| 欧美黄色淫秽网站| 两性午夜刺激爽爽歪歪视频在线观看| 夜夜看夜夜爽夜夜摸| 亚洲熟妇中文字幕五十中出| 亚洲欧美激情综合另类| 国产乱人伦免费视频| 国产精品久久久久久精品电影| 日韩高清综合在线| 色综合婷婷激情| 亚洲自拍偷在线| 99国产精品一区二区蜜桃av| 国产在线精品亚洲第一网站| 色哟哟哟哟哟哟| 精品久久久久久久久av| 97超级碰碰碰精品色视频在线观看| 国产成+人综合+亚洲专区| 日韩中字成人| 最近最新免费中文字幕在线| 免费一级毛片在线播放高清视频| 亚洲真实伦在线观看| 狠狠狠狠99中文字幕| 精品99又大又爽又粗少妇毛片 | 97超视频在线观看视频| 亚洲人与动物交配视频| 黄色配什么色好看| 天堂√8在线中文| 18禁黄网站禁片午夜丰满| 9191精品国产免费久久| 久久这里只有精品中国| 久久久色成人| 国产亚洲精品综合一区在线观看| 国内揄拍国产精品人妻在线| 日韩 亚洲 欧美在线| netflix在线观看网站| 色在线成人网| 夜夜爽天天搞| 日日摸夜夜添夜夜添小说| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| 亚洲男人的天堂狠狠| 亚洲经典国产精华液单 | 在线观看66精品国产| 午夜久久久久精精品| 亚洲不卡免费看| 午夜日韩欧美国产| 国产不卡一卡二| 免费搜索国产男女视频| 啦啦啦韩国在线观看视频| 午夜福利在线在线| 在线观看午夜福利视频| 在线观看舔阴道视频| 欧美bdsm另类| 1024手机看黄色片| 亚洲国产精品合色在线| 久久久久久久久久黄片| 极品教师在线视频| 一区二区三区高清视频在线| 免费搜索国产男女视频| 亚洲中文日韩欧美视频| 色噜噜av男人的天堂激情| 十八禁人妻一区二区| 免费观看精品视频网站| 一区福利在线观看| 一进一出抽搐动态| 免费av不卡在线播放| 亚洲av成人av| 91麻豆av在线| 日本黄大片高清| 国产精品精品国产色婷婷| 亚洲美女搞黄在线观看 | 天天一区二区日本电影三级| АⅤ资源中文在线天堂| 亚洲av电影不卡..在线观看| 又粗又爽又猛毛片免费看| 国产高清有码在线观看视频| 精品国内亚洲2022精品成人| 久久这里只有精品中国| 欧美黄色片欧美黄色片| 亚洲欧美清纯卡通| 日韩欧美国产在线观看| 亚洲电影在线观看av| 欧美精品国产亚洲| 久久性视频一级片| 99热精品在线国产| 在线观看av片永久免费下载| 色哟哟·www| 久久久久性生活片| 久久久久免费精品人妻一区二区| 国产野战对白在线观看| 国内毛片毛片毛片毛片毛片| 国产v大片淫在线免费观看| 色5月婷婷丁香| 好男人电影高清在线观看| 亚洲熟妇中文字幕五十中出| 夜夜夜夜夜久久久久| 亚洲av二区三区四区| 亚洲av成人av| 黄色丝袜av网址大全| 亚洲 国产 在线| 91久久精品国产一区二区成人| 观看免费一级毛片| 男人舔女人下体高潮全视频| 国产视频内射| 精品一区二区三区人妻视频| 久久亚洲真实| 欧美乱色亚洲激情| 色哟哟·www| 精品99又大又爽又粗少妇毛片 | 亚洲av日韩精品久久久久久密| 亚洲avbb在线观看| 人人妻,人人澡人人爽秒播| 色精品久久人妻99蜜桃| 熟妇人妻久久中文字幕3abv| 国产av不卡久久| 成年女人毛片免费观看观看9| 国产午夜福利久久久久久| 免费大片18禁| 日日摸夜夜添夜夜添小说| av欧美777| 久99久视频精品免费| 成年版毛片免费区| 在线观看美女被高潮喷水网站 | 少妇丰满av| 久久久色成人| 国产老妇女一区| 极品教师在线免费播放| 成人欧美大片| 久久中文看片网| 成年免费大片在线观看| 国产乱人视频| 男人和女人高潮做爰伦理| 欧美+日韩+精品| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 精品人妻视频免费看| 国产精华一区二区三区| 精品福利观看| 69人妻影院| 成人欧美大片| 国产欧美日韩一区二区三| 久久99热6这里只有精品| 欧美区成人在线视频| 欧美性感艳星| 99精品在免费线老司机午夜| 99久久精品热视频| 色av中文字幕| 国产午夜精品久久久久久一区二区三区 | 怎么达到女性高潮| 九九久久精品国产亚洲av麻豆| 亚洲人成伊人成综合网2020| 亚洲成人久久性| 亚洲精华国产精华精| 日日摸夜夜添夜夜添av毛片 | 好男人在线观看高清免费视频| 黄色一级大片看看| 偷拍熟女少妇极品色| 午夜精品一区二区三区免费看| 一级a爱片免费观看的视频| 亚洲欧美日韩高清专用| 夜夜看夜夜爽夜夜摸| 两个人视频免费观看高清| 真人做人爱边吃奶动态| 男女做爰动态图高潮gif福利片| 51国产日韩欧美| 国产精品久久久久久久电影| 一区二区三区免费毛片| 亚洲av五月六月丁香网| 一个人免费在线观看电影| 午夜精品一区二区三区免费看| av欧美777| 两人在一起打扑克的视频| 国产一级毛片七仙女欲春2| 丝袜美腿在线中文| 欧美乱色亚洲激情| 99国产综合亚洲精品| 国内精品久久久久精免费| 男女做爰动态图高潮gif福利片| 国产69精品久久久久777片| av在线蜜桃| 天天躁日日操中文字幕| 欧美乱色亚洲激情| 深爱激情五月婷婷| 免费一级毛片在线播放高清视频| 国产av不卡久久| 级片在线观看| 色综合亚洲欧美另类图片| 老司机午夜福利在线观看视频| 日韩免费av在线播放| 高清毛片免费观看视频网站| 麻豆成人av在线观看| a级毛片a级免费在线| 九色国产91popny在线| 深夜a级毛片| 一进一出抽搐动态| 久久热精品热| 可以在线观看的亚洲视频| 一区二区三区激情视频| 午夜福利在线观看吧| 99国产精品一区二区三区| 成人特级av手机在线观看| 午夜精品一区二区三区免费看| 国产免费av片在线观看野外av| 成人鲁丝片一二三区免费| 亚洲一区二区三区色噜噜| 露出奶头的视频| 日韩 亚洲 欧美在线| 99久久成人亚洲精品观看| 成人高潮视频无遮挡免费网站| 亚洲精品日韩av片在线观看| 欧美日韩乱码在线| 日本撒尿小便嘘嘘汇集6| 日本熟妇午夜| 国产精品久久久久久精品电影| 久久午夜亚洲精品久久| 国产欧美日韩精品一区二区| 欧美+亚洲+日韩+国产| 搡老妇女老女人老熟妇| 99久国产av精品| 三级男女做爰猛烈吃奶摸视频| 亚洲18禁久久av| 亚洲欧美激情综合另类| 欧美激情久久久久久爽电影| 国产欧美日韩一区二区三| 成人av在线播放网站| 9191精品国产免费久久| 无遮挡黄片免费观看| av视频在线观看入口| 国产伦精品一区二区三区四那| 亚洲乱码一区二区免费版| 18禁黄网站禁片午夜丰满| 三级国产精品欧美在线观看| 1024手机看黄色片| 成人性生交大片免费视频hd| 日韩免费av在线播放| 国产精品嫩草影院av在线观看 | 欧美+亚洲+日韩+国产| 久久九九热精品免费| 在线观看免费视频日本深夜| 性色avwww在线观看| 一个人看的www免费观看视频| 一个人免费在线观看电影| 韩国av一区二区三区四区| 欧美一区二区国产精品久久精品| 午夜视频国产福利| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| 免费高清视频大片| 看免费av毛片| 成年女人永久免费观看视频| 国产伦精品一区二区三区四那| 久久精品影院6| 成人美女网站在线观看视频| 日本精品一区二区三区蜜桃| 高潮久久久久久久久久久不卡| 美女黄网站色视频| 久久久精品大字幕| 深夜精品福利| 亚洲av成人精品一区久久| 久久中文看片网| 中文字幕人妻熟人妻熟丝袜美| 久久99热这里只有精品18| 国产成人啪精品午夜网站| 一a级毛片在线观看| 国产精品久久久久久久久免 | 无人区码免费观看不卡| 午夜福利在线在线| 又爽又黄无遮挡网站| 亚洲自拍偷在线| 欧美3d第一页| 午夜福利欧美成人| 亚洲不卡免费看| 日本 av在线| 国产成人啪精品午夜网站| 国内揄拍国产精品人妻在线| 在线播放国产精品三级| 香蕉av资源在线| 午夜久久久久精精品| 国产91精品成人一区二区三区| 午夜久久久久精精品| 国产精品,欧美在线| 国产又黄又爽又无遮挡在线| 深夜精品福利| av专区在线播放| 国产精品三级大全| 91在线观看av| 搡老妇女老女人老熟妇| 网址你懂的国产日韩在线| 一个人观看的视频www高清免费观看| 欧美不卡视频在线免费观看| 99久久无色码亚洲精品果冻| 小说图片视频综合网站| 日本一二三区视频观看| 一区二区三区高清视频在线| 国内精品久久久久久久电影| 亚洲国产精品sss在线观看| 91麻豆av在线| 男女做爰动态图高潮gif福利片| 国产精品永久免费网站| 日韩欧美三级三区| 免费一级毛片在线播放高清视频| 俄罗斯特黄特色一大片| 熟妇人妻久久中文字幕3abv| 毛片一级片免费看久久久久 | 国内少妇人妻偷人精品xxx网站| 国产美女午夜福利| av中文乱码字幕在线| 两人在一起打扑克的视频| 亚洲自拍偷在线| 精品午夜福利视频在线观看一区| 久久99热这里只有精品18| 乱码一卡2卡4卡精品| 国产精品久久久久久精品电影| 欧美中文日本在线观看视频| 欧美最新免费一区二区三区 | 久久国产精品影院| www.999成人在线观看| 麻豆成人午夜福利视频| 色综合婷婷激情| 欧美午夜高清在线| 亚洲人与动物交配视频| 国产精品亚洲美女久久久| www.色视频.com| 国产亚洲欧美98| 少妇高潮的动态图| 色哟哟·www| 中文字幕人妻熟人妻熟丝袜美| 日本与韩国留学比较| 在现免费观看毛片| 天天一区二区日本电影三级| 免费电影在线观看免费观看| 精品日产1卡2卡| 精品国产亚洲在线| 国产av不卡久久| 99久久成人亚洲精品观看| 色在线成人网| 成人性生交大片免费视频hd| 麻豆成人av在线观看| 男女之事视频高清在线观看| 脱女人内裤的视频| 少妇丰满av| 国产视频内射| 1000部很黄的大片| 午夜老司机福利剧场| 757午夜福利合集在线观看| 啪啪无遮挡十八禁网站| 国产极品精品免费视频能看的| 久99久视频精品免费| 日本与韩国留学比较| 色av中文字幕| 美女高潮喷水抽搐中文字幕| 欧美高清成人免费视频www| 51午夜福利影视在线观看| .国产精品久久| 18美女黄网站色大片免费观看| 国产一级毛片七仙女欲春2| 亚洲人与动物交配视频| av国产免费在线观看| 尤物成人国产欧美一区二区三区| 九色成人免费人妻av| 日日摸夜夜添夜夜添av毛片 | 亚洲avbb在线观看| 精品午夜福利在线看| 麻豆一二三区av精品| 天美传媒精品一区二区| 熟女电影av网| 熟女人妻精品中文字幕| 亚洲国产精品999在线| 高清在线国产一区| 女生性感内裤真人,穿戴方法视频| 在线播放无遮挡| 亚洲av熟女| 亚洲国产高清在线一区二区三| 别揉我奶头~嗯~啊~动态视频| 最好的美女福利视频网| 国产精品永久免费网站| 午夜福利在线观看吧| 欧美区成人在线视频| 最近在线观看免费完整版| 日本五十路高清| 亚洲av不卡在线观看| 欧美午夜高清在线| 少妇的逼水好多| 性色av乱码一区二区三区2| .国产精品久久| 精品一区二区三区视频在线| 国产野战对白在线观看| 中文字幕人妻熟人妻熟丝袜美| 精品久久国产蜜桃| 久久久久国产精品人妻aⅴ院| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区性色av| 亚洲欧美日韩高清专用| 日本黄大片高清| 男人舔女人下体高潮全视频| 欧美xxxx黑人xx丫x性爽| 特级一级黄色大片| 国产精品爽爽va在线观看网站| av黄色大香蕉| 精华霜和精华液先用哪个| 久久99热6这里只有精品| 欧美+亚洲+日韩+国产| 欧美日韩福利视频一区二区| 麻豆久久精品国产亚洲av| 久久午夜亚洲精品久久| 成年女人看的毛片在线观看| 久久久久九九精品影院| 变态另类成人亚洲欧美熟女| 亚洲黑人精品在线| 少妇高潮的动态图| 欧美在线一区亚洲| 亚洲经典国产精华液单 | 成人欧美大片| 麻豆国产97在线/欧美| 国产色婷婷99| www.999成人在线观看| 欧美一级a爱片免费观看看| 五月玫瑰六月丁香| 亚洲在线自拍视频| АⅤ资源中文在线天堂| 伊人久久精品亚洲午夜| 国产亚洲精品久久久com| 自拍偷自拍亚洲精品老妇| 99久久成人亚洲精品观看| 午夜福利免费观看在线| 波野结衣二区三区在线| 三级毛片av免费| 一级a爱片免费观看的视频| 亚洲人成网站高清观看| 国产伦人伦偷精品视频| 亚洲第一区二区三区不卡| 美女高潮的动态| 丰满人妻一区二区三区视频av| 国产精品不卡视频一区二区 | 91午夜精品亚洲一区二区三区 | 小说图片视频综合网站| 免费在线观看成人毛片| 99久久精品热视频| 99久久99久久久精品蜜桃| 欧美xxxx黑人xx丫x性爽| 日韩精品青青久久久久久| 日本在线视频免费播放| 午夜福利免费观看在线| 日本成人三级电影网站| 亚洲人成伊人成综合网2020| 亚洲av.av天堂| 18+在线观看网站| 欧美xxxx黑人xx丫x性爽| 国产精品久久久久久亚洲av鲁大| av黄色大香蕉| 欧美一区二区亚洲| 国产极品精品免费视频能看的| 又爽又黄无遮挡网站| 国产成年人精品一区二区| 国产伦一二天堂av在线观看| 男人的好看免费观看在线视频| 国产男靠女视频免费网站| 老女人水多毛片| 免费观看人在逋| 精品国产亚洲在线| 99久国产av精品| 精品久久久久久久久av| 亚洲经典国产精华液单 | 久久婷婷人人爽人人干人人爱| 看黄色毛片网站| 午夜老司机福利剧场| 亚洲乱码一区二区免费版| 亚洲在线自拍视频| 一区二区三区四区激情视频 | 国产v大片淫在线免费观看| 长腿黑丝高跟| 国产乱人伦免费视频| 亚洲人成伊人成综合网2020| 亚洲,欧美精品.| 99国产精品一区二区三区| 午夜精品久久久久久毛片777| 一a级毛片在线观看| 波多野结衣巨乳人妻| 午夜老司机福利剧场| 日韩欧美精品v在线| 看免费av毛片| 欧美成人a在线观看| 日本五十路高清| 国产成人a区在线观看| 国产高清有码在线观看视频| 国产乱人视频| 乱码一卡2卡4卡精品| 男女之事视频高清在线观看| 成人毛片a级毛片在线播放| 丰满人妻熟妇乱又伦精品不卡| 99国产综合亚洲精品| 日本黄大片高清| 内地一区二区视频在线| 欧美性猛交╳xxx乱大交人| 动漫黄色视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久久久久大精品| 久久精品91蜜桃| 亚洲av不卡在线观看| 九九热线精品视视频播放| 成人特级黄色片久久久久久久| 如何舔出高潮| 午夜福利免费观看在线| 亚洲国产高清在线一区二区三| 亚洲av不卡在线观看| 亚洲av电影在线进入| 永久网站在线| 亚洲美女搞黄在线观看 | 欧美一区二区国产精品久久精品| 欧美日韩综合久久久久久 | 老女人水多毛片| 国产高清有码在线观看视频| 日韩免费av在线播放| 老女人水多毛片| 丝袜美腿在线中文| 亚洲专区中文字幕在线| 精品日产1卡2卡| 88av欧美| 国产精品乱码一区二三区的特点| 51国产日韩欧美| 国产91精品成人一区二区三区| 赤兔流量卡办理| 亚洲精品影视一区二区三区av| 在线观看av片永久免费下载|