• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational simulation of ionization processes in single-bubble and multi-bubble sonoluminescence

    2022-11-21 09:39:22JinFuLiang梁金福DeFengXiong熊德鳳YuAn安宇andWeiZhongChen陳偉中
    Chinese Physics B 2022年11期
    關鍵詞:陳偉

    Jin-Fu Liang(梁金福) De-Feng Xiong(熊德鳳) Yu An(安宇) and Wei-Zhong Chen(陳偉中)

    1School of Physics and Electronic Science,Guizhou Normal University,Guiyang 550025,China

    2Department of Physics,Tsinghua University,Beijing 100084,China

    3Institution of Acoustics,Nanjing University,Nanjing 210093,China

    The most recent spectroscopic studies of moving-single bubble sonoluminescence(MSBSL)and multi-bubble sonoluminescence(MBSL)have revealed that hydrated electrons(e-aq)are generated in MSBSL but absent in MBSL.To explore the mechanism of this phenomenon, we numerically simulate the ionization processes in single- and multi-bubble sonoluminescence in aqueous solution of terbium chloride (TbCl3). The results show that the maximum degree of ionization of single-bubble sonoluminescence(SBSL)is approximately 10000 times greater than that of MBSL under certain special physical parameters. The hydrated electrons(e-aq)formed in SBSL are far more than those in MBSL provided these electrons are ejected from a bubble into a liquid. Therefore,the quenching of e-aq to SBSL spectrum is stronger than that of the MBSL spectrum. This may be the reason that the trivalent terbium [Tb(III)]ion line intensities from SBSL in the TbCl3 aqueous solutions with the acceptor of e-aq are stronger than those of TbCl3 aqueous solutions without the acceptor of e-aq.Whereas the Tb(III)ion line intensities from MBSL are not variational, which is significant for exploring the mechanism behind the cavitation and sonoluminescence.

    Keywords: sonoluminescence,Tb(III)ion emission,hydrated electrons,ionization processes

    1. Introduction

    Single-bubble sonoluminescence (SBSL) is a phenomenon wherein light is emitted during the intense collapse of a single isolated gas bubble driven by a strong ultrasound wave.[1]In contrast,multi-bubble sonoluminescence(MBSL)is the light emission from the intense collapse of clouds of bubbles in liquids by high-intensity ultrasound.[2]At present,it is generally considered that both SBSL and MBSL result from extremely high temperature and pressure conditions that occur during the intense compression heat of gas and vapor in a collapsing bubble.[3–13]

    Under such extreme conditions,chemical reactions occur at the inner of the bubble, that is, sonochemistry.[14]Further,the products of the chemical reaction are ejected into the solution from the bubble and may generate subsequent new products,which may affect the characteristics of the spectrum obtained from sonoluminescence (SL),[5,9]sonochemiluminescence(SCL),[15]and sonophotoluminescence(SPL).[16,17]

    2. Theoretical model

    2.1. SBSL theoretical model

    The SBSL model employed herein is similar to that reported in previous studies.[10,21–23]The dynamic computation of the sonoluminescent bubble motion involves solving the equation of radial motion of the bubble wall, which is referred to as Keller–Miksis(KM)equation,in conjunction with the fluid mechanics equation, the formula of water evaporation and vapor condensation at the bubble wall,and the energy equation in liquid for exterior temperature evaluation.

    The KM equation describes the radiation motion of the bubble wall,[24,25]expressed as

    whereM-represents the negative ions O-,H-,O-2,and OH-.The law of mass action can be used to evaluate the number density of the products of the chemical dissociation and ionization electrons,as well as the positive and negative ions.The processes of the radiative attachment of electrons to atoms or molecules or ions are expressed as

    wherePλrepresents the radiation power per unit volume per unit wavelength interval of the line spectrum. Herein, we mainly consider the5D4→7FJ(J=6,5,4,...,0)transitions of Tb(III).

    In addition, Eq. (16) expresses the cumulative radiation energy emitted from a sonoluminescent bubble over time 0 totwithin each acoustic period as

    2.2. MBSL theoretical model

    A bubble in the MBSL construct may pulse at one location over an acoustic period, even though it is subjected to the pressure from other bubbles. The wall of a bubble among dense cavitation bubbles is determined by using the modified KM equation[28]

    whereNiis the number density of cavitation bubbles with the initial radiusRi0. Based on the Eqs. (17) and (18), we can obtain the pressure distribution by numerical calculation. The pressure driving the bubble at a location in liquid is derived approximatively. In present paper,we consider that the MBSL and SBSL constructs have the same chemical dissociation reactions and ionization processes in a bubble.

    3. Results and discussion

    In the present study,certain parameters in the experiment conducted by Sharipov[20]were referenced in the numerical calculation. Table 1 lists the parameters used.

    Table 1. Parameters used in the numerical simulation.

    3.1. Plasma in a single sonoluminescent bubble

    To understand the process of plasma formation in the SBSL bubble,we simulated the light emission pulse inside an Ar bubble in an aqueous solution of TbCl3at 0°C,driven by an acoustic pressure of 1.34 atm.

    Figure 1(a) illustrates the total radiation power per flash of the simulated bubble. Five moments (points marked A–E) were selected on the cure to evaluate the temperature[Fig. 1(b)], corresponding pressure [Fig. 1(c)], radiation energy spectra [Fig. 1(d)], and the number density of various particles inside a bubble[Fig.2]. Figure 1 depicts that as the radiation power increases from A to D[Fig.1(a)],the temperature[Fig.1(b)]and pressure[Fig.1(c)]inside the bubble,as well as the intensity of the continuum background, increase;the OH, Ar+, and Tb(III) spectral peaks gradually disappear[Fig.1(d)].

    Because the radiation energy spectrum accumulates over time,the total intensity increases at each moment. In addition,at every moment, the maximum temperature generates at the center of bubble, and intense decreases at the wall of bubble[Fig.1(b)]. While the pressure inside the bubble is almost uniform[Fig.1(c)]. The reason may be the effects caused by the thermal conductivity of gas and compressibility of the liquid.

    Fig.1. Simulation results for an Ar bubble in a TbCl3 aqueous at 0 °C,driven by an acoustic pressure amplitude of 1.34 atm. (a) Radiation power of the bubble versus time. (b) Temperature. (c) Pressure. (d)Energy spectrum.

    Fig.2. Spatial profiles of the calculated number densities of various particles filled circles in Fig.1(a). (a)e-,(b)H2O,(c)Ar,(d)H2,(e)OH,(f)OH-,(g)H,(h)H-,(i)O,(j)O-,(k)O2,and(l)O-2. The black,red,blue,megenta and olive lines corresponds to A,B,C,D,and E in Fig 1(a),respectively.

    Figures 2 illustrates the spatial variations of the number densities of the various particles inside a bubble. Inside the bubble,except for those of the H2O molecules[Fig.2(b)]and Ar atoms[Fig.2(c)],the maximum number densities of other particles occur at the center of the bubble throughout the cycle,and subsequently decreases precipitously in the vicinity of the bubble wall.

    To illustrate the generating in SBSL in TbCl3aqueous solution, the ionized electron density should be considered by assuming that the reaction process occurs during water sonolysis,[20]

    The ionized electron density was positively correlated with temperature. When the bubble reached its maximum temperature of approximately 21000 K [corresponding to the D megenta line in Fig.1(b)],the ionized electron density reached approximately 2×1027m-3[Fig.2(a)].

    3.2. Plasma in a bubble among sonoluminescencing multibubble

    Firstly, we calculated the evolution of the pressure field and bubble radii with time[Fig.3]in the MBSL condition using Eqs. (17) and (18). For simplicity, we consider only one bubble, with an ambient radius ofRi0. The number density(Ni) of bubbles is homogeneous in the TbCl3aqueous solution. The calculation method was similar to that described in previous studies.[29,30]

    Figure 3 presents the evolution of pressure and bubble radius with time at three locationsN1(r,z)=(0,0.2 cm),N2(0.5 cm, 0.2 cm), andN3(0, 0.7 cm) shown in Fig. 4. The pressure was periodically pulsed with an ultrasound frequency of 20 kHz[Figs.3(a),3(b),3(e),3(f),3(i),and 3(j)]. Further,the radius of the bubble in the MBSL exhibits period motion

    wherein the bubble expands,intensely collapses,and bounces with an ultrasound frequency of 20 kHz[Figs.3(c),3(d),3(g),3(h), 3(k) and (l)]. Additionally, the pressure peak of each pulse corresponds to the minimum radius of the collapsing bubble, which is exhibited in the fluctuation of the pulsation of the bubble. This indicates that the same type of bubbles are in synchronous resonance near the horn tip(approximately 1 cm).

    To determine the region of MBSL in the sound field, we estimated the light intensity of the sonoluminescent bubble by introducing a specific value,Rmax/Ri0. Here,Rmaxrepresents the maximum radius of a bubble driven by the sound field.Generally,SBSL can be observed by the naked eye whenRmax/Ri0≥5. However, in this study, we introduced this ratio to estimate the area of the MBSL.[29,30]Figure 4 illustrates that when 0≤z ≤0.6 cm,and 0≤r ≤0.5 cm,light emission can be observed from the bubbles in the acoustic field region.

    We used an existing method[10,29,30]to illustrate the ionization processes in one sonoluminescent bubble among the cavitation bubbles. The light pulse, number densities of various particles, and degree of ionization (α) inside a bubble at different locations in the sound field were also calculated.

    Fig. 3. Evolution of acoustic pressure and bubble radius with t. Results at location (a)–(d) N1 (r=0, z=0.2 cm), (e)–(h) N2 (r=0.5 cm,z=0.2 cm),and(i)–(l)N3 (r=0,z=0.7 cm).

    Fig.4. Contour of close to the horn. The magenta cycles correspond to locations N1 (r=0,z=0.2 cm),N2 (r=0.5 cm,z=0.2 cm),and N3(r=0,z=0.7 cm).

    Figure 5(a) illustrates the total radiation power per flash of the bubble at locationN1(r,z)=(0,0.2 cm) in the sound field, and five moments (points marked A–E) were selected to evaluate the temperature [Fig. 5(b)], pressure [Fig. 5(c)],radiation energy spectrum [Fig. 5(d)], and the corresponding number densities of various particles [Fig. 6]. In Fig. 6, except for those of the H2O molecules[Fig.6(b)]and Ar atoms[Fig. 6(c)], the maximum number densities of other particles occur at the center of the bubble throughout the cycle,and subsequently decreases precipitously in the vicinity of the bubble wall. SBSL also exhibited a similar phenomenon [Fig. 2].When the bubble reached its maximum temperature of approximately 21000 K [Fig. 5(b)], the ionized electron density reached approximately 2×1027m-3[D megenta line in Fig. 6(a)]. If these electrons are ejected into the solution to combine with H2O,e-aqis formed in the solution. However,in the experiment, the e-aqwas absent when analyzing the spectrum lines of Tb(III) ions. This is probably because most of the bubbles are broken when they cannot reach their minimum radii, and the temperature inside cannot attain a sufficient value to ionize more electrons. The experimental data presented in a previous study[31,32]concluded that the temperature inside the bubble in MBSL in water reaches approximately 5000 K, which approaches to the temperature at moment point C, as depicted in Fig. 5(a). At point B, the ionized electrons are approximately 6×1024m-3[red line in Fig.6(a)].

    Fig. 5. Simulation results of an argon bubble at the location N1 (r = 0,z = 0.2 cm) during the 18th acoustic cycle (850–900 s) demonstrated in Fig. 3(b). The number density of Tb(III) ions is n×10-5. n is the total number density of particles inside a bubble. (a)Radiation power of the bubble versus time. (b)Temperature. (c)Pressure. (d)Energy spectrum.

    Fig.6. Spatial profiles of the calculated densities of various particles at the given points of A,B,C,D,E denoted by filled circles in Fig.5(a). (a)e-,(b)H2O,(c)Ar,(d)H2,(e)OH,(f)OH-,(g)H,(h)H-,(i)O,(j)O-,(k)O2,and(l)O-2. The black,red,blue,megenta and olive lines corresponds to A,B,C,D,and E in Fig 5(a),respectively.

    To further explore the plasma inside a bubble at other locations in the sound field, we simulated the light emission pulse, temperature, pressure, radiation energy spectra, and the number density of various particles inside an Ar bubble at two locationsN2(r,z)=(0.5 cm,0.2 cm) andN3(0,0.7 cm). Figures 7 and 8 illustrate the case for the bubble atN2(r,z)=(0.5 cm,0.2 cm).

    Figure 7(a) demonstrates the total radiation power per flash of the bubble, and five moments (points marked A–E)were selected to evaluate the temperature [Fig. 7(b)]), pressure[Fig.7(c)],radiation energy spectrum[Fig.7(d)],and the corresponding number densities of various particles [Fig. 8].Figure 7(b) depicts that the maximum temperature inside the bubble is approximately 5800 K,approaching the experimental value of 5000 K,as reported in previous studies.[31,32]The corresponding maximum ionization electrons were approximately 4×1022m-3[megenta line in Fig. 8(a)], which is approximately 104times less than that in SBSL [bule line in Fig.2(a)].

    Fig.7.Simulation results of an Ar bubble at the location N2(r=0.5 cm,z = 0.2 cm) during the 18th acoustic cycle (850–900 s) depicted in Fig. 3(f). The number density of Tb(III) ions is n×10-5. (a) Radiation power of the bubble versus time. (b)Temperature. (c)Pressure. (d)Energy spectrum.

    Fig.8. Spatial profiles of the calculated densities of various particles at the given points of A,B,C,D,E denoted by filled circles in Fig.7(a).(a)e-,(b)H2O,(c)Ar,(d)H2,(e)OH,(f)OH-,(g)H,(h)H-,(i)O,(j)O-,(k)O2,and(l)O-2. The black,red,blue,megenta and olive lines corresponds to A,B,C,D,and E in Fig 7(a),respectively.

    Figures 9 and 10 illustrate the case where the bubble is at the locationN3(r,z)=(0,0.7 cm). Figure 9(a) shows the total radiated power per flash of the bubble,and five moments were selected (points marked A–E) on the curve to evaluate the temperature[Fig.9(b)],pressure[Fig.9(c)],radiation energy spectrum [Fig. 9(d)], and the corresponding number of densities of various particles, which is similar to the cases of the bubbles located at the pointsN1(0, 0.2 cm) andN2(0.5,0.2 cm). As depicted in Fig. 9(b), the maximum temperature inside the bubble was approximately 3800 K, less than the experimental value of 5000 K,[31,32]and the corresponding maximum ionized electrons were approximately 2×1020m-3[megenta line in Fig.10(a)].

    To further understand the ionization processes inside a bubble, we calculated the degree of ionization (α) in SBSL and MBSL. Figures 11(a) and 11(b) showαat different moments for SBSL and MBSL at locationN1(0,0.2 cm),respectively. The maximumαoccurs at the center of the bubble throughout the cycle,and subsequently decreases in the vicinity of the bubble wall.

    Figure 12 illustrates the spatial profiles ofαat the maximum temperature corresponding to the minimum radius of the bubble for SBSL and at locationsN1(0,0.2 cm),N2(0.5,0.2 cm), andN3(0, 0.7 cm) in the sound field generating MBSL.As depicted in Fig.12,the maximumαinside a bubble at locationN1(0. 0.2 cm) was slightly more than that in SBSL.However,the temperature after fitting the experimental MBSL spectrum[30,31]was far less than the calculated temperature [Fig. 5(b)]. Further, the temperature obtained by fitting the experimental spectrum is close to the calculated temperature inside a bubble atN2(0.5, 0.2 cm). Therefore, we considerαinside a bubble at locationsN2(0.5,0.2 cm)as that in MBSL.

    Figure 12 illustrates thatαin SBSL is approximately 10000 times greater than that in MBSL (only for the bubble at locationN2). Assuming thatαis generated similarly for both SBSL and MBSL by combining the ionized electrons with H2O, the number density of e-aqformed in the solution for SBSL is considerably higher than that for MBSL. Therefore,the quenching of e-aqto Tb(III)line emission from SBSL is stronger than that from MBSL,[20]which possibly explains the absence of e-aqin MBSL.

    Fig. 9. Simulation results of an Ar bubble at the location N3 (r =0,z=0.7 cm) during the 18th acoustic cycle (850–900 s) illustrated in Fig.3(j). The number density of Tb(III)ions is n×10-5. (a)radiation power of the bubble versus time. (b) Temperature. (c) Pressure. (d)Energy spectrum.

    Fig.10. Spatial profiles of the calculated densities of various particles at the given points of A,B,C,D,E denoted by filled circles in Fig.9(a). (a)e-,(b)H2O,(c)Ar,(d)H2,(e)OH,(f)OH-,(g)H,(h)H-,(i)O,(j)O-,(k)O2,and(l)O-2. The black,red,blue,megenta and olive lines corresponds to A,B,C,D,and E in Fig 9(a),respectively.

    Fig.11. Variation of the calculated degree of ionization α with r inside a bubble. (a)Corresponds to the moments A,B,C,D,E marked in Fig.1(a).(b)Corresponds to the moments A,B,C,D,E marked in Fig.5(a).

    Fig.12. Comparison of the calculated degrees of ionization.

    4. Conclusion

    We obtained the total radiated power and energy spectra from SBSL and MBSL, respectively. The corresponding spatial profiles of temperature, pressure, number densities of various particles,and degree of ionization inside an Ar bubble were also obtained. Under certain special conditions, the degree of ionization in SBSL (generated bypa=1.34 atm andf=26 kHz)was approximately 10000 times greater than that in MBSL(generated bypa=2.5 atm andf=20 kHz). However,certain parameters in our calculations,such as the number density of bubbles(N)and type of bubble, were assumed instead of being calculated through experiments. In addition,we did not consider the contribution of SPL to Tb(III) ion line emission, which results in a slight difference in the profile between the experimental[17,33,34]and calculated spectra in SBSL.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11864007 and 11564006).

    猜你喜歡
    陳偉
    SiC trench MOSFET with dual shield gate and optimized JFET layer for improved dynamic performance and safe operating area capability
    Interaction between energetic-ions and internal kink modes in a weak shear tokamak plasma
    Repulsive bubble–bubble interaction in ultrasonic field?
    A super-junction SOI-LDMOS with low resistance electron channel
    陳偉教授簡介
    陳偉先生繪畫作品選登
    杰出人物(2020年2期)2020-04-01 15:20:22
    陳偉博士簡介
    Recent Progress in Heavy Fuel Aviation Piston Engine
    Developmenr Srraregy of Engine Bird Ingesrion Cerrificarion Technology
    一次難忘的班級辯論
    成人综合一区亚洲| 中文乱码字字幕精品一区二区三区 | 少妇丰满av| 中文字幕久久专区| 老司机影院毛片| 精品人妻偷拍中文字幕| 美女国产视频在线观看| 中文字幕熟女人妻在线| 亚洲成人久久爱视频| 久久精品国产亚洲av天美| 联通29元200g的流量卡| 日本黄大片高清| 亚洲av.av天堂| 日日摸夜夜添夜夜爱| 久久精品夜色国产| 看片在线看免费视频| 一个人看的www免费观看视频| 亚洲精品,欧美精品| av又黄又爽大尺度在线免费看 | 日本一本二区三区精品| 小说图片视频综合网站| 国产精品,欧美在线| 国产成人a∨麻豆精品| 国产精品野战在线观看| a级毛色黄片| 亚洲丝袜综合中文字幕| 三级国产精品欧美在线观看| 国产成年人精品一区二区| a级毛片免费高清观看在线播放| 日本一二三区视频观看| 国产成人a区在线观看| h日本视频在线播放| 精品不卡国产一区二区三区| 国产精品福利在线免费观看| 精品午夜福利在线看| 国产国拍精品亚洲av在线观看| 亚洲欧美清纯卡通| 国产一区有黄有色的免费视频 | 国产精品综合久久久久久久免费| 有码 亚洲区| 99在线人妻在线中文字幕| 国产一区二区亚洲精品在线观看| 国产人妻一区二区三区在| av黄色大香蕉| av天堂中文字幕网| 五月玫瑰六月丁香| 午夜爱爱视频在线播放| 国产淫语在线视频| 午夜福利网站1000一区二区三区| 亚洲欧美成人综合另类久久久 | 亚洲无线观看免费| 自拍偷自拍亚洲精品老妇| 亚洲精品国产成人久久av| 久久久国产成人免费| 久久精品国产鲁丝片午夜精品| 国产精品一区二区在线观看99 | 亚洲精品色激情综合| 午夜老司机福利剧场| 高清毛片免费看| 大香蕉久久网| 国产伦精品一区二区三区视频9| 少妇猛男粗大的猛烈进出视频 | 色视频www国产| 18+在线观看网站| 久久久亚洲精品成人影院| 亚洲国产欧美在线一区| 亚洲最大成人手机在线| 中文字幕av在线有码专区| 日韩精品青青久久久久久| 麻豆国产97在线/欧美| 国产真实乱freesex| 国产成人精品一,二区| 国产精品久久久久久久电影| 高清av免费在线| 在线免费十八禁| 免费人成在线观看视频色| 国产免费一级a男人的天堂| 黑人高潮一二区| 国产精华一区二区三区| 18+在线观看网站| 国产乱人视频| 18禁在线播放成人免费| 18禁动态无遮挡网站| 伦理电影大哥的女人| 少妇丰满av| 91久久精品国产一区二区成人| 特大巨黑吊av在线直播| av天堂中文字幕网| 丰满人妻一区二区三区视频av| 91精品伊人久久大香线蕉| 久热久热在线精品观看| 人妻制服诱惑在线中文字幕| 久久这里只有精品中国| 男人和女人高潮做爰伦理| 99热精品在线国产| 久久99蜜桃精品久久| 在线观看美女被高潮喷水网站| 又爽又黄无遮挡网站| 国产免费男女视频| 久久这里只有精品中国| 老司机影院成人| 国产成人精品一,二区| 中文天堂在线官网| 视频中文字幕在线观看| 级片在线观看| 国内精品美女久久久久久| 日韩欧美三级三区| 午夜激情福利司机影院| 国产伦一二天堂av在线观看| 看非洲黑人一级黄片| 亚洲aⅴ乱码一区二区在线播放| 亚洲久久久久久中文字幕| 亚洲av二区三区四区| 亚洲欧美成人综合另类久久久 | 国产乱人视频| 两个人视频免费观看高清| 精品99又大又爽又粗少妇毛片| 黄色日韩在线| 久久久久久久久大av| 禁无遮挡网站| 久久久久久久久中文| av播播在线观看一区| 亚洲欧美日韩卡通动漫| 亚洲国产精品久久男人天堂| 一级黄色大片毛片| 午夜日本视频在线| 国产视频首页在线观看| 午夜福利成人在线免费观看| 精品国产一区二区三区久久久樱花 | 69人妻影院| 亚洲av不卡在线观看| 岛国毛片在线播放| 国产av不卡久久| 非洲黑人性xxxx精品又粗又长| 中文资源天堂在线| 草草在线视频免费看| 欧美成人a在线观看| 男女那种视频在线观看| 国产亚洲5aaaaa淫片| 欧美性感艳星| 99久久成人亚洲精品观看| 在线天堂最新版资源| 天堂√8在线中文| 国产麻豆成人av免费视频| 精品久久久噜噜| 又粗又爽又猛毛片免费看| 最近视频中文字幕2019在线8| 亚洲欧美精品综合久久99| 成年版毛片免费区| 草草在线视频免费看| 国产精品嫩草影院av在线观看| 欧美潮喷喷水| 男女下面进入的视频免费午夜| 午夜福利在线观看吧| 成人综合一区亚洲| 自拍偷自拍亚洲精品老妇| 毛片一级片免费看久久久久| 秋霞伦理黄片| 亚洲av成人精品一二三区| 国产亚洲av嫩草精品影院| 日韩一区二区视频免费看| 欧美日韩在线观看h| 久久韩国三级中文字幕| 成人欧美大片| 菩萨蛮人人尽说江南好唐韦庄 | 老司机影院毛片| 欧美精品国产亚洲| 欧美成人精品欧美一级黄| 精品国产一区二区三区久久久樱花 | 亚洲av免费高清在线观看| 国产午夜精品一二区理论片| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产高清在线一区二区三| 国产成人精品婷婷| 国产91av在线免费观看| 男人舔奶头视频| 校园人妻丝袜中文字幕| 国产色婷婷99| 久久精品久久久久久噜噜老黄 | 日本与韩国留学比较| 91精品伊人久久大香线蕉| 亚洲在线观看片| 国产亚洲5aaaaa淫片| 亚洲欧美日韩卡通动漫| 国产成人午夜福利电影在线观看| av国产免费在线观看| 国产在视频线精品| 赤兔流量卡办理| 男人舔女人下体高潮全视频| 欧美xxxx性猛交bbbb| 国内精品一区二区在线观看| 高清av免费在线| 建设人人有责人人尽责人人享有的 | av在线观看视频网站免费| 99国产精品一区二区蜜桃av| 国产在线男女| 在线免费观看的www视频| 简卡轻食公司| 三级男女做爰猛烈吃奶摸视频| 日韩三级伦理在线观看| 人妻系列 视频| 久久久久久久久久久免费av| 亚洲av电影在线观看一区二区三区 | 久久6这里有精品| 天堂影院成人在线观看| 日本与韩国留学比较| 国模一区二区三区四区视频| 国产成人freesex在线| 99久久中文字幕三级久久日本| 国产成人aa在线观看| 网址你懂的国产日韩在线| 精品久久久久久久久av| 高清毛片免费看| 午夜福利高清视频| 亚洲va在线va天堂va国产| 成人午夜精彩视频在线观看| 亚洲av男天堂| 欧美另类亚洲清纯唯美| 国产一级毛片七仙女欲春2| 一级毛片久久久久久久久女| 欧美97在线视频| 中文欧美无线码| 成人无遮挡网站| 亚洲av中文字字幕乱码综合| 亚洲一级一片aⅴ在线观看| 午夜激情福利司机影院| 成人毛片60女人毛片免费| 日韩成人av中文字幕在线观看| 国产综合懂色| 日本与韩国留学比较| 亚洲最大成人手机在线| 亚洲色图av天堂| 床上黄色一级片| 女的被弄到高潮叫床怎么办| 免费看a级黄色片| 一边摸一边抽搐一进一小说| 国产伦理片在线播放av一区| 久久久精品94久久精品| 真实男女啪啪啪动态图| 色噜噜av男人的天堂激情| 简卡轻食公司| 永久网站在线| 免费观看人在逋| 国产高清三级在线| 午夜a级毛片| 国产人妻一区二区三区在| 白带黄色成豆腐渣| 99九九线精品视频在线观看视频| 欧美潮喷喷水| 午夜a级毛片| 能在线免费观看的黄片| 亚洲中文字幕日韩| 亚洲aⅴ乱码一区二区在线播放| 久久这里有精品视频免费| 免费观看a级毛片全部| 99久久精品国产国产毛片| 九草在线视频观看| 男女国产视频网站| 大又大粗又爽又黄少妇毛片口| 97人妻精品一区二区三区麻豆| 日本欧美国产在线视频| 亚洲成色77777| 九九热线精品视视频播放| 亚洲图色成人| 深夜a级毛片| 亚洲国产色片| 精品熟女少妇av免费看| 国产黄片视频在线免费观看| 久久亚洲国产成人精品v| 日日撸夜夜添| a级毛色黄片| 亚洲精华国产精华液的使用体验| 亚洲国产欧洲综合997久久,| 久久久久久久久久久丰满| 一区二区三区高清视频在线| 国产亚洲精品久久久com| 久久精品国产亚洲av涩爱| 国产一区二区在线av高清观看| 九九爱精品视频在线观看| av在线观看视频网站免费| 国产精品嫩草影院av在线观看| 看十八女毛片水多多多| 偷拍熟女少妇极品色| 又黄又爽又刺激的免费视频.| 在线观看一区二区三区| 精品无人区乱码1区二区| 网址你懂的国产日韩在线| 激情 狠狠 欧美| 国产 一区 欧美 日韩| 日本色播在线视频| 51国产日韩欧美| 欧美区成人在线视频| 国产黄片视频在线免费观看| 日日摸夜夜添夜夜添av毛片| 国产一区二区在线av高清观看| 久久久a久久爽久久v久久| 五月伊人婷婷丁香| 建设人人有责人人尽责人人享有的 | 亚洲av男天堂| 亚洲人成网站在线播| 22中文网久久字幕| 1024手机看黄色片| 国产一级毛片七仙女欲春2| 国产精品久久久久久av不卡| 免费看光身美女| 麻豆国产97在线/欧美| 尤物成人国产欧美一区二区三区| 免费观看a级毛片全部| 欧美xxxx性猛交bbbb| 九九在线视频观看精品| 18禁在线无遮挡免费观看视频| 亚洲欧美日韩东京热| 国产视频首页在线观看| av专区在线播放| 久久久久久伊人网av| 成人鲁丝片一二三区免费| 国产精品综合久久久久久久免费| 美女cb高潮喷水在线观看| 黄色一级大片看看| 一夜夜www| 日韩成人伦理影院| 久久久久久大精品| 日韩视频在线欧美| 亚洲综合色惰| 99热全是精品| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| 国产高清不卡午夜福利| 岛国在线免费视频观看| 91狼人影院| 高清av免费在线| 国产综合懂色| 99热网站在线观看| 尤物成人国产欧美一区二区三区| 九九久久精品国产亚洲av麻豆| 桃色一区二区三区在线观看| 久久欧美精品欧美久久欧美| 国产精品久久久久久精品电影小说 | 少妇裸体淫交视频免费看高清| 亚洲av中文字字幕乱码综合| 97在线视频观看| 观看免费一级毛片| 久久久久久久久大av| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩| 成人二区视频| 欧美日韩在线观看h| 99热全是精品| 黄片无遮挡物在线观看| 国产精品国产三级国产专区5o | 最近的中文字幕免费完整| 精品熟女少妇av免费看| 国内精品宾馆在线| 人妻夜夜爽99麻豆av| 免费搜索国产男女视频| 色综合色国产| 日日干狠狠操夜夜爽| 久久久久免费精品人妻一区二区| 欧美性猛交黑人性爽| 亚洲三级黄色毛片| 麻豆国产97在线/欧美| 一级毛片aaaaaa免费看小| 国产淫片久久久久久久久| 日日摸夜夜添夜夜添av毛片| 国产精品女同一区二区软件| 一个人看视频在线观看www免费| 青青草视频在线视频观看| 亚洲人成网站在线观看播放| 国产视频首页在线观看| 亚洲,欧美,日韩| 嫩草影院精品99| 久久久欧美国产精品| 精品久久久久久久久av| 赤兔流量卡办理| 日韩强制内射视频| 日韩在线高清观看一区二区三区| 最近视频中文字幕2019在线8| 国产成人午夜福利电影在线观看| 亚洲av电影在线观看一区二区三区 | 国产中年淑女户外野战色| 久久久亚洲精品成人影院| 国产精品一区www在线观看| 日韩欧美 国产精品| 国产淫片久久久久久久久| av在线蜜桃| 1024手机看黄色片| 我要看日韩黄色一级片| 中文字幕久久专区| 淫秽高清视频在线观看| 中文资源天堂在线| 日本av手机在线免费观看| 亚洲在久久综合| 日本av手机在线免费观看| 亚洲国产精品合色在线| 亚洲高清免费不卡视频| 国产极品精品免费视频能看的| 毛片女人毛片| 国产女主播在线喷水免费视频网站 | 麻豆乱淫一区二区| 国产三级在线视频| 成人二区视频| 亚洲怡红院男人天堂| 99久久人妻综合| 久久这里只有精品中国| 亚洲av成人精品一区久久| 国产精品一区二区三区四区久久| 久久这里有精品视频免费| 国产视频首页在线观看| 特级一级黄色大片| 日日干狠狠操夜夜爽| 网址你懂的国产日韩在线| 亚洲婷婷狠狠爱综合网| 在线a可以看的网站| 久久国内精品自在自线图片| 成人毛片a级毛片在线播放| 非洲黑人性xxxx精品又粗又长| 国产av在哪里看| 免费看av在线观看网站| 在线观看一区二区三区| 日韩欧美国产在线观看| 长腿黑丝高跟| 亚洲欧美成人精品一区二区| 99九九线精品视频在线观看视频| 国产精品99久久久久久久久| av视频在线观看入口| av天堂中文字幕网| 一本一本综合久久| 国内少妇人妻偷人精品xxx网站| 水蜜桃什么品种好| 汤姆久久久久久久影院中文字幕 | 内地一区二区视频在线| 久久久成人免费电影| 99久久人妻综合| 亚洲综合色惰| 联通29元200g的流量卡| 我要看日韩黄色一级片| 搞女人的毛片| 久久6这里有精品| 国产白丝娇喘喷水9色精品| 亚洲精品影视一区二区三区av| 欧美区成人在线视频| 亚洲国产色片| 欧美日本亚洲视频在线播放| 女人被狂操c到高潮| av国产免费在线观看| 亚洲国产精品久久男人天堂| 又粗又硬又长又爽又黄的视频| 看片在线看免费视频| 国产视频首页在线观看| 女人被狂操c到高潮| 国产精品无大码| 欧美另类亚洲清纯唯美| 国产精品国产三级国产av玫瑰| 男女那种视频在线观看| 精品久久国产蜜桃| 成人一区二区视频在线观看| 18禁在线播放成人免费| 黄色日韩在线| 日本一二三区视频观看| 国产精品综合久久久久久久免费| 麻豆av噜噜一区二区三区| 国产精品一区二区性色av| 欧美成人a在线观看| 波野结衣二区三区在线| 18禁裸乳无遮挡免费网站照片| 欧美人与善性xxx| 国产精品日韩av在线免费观看| 国产成人午夜福利电影在线观看| 国产黄色小视频在线观看| 看免费成人av毛片| 亚洲国产最新在线播放| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 五月伊人婷婷丁香| 级片在线观看| 久久精品影院6| 在线播放无遮挡| 久久6这里有精品| 一级黄色大片毛片| 午夜爱爱视频在线播放| 精品久久久久久久久亚洲| 国产在视频线在精品| 五月玫瑰六月丁香| 久久久欧美国产精品| 日本免费a在线| 一个人看的www免费观看视频| 国产老妇伦熟女老妇高清| 亚洲精品自拍成人| 晚上一个人看的免费电影| 午夜a级毛片| 国产 一区 欧美 日韩| 变态另类丝袜制服| 久久久久久久久久成人| 禁无遮挡网站| 男人舔奶头视频| 蜜桃亚洲精品一区二区三区| 色综合亚洲欧美另类图片| 一级爰片在线观看| 欧美性猛交╳xxx乱大交人| 亚洲经典国产精华液单| 男人和女人高潮做爰伦理| 日产精品乱码卡一卡2卡三| 亚洲国产成人一精品久久久| 在线免费观看的www视频| 中文字幕av在线有码专区| 卡戴珊不雅视频在线播放| 国内精品美女久久久久久| 午夜激情福利司机影院| 少妇被粗大猛烈的视频| 亚洲人成网站高清观看| 国产精品爽爽va在线观看网站| 三级经典国产精品| 日韩亚洲欧美综合| 国产精品国产三级专区第一集| 国产精品伦人一区二区| 免费不卡的大黄色大毛片视频在线观看 | 国产伦在线观看视频一区| av在线播放精品| 国产又色又爽无遮挡免| 狠狠狠狠99中文字幕| 国产高清不卡午夜福利| 精品人妻熟女av久视频| 欧美日韩在线观看h| 国产在线一区二区三区精 | 欧美高清性xxxxhd video| 黑人高潮一二区| 中文资源天堂在线| 午夜老司机福利剧场| 日产精品乱码卡一卡2卡三| 中文字幕免费在线视频6| 国产一区亚洲一区在线观看| 人人妻人人看人人澡| 午夜亚洲福利在线播放| 国产熟女欧美一区二区| 国产中年淑女户外野战色| 久久久成人免费电影| 欧美变态另类bdsm刘玥| 一二三四中文在线观看免费高清| 国内精品美女久久久久久| a级毛色黄片| 久久久久久久久大av| 中国美白少妇内射xxxbb| 欧美成人a在线观看| 亚洲精品aⅴ在线观看| 精品一区二区三区视频在线| 国产av在哪里看| 天堂影院成人在线观看| 久久综合国产亚洲精品| 免费观看在线日韩| 久久99热6这里只有精品| 国产伦精品一区二区三区视频9| 国产淫语在线视频| 一二三四中文在线观看免费高清| 男的添女的下面高潮视频| 极品教师在线视频| 亚洲18禁久久av| 91精品一卡2卡3卡4卡| 18禁在线无遮挡免费观看视频| 日韩av在线免费看完整版不卡| 精品99又大又爽又粗少妇毛片| 国国产精品蜜臀av免费| 国产精品一区二区在线观看99 | 亚洲久久久久久中文字幕| 国产成人福利小说| 亚洲色图av天堂| 韩国av在线不卡| 久久久成人免费电影| 日韩一区二区视频免费看| 男女视频在线观看网站免费| 亚洲精品久久久久久婷婷小说 | 成人三级黄色视频| 黄色欧美视频在线观看| 免费看美女性在线毛片视频| 你懂的网址亚洲精品在线观看 | 精品久久久久久久久亚洲| 99热精品在线国产| 亚洲高清免费不卡视频| 亚洲激情五月婷婷啪啪| 国产久久久一区二区三区| 狂野欧美激情性xxxx在线观看| 在线a可以看的网站| 女人被狂操c到高潮| 亚洲av免费在线观看| 国产精品不卡视频一区二区| 丰满少妇做爰视频| 91av网一区二区| 成人一区二区视频在线观看| 女人十人毛片免费观看3o分钟| 纵有疾风起免费观看全集完整版 | 黄色欧美视频在线观看| 欧美zozozo另类| 国产精品综合久久久久久久免费| 亚洲av电影不卡..在线观看| 变态另类丝袜制服| 一个人看的www免费观看视频| 久久99热6这里只有精品| 99久久中文字幕三级久久日本| 亚洲无线观看免费| 日本一二三区视频观看| 欧美日韩在线观看h| 国产淫语在线视频| 一边摸一边抽搐一进一小说| 国产av在哪里看| 亚洲在线观看片| 国产免费视频播放在线视频 | 超碰av人人做人人爽久久| 精品熟女少妇av免费看| 嘟嘟电影网在线观看| 成人特级av手机在线观看| 在线天堂最新版资源| 超碰97精品在线观看| 国产一区亚洲一区在线观看| 精品酒店卫生间| 美女高潮的动态| 床上黄色一级片|