• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wide-range characteristics of beam perveance and saddle point potential of LIPS-200 ion thruster

    2022-11-17 02:59:42XueerZHANG張雪兒TianpingZHANG張?zhí)炱?/span>DetianLI李得天JuanjuanCHEN陳娟娟andYanhuiJIA賈艷輝
    Plasma Science and Technology 2022年11期
    關(guān)鍵詞:雪兒天平

    Xueer ZHANG(張雪兒),Tianping ZHANG(張?zhí)炱?,Detian LI(李得天),Juanjuan CHEN(陳娟娟)and Yanhui JIA(賈艷輝)

    Science and Technology on Vacuum Technology and Physics Laboratory,Key Laboratory of Space Electric Propulsion Technology of Gansu Province,Lanzhou Institute of Physics,Lanzhou 730000,People’s Republic of China

    Abstract Both the long-life and multi-mode versions of LIPS-200 ion thruster are under investigation in LIP(Lanzhou Institute of Physics).To confirm the feasible ranges of the beam current and accel(abbreviation for accelaration)grid potential to apply to the thruster,the wide-range beam perveance(the state of beam focus)and saddle point potential(the lowest potential along beamlet centerline)characteristics of LIPS-200 are studied with a test-verified PIC-MCC(Particle in Cell-Monte Carlo Collisions)model.These characteristics are investigated with both the initial and the eroded states of the accel grid aperture diameter.The results show that the feasible ranges of these parameters with respect to perveance/crossover(overfocused)limit extend as the operating time accumulates,while the feasible range of accel grid potential narrows due to a reduced EBSF(electron backstreaming failure)margin.The feasible ranges determined by the initial condition are:(i)the beam current up to 0.981 A,and(ii)the accel grid potential up to-85 V.A 23% enlargement of the aperture diameter would bring up to 48 V of EBSF margin loss.

    Keywords:ion thruster,perveance limit,crossover limit,saddle point potential,parameter range

    1.Introduction

    Wider operating range,more operating modes,and longer lifetime are the major trends for ion thruster,which also extend the advantages of ion thruster compared to other types of electric thrusters[1].The principles for multi-mode ion thrusters to achieve extended lifetime include(i)during widerange operation,the ions are always extracted by the ion optics without direct impingement on the grids,which is characterized with the beam perveance;(ii)the soft failure(whose damage to the thruster is not permanent)due to electron backstreaming does not occur,i.e.the saddle point potential(Vsp,the lowest potential along beamlet centerline)is lower than the critical saddle point potential(Vsp*);(iii)grid structure failure(GSF)and electron backstreaming failure(EBSF)caused by sputtering erosion occur nearly simultaneously,which maximizes the lifetime.

    Beam perveance(the state of beam focus)characteristics directly affect the performance of gridded ion thrusters,while saddle point potential characterizes the grid lifetime.Based on the life tests of multi-mode ion thrusters NSTAR(NASA Solar Technology Application Readiness)and NEXT(NASA’s Evolutionary Xenon Thruster)[2,3],numerical studies on the simulation of ion optics were conducted[4-6].Wilburet al[7]conducted an experimental study on two-grid optics sets and measured the perveance and crossover(overfocused)beamlet current limits.Emhoet al[8]applied different ion optics models for perveance study to the NEXT ion engine and obtained similar results.Yimet almade an uncertainty quantification of the modeled EBSF lifetime for the NEXT ion thruster[9].Goebelet alstudied the development and application of the multi-mode XIPS-25 ion thruster[10].

    In China,the beam perveance and saddle point potential characteristics of LIPS-200,LIPS-300 and LIPS-400 ion thrusters were studied.Jiaet almade a numerical analysis of the EBSF threshold of LIPS-200[11].Chenet alanalyzed the numerical simulation results of LIPS-200 life test[12].Longet al[13]performed theoretical and experimental studies on the dynamic characteristics of beam perveance under thermal deformation in a three-grid ion thruster.Jiaet almade 2D hybrid-PIC simulations of the two-grid and three-grid ion optics[14].Chenet alstudied the optimization of the accel(abbreviation for accelaration)grid potential of LIPS-300 ion thruster[15].Zhaoet alconducted an experimental study on the multi-mode ion thruster LIPS-400[16,17].Sunet alstudied how the design parameter of three-grid ion optics affected the thruster lifetime[18].Jiaet almade a sensitivity analysis of the EBSF-related parameters for a three-grid ion thruster[19].Luet aldeveloped a set of highly reliable 3D simulation tools for both the ion optics[20]and the discharge chamber[21,22]of ion thrusters based on the immersed finite element method[23].They analyzed the variation of the grid erosion characteristics[24,25]and the Mo atom pollution under various operating conditions[20],which are of great significance.

    LIPS-200 is the most technically mature ion thruster in China.By quantifying the lifetime and reliability of LIPS-200 ion thruster based on test-verified models,its critical failure modes are confirmed to be GSF and EBSF[12,26,27].To achieve an ultimate lifetime of 20 000 h under the restriction of remaining its readiness level,the constant-accel-potential and stepping-accel-potential methods have been presented and validated by test-verified life models[28].The mechanism of these methods is to adjust the accel grid potential and make GSF and EBSF occur at the same time[27].LIPS-200E ion thruster,the multi-mode version of LIPS-200,is designed for high-Earth orbit communication satellites[29,30].Except for the existing operating mode(40 mN/3000 s),LIPS-200E is capable to operate with 60 mN/3500 s.This requires the thruster to operate with wide-range parameters.Based on the test results and a verified numerical model of the single-mode version of LIPS-200[11,12,31],its beam perveance and saddle point potential characteristics with wide-range parameters will be studied in this work.These parameters include accel grid potential,accel grid aperture diameter,and upstream plasma density.The results will provide reference to the lifetime optimization of LIPS-200 and its multi-mode ion thruster.

    2.Ion optics model and model verification

    2.1.Ion optics and perveance fraction

    LIPS-200 is a two-grid ion thruster with flight-readiness level.Its ion optics serve to extract and accelerate the ions in the upstream plasma.Most of the ions are ejected downstream as beam ions,while the rest impinge on the screen grid.When perveance or crossover limit occurs,part of the beam ions will impinge on the accel grid and generate impingement current[32].

    The maximum amount of beamlet current that could be extracted is characterized with[32]

    where

    andPHis the perveance fraction,mthe ion mass,ethe electron charge,ε0the vacuum permittivity,Jbthe beamlet current,VTthe total accelerating voltage,lethe effective ion acceleration length,dsthe screen grid aperture diameter,Vsthe screen grid potential,Vpthe discharge voltage,Vathe accel grid potential.

    Equations(1)and(2)show thatPHis related toVaandJb,whereJbis related to accel grid aperture size and upstream plasma density.Perveance limit occurs asPHgets close to 0,while crossover limit occurs asPHgets close to 1.Perveance(or crossover)limit means that the ions just impinge on the upstream(or downstream)side of the accel grid aperture.

    2.2.Ion optics model

    The computational domain of the ion optics model is shown in figure 1.This domain includes the screen and accel grid apertures at the center,where the worst-case erosion occurs.The influence of the radial nonuniformity in plasma parameters on the beam current is minimized by applying the tested beam flatness(the average beam current density divided by the maximum beam current density)to the beam current calculation.The influence on other parameters is not directly addressed,which might be a source of the calculation error.Only one beamlet is simulated numerically in the domain shown in figure 1 along the(r,z)radial and axial directions.The left boundary is set at the sheath surface in the discharge chamber with a potential ofVs+Vp,whereVpis the plasma potential in the discharge chamber.The radius and thickness of the screen and accelerator grid apertures are indicated byrs,raandts,ta,respectively.The boundary condition at the beamlet centerline is??/?n=0,wherenrepresents the normal direction.

    The beam ions are modeled as moving particles,and its flux along the beamlet centerline direction is recorded.The beamlet current is collected at the right boundary.The beamlet diameter is recorded both at the upstream surface of accel grid and at the right boundary.

    The electrons are modeled as thermal equilibrium fluid,which follows Boltzmann distribution.Within the computational domain,electrons only exist in the upstream area of screen grid and the downstream area of accel grid.The electron densityneis obtained with its relationship to potential ?,i.e.the Boltzmann equation.

    The electric field is solved with a finite difference method in the format of five-point central difference,as shown in figure 2.The mesh size in both directions ish.The difference equation is derived as

    where subscriptsiandjrepresent the node number,niandneare the number densities of ions and electrons,respectively.

    Equation(3)is solved with Gauss-Seidel iteration method.The potential distribution is updated with the extraction process.Both the potential distributions through the field and along the centerline are recorded as a reference.A more detailed description of this model is given in[12,31].

    2.3.Model verification

    The parameters of LIPS-200 involved in this model are shown in table 1[12,24,26],where the rated values are consistent with the existing product.The accel grid aperture size was measured during the life test[12,26].

    The model is validated with the 12 000 h life test of LIPS-200 ion thruster.The electron backstreaming limitVebsis defined as the accel grid potential where further decreases in its absolute value will give rise to a measurable increase in the beam current,which characterizes EBSF.This criterion is used in the model as

    Table 1.LIPS-200 parameters.

    where ε characterizes the calculation accuracy.Vspis updated with the potential distribution,whileVsp*is determined by[33]

    whereVbpis the beam plasma potential,Tethe downstream electron temperature,febsthe backstreaming-to-beamlet current ratio,methe electron mass,Vdpthe plasma sheath potential.

    The result is compared to the data collected in the life test,as shown in figure 3.The abbreviations‘Cal.’and‘Exp.’represent‘calculation’and‘experiment’,respectively.The calculated and experiment results show the same tendency.The largest deviation is 17.52%,while the root mean square deviation is 9.59%.This deviation arises from both the measurement error and the model simplification.Relative model simplifications include(i)constant grid potentials,(ii)neglected potential variation due to the change in grid mass,(iii)hot grid gap consistent with the measurement from the edge,and(iv)neglected multi-charged ions.

    Except for electron backstreaming limit,the model is also verified with the beam current.The results are respectively shown in the next section.The beam current is obtained with the beamlet current calculated with this model,the number of grid apertures,and the tested beam flatness.The calculated results show good agreement with the test data.Thus,the accuracy of this model is acceptable.

    3.Results and discussion

    3.1.Wide-range beam perveance characteristics

    Beam perveance is sensitive to the accel grid potential,accel grid aperture diameter,and the upstream plasma density.Within the reasonable ranges of these parameters,crossover or perveance limit may occur to the ion beamlet.

    3.1.1.Beam perveance with accel grid potential.As shown in figures 4 and 5,both the beam and impingement currents show an obvious change at the accel grid potential of-75 V.This change is due to the perveance limit of the ion beamlet,which is shown in figure 6.In figures 6,9 and 12 are represented the contour colour plots of steady state ion flux(in particles per second)within the simulation domain of figure 1.Before this perveance limit occurs,the beam current basically decreases as the accel grid potential increases.Because the electric field accelerating the ions weakens as the accel grid potential is biased more positive.Then the number of the extracted ions per second decreases,which leads to the decrease in the beam current.To avoid perveance limit,the accel grid potential of LIPS-200 should be lower than-85 V when other conditions are rated.

    Accordingly,the beamlet diameter(dimensionless throughout this article)increases as the accel grid potential increases,as shown in figure 7.Because thez-direction speed of the ions decreases as the electric field weakens,leading to a relatively largerr-direction displacement.When perveance limit occurs,the beamlet diameter decreases as the ions near the accel grid are intercepted.

    3.1.2.Beam perveance with upstream plasma density.As shown in figure 8,both the beam and impingement currents show an obvious turning point at the upstream plasma density of 1.4×1017m-3.This turning point is due to the crossover limit of the ion beamlet,which is shown in figure 9.The critical plasma density where crossover limit occurs corresponds to a beam current of 0.981 A,which is about 16.7%higher than the rated value for LIPS-200.To avoid this crossover limit,the mass flow rate and discharge current of the thruster should be controlled within a proper range.

    Before this crossover limit occurs,the beam current increases as the plasma density increases because the number of the ions to be extracted increases.The beamlet diameter also increases for the same reason,as shown in figure 10.Once the crossover limit occurs,the majority of these increased ions are absorbed by the accel grid,while the minority escape or impinge to other structures.Thus,the beam current is stabilized near 0.675 A as the plasma density becomes greater than 2.6×1017m-3.

    3.1.3.Beam perveance with accel grid aperture diameter.As shown in figure 11,both the beam and impingement currents show an obvious change at the accel grid aperture diameter(dimensionless throughout this article)of 2.7.According to the ion flux distribution shown in figure 12,the cause of this change is confirmed to be the perveance limit of the ion beamlet.Before this perveance limit occurs,the beam current slightly increases as the aperture diameter decreases.Accordingly,the beamlet diameter slightly decreases as the aperture diameter decreases,as shown in figure 13.

    3.2.Wide-range saddle point potential characteristics

    The potential distribution near the saddle point is related to both the accel grid potential and the upstream ion beam.As the influence of the accel grid potential becomes weaker,as shown in figure 14,the upstream ion beam raises the potential and‘pushes’the saddle point downstream.The experimental data is the initial electron backstreaming limit of LIPS-200,corresponding to a critical saddle point potential of-8.2 V.It is also noticed that the saddle point potential is almost linearly related to the accel grid potential.This result is consistent with the expression of the relationship between saddle point and accel grid potentials in[5,33].

    As shown in figure 15,the saddle point potential shows a turning point when the crossover limit occurs.Before this crossover,the saddle point position tends to move upstream as the upstream plasma density increases.This is considered to do with the downstream plasma,which also becomes denser as the upstream plasma increases.The safety margin against EBSF keeps over 80 V throughout this plasma density range.

    The saddle point potential first decreases numerically with the increasing plasma density,and then turns to increase.The mechanism of the former is clear,which is a stronger effect of the beam ions on the potential distribution.As to the latter,the cause is still the ion distribution,but in a crossover state.As shown in figure 9,the ion flux near the barrel surface is about 3 times the one at the centerline.Thus,the majority of the ions are‘dispersed’rather than move along the centerline,leading to a drop in the saddle point potential.

    In figure 16,the electric potential of the saddle point(solid bullets,left axis)and its axialzcoordinate(solid diamonds,right axis)are represented for different accel grid aperture diameters.The effect of enlarging the accel grid aperture size on the saddle point is similar to that of increasing the accel grid potential.As the accel grid aperture diameter increases,the potential of the saddle point drops numerically,while its position moves downstream.Since the negatively biased accel grid potential moves farther away from the centerline,the ion beam takes more of the dominant role.

    3.3.Wide-range characteristics considering accel grid barrel erosion

    The original accel grid aperture diameter of LIPS-200 is 3.0.The results in figures 11 and 16 show that the beam perveance and saddle point potential characteristics are sensitive to the accel grid aperture diameter.Therefore,these wide-range characteristics should be re-investigated as the accel grid aperture diameter enlarges with the sputtering erosion of charge exchange(CEX)ions.The characteristics of the eroded grid are studied,while the sputtering erosion process is not involved in this study.The case of 11 000 h of cumulative operating time is considered,after which the aperture diameter became 3.7[12],increasing by 23%compared with the initial value.

    As shown in figures 17 and 18,the beam current and saddle point potential remain the same tendency with the accel grid potential after the barrel erosion.However,the perveance limit no longer shows up as the accel grid potential increases.The electron backstreaming limit is-115 V with the enlarged accel grid aperture,decreasing by 40 V compared with the initial case.

    After the barrel erosion,the crossover limit does not show up until the upstream plasma density reaches 2.0×1017m-3,corresponding to a beam current of 1.198 A.This critical value increases by 22%compared with the initial case,as shown in figures 19 and 20.The safety margin against EBSF decreases by 24-48 V with the enlarged aperture diameter,yet still remains a margin greater than 40 V throughout this plasma density range.

    3.4.Discussions on engineering application

    Compared with single-mode LIPS-200 ion thruster,its multimode version operates at different conditions.First,the upstream plasma density is adjustable to realize multiple modes,which reflects on the beam current.Second,the accel grid potential is adjustable to optimize grid performance and lifetime.Third,as operating time accumulates,the accel grid aperture diameter will enlarge due to the sputtering erosion of CEX ions.With these conditions,the beam perveance and saddle point potential characteristics required to achieve long life of the multi-mode ion thruster are discussed as follows.

    (i)Perveance or crossover limit should be avoided with widerange plasma density and accel grid potential.The results in figures 8-10 show that the maximum upstream plasma density to avoid crossover limit is 1.4×1017m-3,corresponding to the beam current of 0.981 A.With the rated accel grid potential,perveance limit does not occur within the plasma density range of 1×1015-4×1017m-3.The results in figures 4-7 show that the maximum accel grid potential to avoid perveance limit is-85 V,while crossover limit is not sensitive to the accel grid potential.

    (ii)The critical saddle point potential of EBSF is about-8.2 V for LIPS-200.Figure 14 shows that the accel grid potential should be lower than-81 V to avoid EBSF.Figure 15 shows that saddle point potential is less sensitive to the upstream plasma density,and there is still a margin of-80 V against EBSF with the highest saddle point potential.

    Figure 1.A schematic of the computational domain.

    Figure 2.A schematic of the five-point central difference.

    Figure 3.Electron backstreaming limit represented against the cumulative operating time.

    Figure 4.Beam current represented against the accel grid potential.

    Figure 5.Accel grid impingement current represented against the accel grid potential.

    Figure 6.Beamlet perveance limit at accel grid potential of-75 V.(r and z are dimensionless as with the geometric parameters in table 1).

    Figure 7.Beamlet diameter represented against the accel grid potential.(Beamlet diameter is dimensionless as with the geometric parameters in table 1).

    Figure 8.Beam and impingement currents represented against the plasma density.

    Figure 9.Beamlet crossover limit at upstream plasma density of 1.4×1017 m-3.(r and z are dimensionless as with the geometric parameters in table 1).

    Figure 10.Beamlet diameter represented against the plasma density.(Beamlet diameter is dimensionless as with the geometric parameters in table 1).

    Figure 11.Beam and impingement currents represented against the accel grid aperture diameter.(Accel grid aperture diameter is dimensionless as with the geometric parameters in table 1).

    Figure 12.Beamlet perveance limit at accel grid aperture diameter of 2.7.(r and z are dimensionless as with the geometric parameters in table 1).

    Figure 13.Beamlet diameter represented against the accel grid aperture diameter.(Beamlet diameter and accel grid aperture diameter are dimensionless as with the geometric parameters in table 1).

    Figure 14.Saddle point potential and position represented against the accel grid potential.(z coordinate of saddle point is dimensionless).

    Figure 15.Saddle point potential and position represented against the plasma density.(z coordinate of saddle point is dimensionless).

    Figure 16.Saddle point potential and position represented against the accel grid aperture diameter.(z coordinate of saddle point is dimensionless).

    Figure 17.Beam current represented against the accel grid potential as da=3.7.

    Figure 18.Saddle point potential represented against the accel grid potential as da=3.7.

    Figure 19.Beam current represented against the upstream plasma density as da=3.7.

    Figure 20.Saddle point potential represented against the upstream plasma density as da=3.7.

    (iii)As the accel grid aperture diameter is enlarged by 23%,the critical upstream plasma density of crossover limit increases to 2.0×1017m-3,corresponding to a beam current of 1.198 A.With this aperture diameter,perveance limit does not occur by increasing the accel grid potential.The enlarged aperture diameter brings loss to the EBSF margin,which is 40 V for rated condition,and 24-48 V for wide-range plasma density.

    4.Conclusion

    The wide-range beam perveance and saddle point potential characteristics of LIPS-200 ion thruster have been studied with a test-verified ion optics model.The feasible ranges of the beam current and accel grid potential are investigated with both the initial and the eroded states of the accel grid aperture diameter.The results show that the feasible ranges of these parameters with respect to perveance and crossover limits extend as the operating time accumulates.However,the feasible range of accel grid potential should adapt to the reduced EBSF margin as the aperture diameter increases.The feasible ranges determined by the initial condition are:(i)the beam current up to 0.981 A,and(ii)the accel grid potential up to-85 V.A 23%enlargement of the aperture diameter would bring 24 to 48 V of EBSF margin loss depending on the plasma density.

    Acknowledgments

    Group independent research and development projects(No.YF-ZZYF-2021-132).

    猜你喜歡
    雪兒天平
    說(shuō)說(shuō)天平的使用
    天平使用前后的兩次平衡
    雪兒笑了
    天平使用“三步曲”
    鐘雪兒作品
    你會(huì)用托盤(pán)天平嗎
    天平的平衡
    The Analysis from Literary Terms in How to Get the Poor off Conscience
    東方教育(2018年9期)2018-05-28 09:09:04
    An Analysis of Professions for Women1 A combat for women
    東方教育(2018年9期)2018-05-28 09:09:04
    Mrs.Dalloway:Exploration of life and death
    東方教育(2018年9期)2018-05-28 09:09:04
    亚洲精品粉嫩美女一区| 男女之事视频高清在线观看| 国产三级黄色录像| 听说在线观看完整版免费高清| 欧美日韩乱码在线| 免费看十八禁软件| 性欧美人与动物交配| 淫妇啪啪啪对白视频| 亚洲va日本ⅴa欧美va伊人久久| 成年女人看的毛片在线观看| 国产精品免费一区二区三区在线| 搡老妇女老女人老熟妇| 亚洲欧美日韩高清专用| 天堂网av新在线| 天天一区二区日本电影三级| 一区二区三区高清视频在线| 国内揄拍国产精品人妻在线| 欧美黑人欧美精品刺激| av在线天堂中文字幕| 在线观看日韩欧美| 丰满人妻熟妇乱又伦精品不卡| 国产成人精品久久二区二区免费| 午夜福利高清视频| 国产精品av视频在线免费观看| 亚洲精品粉嫩美女一区| 可以在线观看的亚洲视频| 亚洲国产色片| 免费高清视频大片| 在线观看美女被高潮喷水网站 | 又黄又粗又硬又大视频| 国产精品亚洲一级av第二区| 2021天堂中文幕一二区在线观| 久久99热这里只有精品18| 国产精品av久久久久免费| 久久性视频一级片| 制服人妻中文乱码| 亚洲色图av天堂| 亚洲自拍偷在线| 国产成人福利小说| 亚洲欧美日韩高清专用| 国产久久久一区二区三区| 国产伦精品一区二区三区四那| 日韩精品中文字幕看吧| 日韩人妻高清精品专区| 午夜免费观看网址| 亚洲九九香蕉| 久99久视频精品免费| 91老司机精品| 手机成人av网站| 女人高潮潮喷娇喘18禁视频| 国产黄a三级三级三级人| 嫁个100分男人电影在线观看| 丰满人妻熟妇乱又伦精品不卡| 熟妇人妻久久中文字幕3abv| 又粗又爽又猛毛片免费看| 亚洲欧美日韩无卡精品| 我要搜黄色片| 久久久久性生活片| 免费观看精品视频网站| 99视频精品全部免费 在线 | 黑人操中国人逼视频| 欧美日韩综合久久久久久 | 黄色片一级片一级黄色片| 亚洲精品乱码久久久v下载方式 | 国产精品久久久av美女十八| 午夜福利免费观看在线| av女优亚洲男人天堂 | 99在线人妻在线中文字幕| 又大又爽又粗| 法律面前人人平等表现在哪些方面| 成人国产综合亚洲| 波多野结衣高清无吗| 午夜免费观看网址| 亚洲国产欧美一区二区综合| 制服人妻中文乱码| 亚洲电影在线观看av| 免费av毛片视频| 制服丝袜大香蕉在线| 一本一本综合久久| www.精华液| 国内精品一区二区在线观看| 大型黄色视频在线免费观看| 久久久久久国产a免费观看| 亚洲五月婷婷丁香| 国产成人av激情在线播放| 日韩国内少妇激情av| 精品久久久久久,| 国产一区二区三区在线臀色熟女| 国产精品亚洲av一区麻豆| 免费一级毛片在线播放高清视频| av在线蜜桃| 91麻豆精品激情在线观看国产| 制服丝袜大香蕉在线| 99久久国产精品久久久| 欧美国产日韩亚洲一区| 一卡2卡三卡四卡精品乱码亚洲| 午夜激情欧美在线| 热99re8久久精品国产| 国产精品亚洲av一区麻豆| 久久久色成人| 成人性生交大片免费视频hd| 99久久国产精品久久久| 欧美色欧美亚洲另类二区| bbb黄色大片| 欧美3d第一页| 亚洲欧美激情综合另类| 蜜桃久久精品国产亚洲av| 法律面前人人平等表现在哪些方面| 国产伦精品一区二区三区四那| 中文资源天堂在线| 曰老女人黄片| 亚洲成人中文字幕在线播放| 床上黄色一级片| 国产成人影院久久av| 最新在线观看一区二区三区| 看片在线看免费视频| www.自偷自拍.com| 中文字幕熟女人妻在线| 性欧美人与动物交配| 日日夜夜操网爽| 精品一区二区三区视频在线观看免费| 亚洲av美国av| 亚洲成人久久爱视频| xxx96com| www.自偷自拍.com| 欧美一区二区国产精品久久精品| 国产亚洲av嫩草精品影院| 亚洲男人的天堂狠狠| 欧美精品啪啪一区二区三区| 国产免费av片在线观看野外av| 欧美激情在线99| 在线看三级毛片| 亚洲在线观看片| www日本在线高清视频| 最好的美女福利视频网| 一夜夜www| 99精品久久久久人妻精品| 国产高清三级在线| 老汉色∧v一级毛片| 床上黄色一级片| 啦啦啦观看免费观看视频高清| 亚洲午夜精品一区,二区,三区| 国产乱人视频| 亚洲成人中文字幕在线播放| 叶爱在线成人免费视频播放| 精品熟女少妇八av免费久了| xxx96com| 国产乱人伦免费视频| 97碰自拍视频| 老汉色av国产亚洲站长工具| 久久天躁狠狠躁夜夜2o2o| 中出人妻视频一区二区| 中文字幕高清在线视频| 日本黄大片高清| 一进一出好大好爽视频| 免费大片18禁| 国产真实乱freesex| 可以在线观看的亚洲视频| 久久伊人香网站| 精品国产乱子伦一区二区三区| 熟妇人妻久久中文字幕3abv| 亚洲精品在线美女| 日韩 欧美 亚洲 中文字幕| 天天添夜夜摸| 青草久久国产| 狂野欧美激情性xxxx| 欧美高清成人免费视频www| 麻豆久久精品国产亚洲av| av欧美777| 男女之事视频高清在线观看| 午夜成年电影在线免费观看| 一区二区三区高清视频在线| 91在线精品国自产拍蜜月 | 精品国产乱子伦一区二区三区| 国产高清视频在线播放一区| 99在线人妻在线中文字幕| 亚洲色图 男人天堂 中文字幕| 久久久久久久久中文| 2021天堂中文幕一二区在线观| 日日干狠狠操夜夜爽| www.熟女人妻精品国产| 欧美又色又爽又黄视频| 99riav亚洲国产免费| 看片在线看免费视频| 国产不卡一卡二| 美女cb高潮喷水在线观看 | 观看美女的网站| 制服人妻中文乱码| 欧美在线黄色| 毛片女人毛片| 国产激情偷乱视频一区二区| 亚洲片人在线观看| 俺也久久电影网| 真人做人爱边吃奶动态| 在线永久观看黄色视频| 国产成人av教育| 国产黄片美女视频| 国产成年人精品一区二区| 美女高潮的动态| 手机成人av网站| 亚洲精品美女久久av网站| 欧美黄色淫秽网站| 日韩免费av在线播放| 国产精品精品国产色婷婷| 18禁黄网站禁片午夜丰满| 美女被艹到高潮喷水动态| 亚洲乱码一区二区免费版| a级毛片a级免费在线| 在线免费观看不下载黄p国产 | 俺也久久电影网| 久久精品国产综合久久久| 国产三级在线视频| 久久性视频一级片| 看黄色毛片网站| 欧美一区二区精品小视频在线| 欧美+亚洲+日韩+国产| 国产激情偷乱视频一区二区| 国产黄片美女视频| 国产99白浆流出| 日韩欧美三级三区| 久久久国产精品麻豆| 偷拍熟女少妇极品色| 国产成人影院久久av| 九色国产91popny在线| 女同久久另类99精品国产91| 国产主播在线观看一区二区| 亚洲欧美日韩卡通动漫| 美女高潮的动态| 最近视频中文字幕2019在线8| 女警被强在线播放| 国产激情欧美一区二区| 国内揄拍国产精品人妻在线| 午夜激情福利司机影院| 手机成人av网站| 老汉色av国产亚洲站长工具| 国产成人啪精品午夜网站| 伊人久久大香线蕉亚洲五| 18美女黄网站色大片免费观看| 久久性视频一级片| netflix在线观看网站| 久久精品国产清高在天天线| 亚洲av电影不卡..在线观看| 精品电影一区二区在线| 免费观看人在逋| 国产高清videossex| 欧美日本亚洲视频在线播放| 熟女人妻精品中文字幕| 亚洲成人免费电影在线观看| 久久久久久久精品吃奶| 亚洲午夜理论影院| 床上黄色一级片| 黄色丝袜av网址大全| 国产野战对白在线观看| 国模一区二区三区四区视频 | 精品乱码久久久久久99久播| 最新在线观看一区二区三区| 国内精品美女久久久久久| 欧美成人性av电影在线观看| 啦啦啦韩国在线观看视频| 精品国产三级普通话版| 性欧美人与动物交配| 不卡一级毛片| 久久久久国内视频| 欧美日韩精品网址| 亚洲国产欧洲综合997久久,| 成人av在线播放网站| 欧美乱码精品一区二区三区| 国产亚洲欧美在线一区二区| 日韩欧美在线二视频| 日韩免费av在线播放| 91久久精品国产一区二区成人 | 波多野结衣巨乳人妻| 国产蜜桃级精品一区二区三区| 熟女人妻精品中文字幕| www日本在线高清视频| 欧美日韩中文字幕国产精品一区二区三区| 国产 一区 欧美 日韩| 丁香欧美五月| 又爽又黄无遮挡网站| 国产99白浆流出| 91在线精品国自产拍蜜月 | 亚洲成人久久性| 91在线精品国自产拍蜜月 | 12—13女人毛片做爰片一| 精品久久久久久久末码| 欧美日本视频| 国产av不卡久久| 一卡2卡三卡四卡精品乱码亚洲| 亚洲真实伦在线观看| 性色avwww在线观看| 国产免费男女视频| 欧美一区二区国产精品久久精品| 国产激情欧美一区二区| 99在线人妻在线中文字幕| 中文在线观看免费www的网站| 美女午夜性视频免费| 日本撒尿小便嘘嘘汇集6| 麻豆久久精品国产亚洲av| 又大又爽又粗| 国产精品亚洲一级av第二区| 亚洲精品久久国产高清桃花| 国产精品98久久久久久宅男小说| 一个人观看的视频www高清免费观看 | 国产精品 欧美亚洲| 男人舔女人的私密视频| 久久久久国内视频| 黑人巨大精品欧美一区二区mp4| 亚洲精品中文字幕一二三四区| 亚洲av成人一区二区三| 长腿黑丝高跟| 观看免费一级毛片| 99热只有精品国产| 熟女少妇亚洲综合色aaa.| 日韩免费av在线播放| 欧美成狂野欧美在线观看| 在线a可以看的网站| 一个人免费在线观看电影 | 日本免费a在线| 脱女人内裤的视频| 亚洲片人在线观看| 99久久精品国产亚洲精品| 日韩免费av在线播放| 男人和女人高潮做爰伦理| 亚洲欧美精品综合一区二区三区| 国产精品 国内视频| 欧美精品啪啪一区二区三区| 成人午夜高清在线视频| 在线十欧美十亚洲十日本专区| 亚洲九九香蕉| 欧美绝顶高潮抽搐喷水| 搡老妇女老女人老熟妇| 欧美精品啪啪一区二区三区| 成人午夜高清在线视频| 成人国产综合亚洲| 久久久久久久午夜电影| 日韩欧美在线乱码| 午夜福利免费观看在线| 国产亚洲精品av在线| 欧美一区二区国产精品久久精品| 午夜日韩欧美国产| 90打野战视频偷拍视频| 亚洲欧美日韩高清在线视频| 在线观看一区二区三区| 亚洲 国产 在线| 丁香六月欧美| 99国产精品一区二区三区| 舔av片在线| 亚洲人成电影免费在线| 精品不卡国产一区二区三区| 国产成人精品无人区| 又黄又粗又硬又大视频| 国产高清有码在线观看视频| 免费看光身美女| 叶爱在线成人免费视频播放| 欧美乱色亚洲激情| 亚洲美女视频黄频| 国内久久婷婷六月综合欲色啪| 亚洲国产看品久久| 成年女人毛片免费观看观看9| 色在线成人网| 美女 人体艺术 gogo| 日韩欧美 国产精品| 国产淫片久久久久久久久 | 亚洲色图 男人天堂 中文字幕| 757午夜福利合集在线观看| 国产精品精品国产色婷婷| 国产激情欧美一区二区| 深夜精品福利| 久久久久精品国产欧美久久久| 国产又色又爽无遮挡免费看| 日本撒尿小便嘘嘘汇集6| 国产乱人视频| 免费观看的影片在线观看| 激情在线观看视频在线高清| 午夜福利免费观看在线| netflix在线观看网站| 天堂动漫精品| 制服人妻中文乱码| 久久久久久久久久黄片| 欧美中文综合在线视频| 亚洲美女黄片视频| 很黄的视频免费| 神马国产精品三级电影在线观看| 最近在线观看免费完整版| 中文亚洲av片在线观看爽| www.www免费av| 成人精品一区二区免费| 国产午夜精品久久久久久| 国产又黄又爽又无遮挡在线| 99热只有精品国产| 国产又黄又爽又无遮挡在线| 黄色女人牲交| 99久久成人亚洲精品观看| 一区福利在线观看| 色av中文字幕| 美女午夜性视频免费| 久久草成人影院| 99re在线观看精品视频| 亚洲国产精品久久男人天堂| 国产一区二区在线观看日韩 | 国产久久久一区二区三区| 精品国产三级普通话版| 亚洲天堂国产精品一区在线| 国产av不卡久久| 亚洲av中文字字幕乱码综合| 极品教师在线免费播放| 亚洲国产日韩欧美精品在线观看 | 在线免费观看不下载黄p国产 | 特大巨黑吊av在线直播| 亚洲片人在线观看| 日韩欧美在线二视频| 一区福利在线观看| 久久人妻av系列| www.999成人在线观看| 两个人看的免费小视频| 一二三四社区在线视频社区8| 看免费av毛片| 一个人免费在线观看的高清视频| 日日摸夜夜添夜夜添小说| 久久精品综合一区二区三区| 免费在线观看日本一区| 久久久精品欧美日韩精品| 搞女人的毛片| 欧美xxxx黑人xx丫x性爽| 成人特级黄色片久久久久久久| 国模一区二区三区四区视频 | av片东京热男人的天堂| 精华霜和精华液先用哪个| 欧美3d第一页| 国产免费av片在线观看野外av| 真实男女啪啪啪动态图| 久久香蕉国产精品| 国产激情欧美一区二区| 我要搜黄色片| 三级男女做爰猛烈吃奶摸视频| 美女cb高潮喷水在线观看 | 成年免费大片在线观看| 国内揄拍国产精品人妻在线| xxx96com| 五月玫瑰六月丁香| 色综合婷婷激情| 51午夜福利影视在线观看| 国语自产精品视频在线第100页| www.www免费av| 两个人的视频大全免费| 桃色一区二区三区在线观看| 草草在线视频免费看| 精品久久久久久久久久免费视频| 中文字幕人妻丝袜一区二区| 国产亚洲精品综合一区在线观看| 欧美xxxx黑人xx丫x性爽| 国产毛片a区久久久久| 欧美成人一区二区免费高清观看 | 免费在线观看成人毛片| 最新中文字幕久久久久 | 一a级毛片在线观看| www.熟女人妻精品国产| 久久香蕉国产精品| 日本熟妇午夜| 黄片大片在线免费观看| 久久精品人妻少妇| 日本撒尿小便嘘嘘汇集6| 午夜福利欧美成人| 久久国产精品人妻蜜桃| 波多野结衣高清作品| 中文字幕高清在线视频| cao死你这个sao货| 三级国产精品欧美在线观看 | 国产又色又爽无遮挡免费看| 99热这里只有是精品50| 国产精品自产拍在线观看55亚洲| 手机成人av网站| 成年人黄色毛片网站| 波多野结衣高清无吗| 人妻久久中文字幕网| 国产精品一及| 日韩欧美在线乱码| 亚洲国产欧美一区二区综合| 午夜视频精品福利| 国产v大片淫在线免费观看| 精品国产美女av久久久久小说| 精品福利观看| 青草久久国产| 亚洲精品在线观看二区| 婷婷丁香在线五月| 国产成年人精品一区二区| 亚洲午夜理论影院| 久久亚洲真实| 每晚都被弄得嗷嗷叫到高潮| 免费看日本二区| 免费电影在线观看免费观看| 欧美高清成人免费视频www| 日韩av在线大香蕉| 999精品在线视频| 国产亚洲欧美98| 国产真人三级小视频在线观看| 中出人妻视频一区二区| 日韩成人在线观看一区二区三区| 国产欧美日韩一区二区精品| 在线播放国产精品三级| 免费看a级黄色片| 国产单亲对白刺激| 日本黄大片高清| 听说在线观看完整版免费高清| 亚洲av片天天在线观看| 久久中文字幕一级| 丁香六月欧美| 综合色av麻豆| 看片在线看免费视频| 哪里可以看免费的av片| 亚洲 欧美一区二区三区| 久久久国产精品麻豆| 天堂av国产一区二区熟女人妻| 日韩三级视频一区二区三区| 日本一本二区三区精品| 亚洲av美国av| 天堂影院成人在线观看| 香蕉av资源在线| 蜜桃久久精品国产亚洲av| 久久精品夜夜夜夜夜久久蜜豆| 91麻豆av在线| 国产真人三级小视频在线观看| 亚洲欧美精品综合久久99| 一级a爱片免费观看的视频| 免费看日本二区| 午夜福利欧美成人| 99热这里只有精品一区 | 国产精品精品国产色婷婷| 韩国av一区二区三区四区| 亚洲性夜色夜夜综合| 一区二区三区国产精品乱码| 精品久久久久久久毛片微露脸| 少妇的逼水好多| 久久久久久大精品| 亚洲午夜理论影院| 日韩欧美免费精品| 国产精品乱码一区二三区的特点| 最近最新中文字幕大全免费视频| 婷婷亚洲欧美| 亚洲精华国产精华精| 亚洲人成网站在线播放欧美日韩| tocl精华| 国产乱人视频| 亚洲成a人片在线一区二区| 亚洲美女黄片视频| 欧美中文综合在线视频| 在线免费观看的www视频| 天堂av国产一区二区熟女人妻| 在线观看免费视频日本深夜| 欧美色视频一区免费| 老熟妇仑乱视频hdxx| 国产亚洲欧美98| 久久婷婷人人爽人人干人人爱| 亚洲在线自拍视频| 久久久国产精品麻豆| 一个人看视频在线观看www免费 | 毛片女人毛片| 伊人久久大香线蕉亚洲五| 很黄的视频免费| 在线视频色国产色| 特大巨黑吊av在线直播| 婷婷六月久久综合丁香| 高清在线国产一区| 99精品欧美一区二区三区四区| 日日夜夜操网爽| 国产精品自产拍在线观看55亚洲| 欧美乱码精品一区二区三区| 亚洲欧美一区二区三区黑人| 一个人看的www免费观看视频| 这个男人来自地球电影免费观看| 久久精品91蜜桃| 女警被强在线播放| 久久久国产欧美日韩av| 特大巨黑吊av在线直播| 久久精品国产亚洲av香蕉五月| xxx96com| 国产亚洲欧美在线一区二区| 国产午夜精品论理片| 免费搜索国产男女视频| 国产精品久久久久久久电影 | 国产v大片淫在线免费观看| 久久99热这里只有精品18| 欧美一级a爱片免费观看看| 欧美zozozo另类| 欧美+亚洲+日韩+国产| 最新美女视频免费是黄的| 日本a在线网址| 大型黄色视频在线免费观看| 国产综合懂色| 成人午夜高清在线视频| 嫩草影视91久久| 最新美女视频免费是黄的| 狠狠狠狠99中文字幕| 日韩精品青青久久久久久| 黑人欧美特级aaaaaa片| 岛国在线免费视频观看| 日韩欧美国产一区二区入口| 99热这里只有是精品50| 色播亚洲综合网| 男女午夜视频在线观看| 欧美最黄视频在线播放免费| 国模一区二区三区四区视频 | 亚洲欧美激情综合另类| 国产又色又爽无遮挡免费看| 成年女人永久免费观看视频| 免费在线观看日本一区| 淫秽高清视频在线观看| 亚洲最大成人中文| 又大又爽又粗| ponron亚洲| 在线免费观看不下载黄p国产 | 午夜a级毛片| 久久久精品大字幕| 中文字幕熟女人妻在线| 老司机在亚洲福利影院|