• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental observation of the transport induced by ion Bernstein waves near the separatrix of magnetic nulls

    2022-11-17 02:59:32RenchuanHE何任川XiaoyiYANG楊肖易ChijieXIAO肖池階XiaogangWANG王曉鋼TianchaoXU徐田超ZhibinGUO郭志彬YueGE蓋躍XiumingYU余修銘ZuyuZHANG張祖煜RuiKE柯銳andRuixinYUAN袁瑞鑫
    Plasma Science and Technology 2022年11期

    Renchuan HE(何任川),Xiaoyi YANG(楊肖易),,Chijie XIAO(肖池階),*,Xiaogang WANG(王曉鋼),Tianchao XU(徐田超),*,Zhibin GUO(郭志彬),Yue GE(蓋躍),Xiuming YU(余修銘),Zuyu ZHANG(張祖煜),Rui KE(柯銳) and Ruixin YUAN(袁瑞鑫)

    1 State Key Laboratory of Nuclear Physics and Technology,School of Physics,Peking University,Beijing 100871,People’s Republic of China

    2 Department of Physics,Harbin Institute of Technology,Harbin 150001,People’s Republic of China

    3 Center for Fusion Science of Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China

    Abstract The waves in a magnetic null could play important roles during 3D magnetic reconnection.Some preliminary clues in this paper show that the ion Bernstein wave(IBW)may be closely related to transport process in magnetic null region.The magnetic null configuration experiment reported here is set up in a linear helicon plasma device,Peking University plasma test device(PPT).The wave modes with frequencies between the first and third harmonics of local ion cyclotron frequency(ωci)are observed in the separatrix of magnetic null,which are identified as the IBW based on the dispersion relation.Further analysis shows that IBW could drive substantial particle flux across the magnetic separatrix.The theoretical radial particle flux driven by IBW and the measured parallel flow in PPT device are almost on the same order,which shows that IBW may play an important role during 3D reconnection process.

    Keywords:separatrix,ion Bernstein wave,particle transport,magnetic null,magnetic reconnection

    1.Introduction

    Magnetic reconnection is an important issue in plasma physics,which is often accompanied by fast change and reconfiguration of different magnetic topology,and quick conversion between the plasma kinetic energy,thermal energy and magnetic field energy.Most studies focus on the relations between the plasma waves and reconnection trigger process,reconnection rate,energy conversion,etc[1,2].A lot of waves have been observed in reconnection region,such as the Alfvén wave,whistler wave,low hybrid wave,etc[3,4].Those waves propagate almost parallel to the magnetic field lines.To study the physical process perpendicular to the reconnection plane,even the typical spatial scales,the perpendicular modes need to be taken into account,e.g.some drift waves have been mentioned[5,6].Recently,the ion Bernstein wave(IBW)has been observed in a magnetic reconnection region in the Earth’s magnetotail[7].

    The magnetic separatrix is the boundary of different magnetic topological regions which widely exists in the solar surface,the Earth’s magnetosphere,the tokamak plasma,etc.The particle transport and energy transport across the separatrix play important roles in various magnetic configurations[1,8],e.g.the non-null reconnection could happen in the separatrix region in 3D magnetic-nulls configurations.Also,the particle transport in the scrape-off layer(SOL)region shows substantial influence on tokamak plasma confinement[9].

    In order to study the particle transport,as well as the perpendicular-propagating waves near the separatrix of magnetic nulls,we set up a stationary magnetic-null configuration in the plasma test device(PPT)device.Here we report that the IBW[10]is observed near the separatrix in the experiment.The particle flux induced by the IBW has also been found,which is confirmed to be much stronger than the flux driven by other wave modes.

    This paper is organized as follows.The first part goes to the introduction.The experiment method of our research,including both the experiment setup and the probe diagnosis,is introduced in section 2.Some preliminary results of IBW experiments are presented in section 3.The particle transport driven by the IBW across the separatrices of magnetic nulls is shown in section 4.Then conclusion and discussions are listed in the last section.

    2.Experiment method

    The PPT device has a cylindrical vacuum chamber with a 250 mm radius and an overall length of 1000 mm.0-2000 G uniform magnetic field is generated by a pair of Helmholtz coils[11,12].A dipole magnetic field is constructed by placing a hollow cylinder permanent magnet with an 88 mm inside diameter,a 152 mm outer diameter and 140 mm length on the central axis.The distance from center to the separatrices(white line circle in figure 1(a))of magnetic nulls could vary from 90 to 130 mm,which is adjusted by the external magnetic field,from 260 to 660 G,provided by Helmholtz coils.A 13.56 MHz helicon plasma source is used to generate plasma of density up to 1×1012cm-3with an argon gas pressure of about 2 mTorr.The power of the helicon source is set within the range from 1000 to 2000 W for a stable discharge.In the experiment reported in this paper,the asymptotic magnetic field is 395 G and the helicon discharge power is 1500 W as shown in figure 1(a).

    The probe diagnosis system is set in a port(red circle in figure 1(c))in the center of electromagnet coils.Plasma parameters are obtained from the Langmuir probes with a 10 mm s-1scan velocity and recorded in NI 6368 Data Acquisition with sampling frequency up to 2 MHz.

    Measurements of plasma density and floating potential profiles are made by two horizontal 9-tip probe arrays.One array measures floating potential(Uf)and the other one measures ion-saturation current(Isat),biased by-49 V.Each tungsten tip is 1 mm in diameter,1 mm in length and in a ceramic tube with a diameter of 2.4 mm.The distances between adjacent tips are 3 mm.Figure 1(b)shows the photo of the 9-tip probe arrays in helicon plasma.

    Figure 1.Schematic diagram of the magnetic field for the experiments in this paper.(a)The diagram of a magnetic null configuration,and the nine-probe array in the helicon plasma of PPT device.(b)During the experiment nine-tip probe array was extended into the separatrix.(c)The diagram of the PKU plasma test device(PPT).Helical wave plasma is generated through the RF antenna.A Helmholtz coil provides a uniform magnetic field in the middle of the device,while the probe extends through the probe window via a motorized probe platform.After placing a permanent magnet in the center of the device,our experimental configuration was constructed.

    Figure 2.The ion density and floating potential profiles.(a)Ion density profile.(b)Floating potential profile.The five red dotted lines represent the radial range of phase profiles in figure 4.

    Various physical quantities are measured simultaneously by a 5-tip probe array,in which one tip measuresIsatand the other four measureUf.TheIsattip is located in the center of the cross placement 5-tip probe,and the distances between adjacent tips are 3 mm.Two tips measuringUfof equal length to the tip measuringIsatare placed below and above theIsattip.The other twoUftips are 1 mm longer and 1 mm shorter than theIsattip.Details about the layout of the 5-tip probe array can be found in[12].Here we assume the electron temperature fluctuation is negligible as described in[13].Therefore,the fluctuating plasma potential is approximately equal to the fluctuating floating potential,which means the 5-tip probe array could measure plasma density(ni),floating potential(Uf),radial electric field(Er)and poloidal electric field(Ep).

    Measurement of plasma velocity is made by Mach probe based on the pre-sheath theory[14,15],which is composed of two tips measuringIsatand a ceramic plate between the tips.

    3.IBW on separatrix

    In the case we reported here,the plasma ion density is about 1018m-3and the electron temperature is about 3 eV.The ion acoustic velocity calculated byis about5 km s-1and the Alfvén speed respectively calculated byis about 102km s-1,in which‘B’stands for local magnetic induction intensity.

    Figures 2(a)and(b)show the ion density and floating potential profiles.The abscissa in figure 2 is axial position along thez-axis in figure 1,and the ordinate is the radial position along they-axis in figure 1 in mm.The position of the separatrix is estimated by the magnetic distribution as shown in figure 1.The magnetic field line is visible in figure 2 because the potential on the same magnetic line is almost equal.Potential well and ion density maximum are observed clearly near the separatrix where the electric field and density gradient may induce plasma waves or instabilities.

    The auto-spectra of floating potential(figure 3(a))and plasma density(figure 3(b))show the perturbation modes with maximum amplitude near the separatrix located at 30 kHz,38 kHz,between the first and third harmonic ion cyclotron frequency in the 450 G magnetic field measured by Hall effect Gauss meter at=r 104 mm.In figures 3(a)-(c),the abscissa is the radial position in mm,and the ordinate is the frequency in kHz.The magnetic fluctuations amplitude is about 0.01 G forω=30 kHz in our experiment,which is diagnosed by magnetic probes.The amplitude of the electromagnetic component of this wave is calculated bywhich is less than3 V m-1,and the maximum value of electrostatic disturbance measured by the 5-tip probe is100 V m-1.Therefore,the magnetic component of IBW in the experiment should be much smaller than the electrostatic component based on the above experimental results.Therefore,the wave is identified as quasi-electrostatic wave mode in the separatrix region.

    The dispersion relation of waves in the separatrix region is indicated in figure 3(d).The poloidal wave numberkis shown as the abscissa incm-1and the frequency is shown as the ordinate.The dispersion relationship betweenθk and f is calculated using two equal length tips of the 5-tip probe,spaced 6 mm apart in the poloidal direction.The probe moves inward from250 mm to the center at a speed of10 mm s-1,and each spatial position corresponds to a specific moment in the time series of the probe data.The data for a small period of time0.1 s long near a certain moment is used to calculate thek-spectrumS(kθ,f)for a certain spatial locationr.The calculation method ofS(kθ,f)has been discussed in detail in previous work[16,17].The phase velocity of the mode is calculated as6.3 km s-1,which is close to the ion acoustic velocity calculated byand much slower than the Alfvén speed calculated by

    The cross-phase radial distribution of the wave mode with frequency 30 kHz is shown in figure 4.The abscissa is radial position in mm,and the zero point is set at the position of the lowest floating potential,which is also regarded as the position of the separatrix.The ordinate is the average cross phase of wave modes with frequency from 28 to 32 kHz.The cross phase is calculated similarly to previous research[13]between tips No.1 and Nos.5-9 in the 9-tip probe array.The mode with the largest amplitude near 40 kHz was not used for the phase analysis because of interactions with other modes,which will be discussed in detail in section 5.

    According to figure 2,the tip No.1 is outside the separatrix when tips Nos.5-9 are in the separatrix region.Therefore,the cross-phase radial profile at tips Nos.5-9 position could be obtained by regarding tip No.1’s crossphase as reference phase.The cross-phase profiles are almost zero out of the separatrix,which has supported us to obtain reference phase of potential perturbation from tip No.1.The phase radial profiles in separatrix region indicate that the IBW mode has‖≈k0.Thus,the wave is considered as propagating vertically to the magnetic field line due tok⊥?k‖.

    Overall,the wave is identified as an IBW based on the following criteria.

    i.The frequency of the wave mode we observed is close to but higher than the ion cyclotron frequency.

    ii.It manifests as a quasi-electrostatic wave.

    iii.The 30 kHz and 46 kHz modes can coincide with theoretically calculated IBW curves.The IBW mode on 30 kHz matches well with the equation(2)in[18-20].

    iv.The characteristic low-hybrid frequency is~106Hz in our experiment,which is much higher than the perturbation we found.

    Besides the experiment case discussed above with 395 G asymptotic magnetic field,the IBW mode also exists in the cases with asymptotic magnetic field from 315 to 552 G.As shown in figures 5(a)and(b),the maximum of IBW amplitude is near the maximum ofErandin separatrix region,which may provide energy to the IBW mode.Therefore,the separatrix region is suspected to be the origin of IBW.As shown in the auto-spectrums figures 3 and 5(c),there is a significant decrease in the amplitude of IBW fluctuations atr=100 mm andr=107 mm near the separatrix region,where the cross-phase angle in figure 3(c)also changes abruptly.The wave damping induced by ion-neutral collision could be estimated throughwhereIm(k⊥),viiandvg⊥denote IBW collisional damping rate,ion-neutral collision frequency and the IBW group velocity vertical to the magnetic field line.Ion-neutral collision frequency is7.7 ×104s-1based on the result of previous work.vg~vp≈6.3 km s-1because the phase velocities for different IBW modes have no significant change in figure 3.

    The IBW modes we observed in the separatrix region are quasi-electrostatic wave modes with frequenciesω≤2ωci?ωLH,wave vectorand phase velocitiesvp~Cs.Figure 3(c)clearly shows that the phase difference between IBW’sandchanges repeatedly near the separatrix,which means that the modes may drive particle flux across the separatrix.Related contents will be further discussed in the next section.

    Figure 4.The cross-phase radial profile of with frequencies from 28 to 32 kHz.Tip No.1 is regarded as the reference probe.The region presented by profiles is marked in the figure 2.

    Figure 5.Ion density profile,floating potential profile,amplitude of IBW,and plasma flow in separatrix region.(a)Ion density profile in m -3 and (b)Floating potential profile in V and Er profile in V m-1.(c)Normalized IBW perturbations.Amplitude ofis normalized byand amplitude ofis normalized byVertical particle flux driven by IBW(red line),low-frequency wave modes(cyan line)and plasma flux parallel to the magnetic field line measured by Mach probe(blue line).Γin the ordinate is the flux normalized by n 0 Cs,where n0 is local plasma ion density andCs is ion acoustic speed.S is the cross-sectional area through which the fluxes flow.

    Figure 6.Diagram of the flux in separatrix area.

    Figure 7.self-bio-coherence in different positions:(a)50-51 mm,(b)104-105 mm.

    4.Particle transport driven by the IBWs

    The particle flux can be calculated by bringing the above physical quantities into equation(5),in which the angle bracket indicates the time average of signals over0.025 s.Considering that our probe’s velocity is 10 mm s-1,the spatial resolution of particle flux calculations is 0.25 mm.

    The measured parallel plasma flow and the radial particle flux generated by perturbations near the separatrix region is illustrated in figure 5(d).The red line represents the flux driven by IBW perturbations from 26 to 50 kHz,and the flux driven by low-frequency wave modes from 0.5 to 15 kHz is shown by green line and two orders of magnitudes smaller than that driven by IBW.The particle transport caused by IBW is more than an order of magnitude larger than the particle transport caused by perturbations at lower frequencies and on the same order of magnitude as the plasma flow in the parallel direction.Therefore,we can assume that IBW induces significant transport near the separatrix region.

    Figure 6 is a diagram based on figure 5(d)for the fluxes in the magnetic-null configuration.The shaded region illustrates the separatrix region.The yellow line is the parallel plasma flow that is measured by Mach probes and assumed to flow through a torus section.The blue line indicates the radial ion flux that is driven by IBW and assumed to flow through a spherical surface.The total particle transport in the separatrix region can be obtained by the particle flux density timesΓthe area crossed by the particle flowS,which can be calculated by equation(6)for transport perpendicular to the magnetic field line and by equation(7)for transport parallel to the magnetic field line.

    Figure 8.Bi-coherence between

    5.Conclusion and discussion

    There are several possible mechanisms for IBW generation suggested in previous research,such as mode conversion from Alfvén wave to IBW which were studied in space plasma theory[20]and tokamak heating experiment[21],as well as by the ion Bernstein instability due toat suprathermal perpendicular speeds[22].

    As shown in figures 5(a)and(b),parallel magnetic plasma flux with approximately 0.2 Mach number in separatrix region and theErandin separatrix region could drive poloidalfrom=r 104 to=r 105 mm.folw.ConsideringTi~0.3 eVin this case,the velocity of the parallel plasma flow and the velocity of the flow generated by the electric field gradient and the density gradient are greater than the velocity of the thermal motion of the ions.Therefore,we suppose the formation mechanisms of IBW in this case may be due towhich resembles predecessors’research [20].The further research will be scheduled to clarify this topic in the future.

    In this work,it is identified that the IBW exists in the separatrix near the null.The IBW modes have multi-frequency components.This may be due to the wave-wave interaction between IBW and other mode.Figures 3(a)and(b),the autospectra of the plasma density and the floating potentials,show that there is a low frequency perturbation mode at about 8 kHz,which is found to have interaction with IBW in figure 8.By comparingself-bio-coherence in different positions,we find that the nonlinear interaction is stronger in the separatrix region.Figure 7 indicates the bi-coherence betweenandon separatrix,which also suggests the wave-wave interaction between the IBW and the low frequency mode.The frequencies of low frequency mode and IBW follow equation(8).The interaction probably causes the equal frequency interval between IBW components

    fIBWiindicates the different components of IBW modes.

    Considering the previous studies[12,23],the low frequency mode might be some drift waves.Further study is needed to the suspected drift waves and the wave-wave interactions on separatrix.

    As mentioned above,due to the asynchronism betweenandthe IBW mode could drive particle fulxes,i.e.increasing the particle diffusion across magnetic lines,in the separatrix region.The transport levels from the radial particle flux driven by IBW and the parallel flow measured by Mach probe are on the same magnitude.Therefore,this effect could not only increase the particle exchange near the boundary of open field line region and closed field line region,but also have an important role during the formation of equilibrium profiles,which may cause an inhomogeneous distribution of electrons and ions and thus acceleration of ions and electrons through electric fields in the separatrix region.For the importance of IBW’s transport effect in the separatrix region,further studies should focus on the IBW properties in the separatrix region.

    The mechanism of the IBW generation,and its role during the reconnection process need further studies.We will investigate the interaction between IBW and the low frequency modes,as well as IBW during 3D reconnection in the near future.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China(No.11975038)and the National MCF Energy R&D Program of China(Nos.2017YFE0300601 and 2018YFE0311400).

    亚洲第一av免费看| 乱人伦中国视频| av天堂久久9| 丁香六月欧美| 欧美国产精品va在线观看不卡| 一本大道久久a久久精品| a级毛片黄视频| 妹子高潮喷水视频| 嫩草影视91久久| 免费看不卡的av| 日本黄色日本黄色录像| 大陆偷拍与自拍| 满18在线观看网站| 亚洲精品自拍成人| 欧美日韩视频精品一区| 国产 一区精品| 午夜老司机福利片| 久久久久人妻精品一区果冻| 99久久99久久久精品蜜桃| 亚洲自偷自拍图片 自拍| av女优亚洲男人天堂| 免费日韩欧美在线观看| 麻豆乱淫一区二区| 18禁观看日本| 亚洲国产看品久久| 欧美激情极品国产一区二区三区| 久久99一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲色图 男人天堂 中文字幕| 成人黄色视频免费在线看| 十分钟在线观看高清视频www| 国产亚洲午夜精品一区二区久久| av卡一久久| 老司机在亚洲福利影院| 久久人人97超碰香蕉20202| 成年动漫av网址| 亚洲综合色网址| 日韩精品有码人妻一区| 国产精品女同一区二区软件| 亚洲国产最新在线播放| 久久久久久人人人人人| 亚洲视频免费观看视频| 欧美日韩亚洲综合一区二区三区_| 久久精品亚洲av国产电影网| av又黄又爽大尺度在线免费看| 欧美精品av麻豆av| 亚洲国产精品一区三区| av不卡在线播放| 啦啦啦啦在线视频资源| 热re99久久精品国产66热6| 日韩视频在线欧美| 国产不卡av网站在线观看| 免费看不卡的av| 亚洲欧美精品自产自拍| 久久精品亚洲av国产电影网| 日本vs欧美在线观看视频| 国产一区二区 视频在线| 日韩欧美精品免费久久| 老司机在亚洲福利影院| 欧美成人精品欧美一级黄| 亚洲成人国产一区在线观看 | 尾随美女入室| 成人免费观看视频高清| 91aial.com中文字幕在线观看| 国产精品 欧美亚洲| 99久久综合免费| 久久人人爽人人片av| 日本欧美视频一区| 啦啦啦 在线观看视频| 亚洲av国产av综合av卡| 色吧在线观看| 啦啦啦视频在线资源免费观看| 黄网站色视频无遮挡免费观看| 亚洲国产看品久久| 五月开心婷婷网| 国产极品天堂在线| 精品久久蜜臀av无| 一本色道久久久久久精品综合| 亚洲国产精品一区三区| 老司机在亚洲福利影院| 女人高潮潮喷娇喘18禁视频| 老汉色av国产亚洲站长工具| 日韩av不卡免费在线播放| 一边亲一边摸免费视频| 99九九在线精品视频| 老汉色∧v一级毛片| 久久久精品国产亚洲av高清涩受| 一本—道久久a久久精品蜜桃钙片| 中文字幕人妻熟女乱码| 国产一区亚洲一区在线观看| 久久久久久人妻| 99久国产av精品国产电影| 国产精品熟女久久久久浪| 国产精品国产三级国产专区5o| 成年动漫av网址| 免费女性裸体啪啪无遮挡网站| 别揉我奶头~嗯~啊~动态视频 | 国产一级毛片在线| 97在线人人人人妻| 日韩欧美一区视频在线观看| 蜜桃在线观看..| 久久av网站| 国产高清不卡午夜福利| 欧美精品一区二区免费开放| 亚洲综合色网址| 午夜91福利影院| 性色av一级| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| 女人精品久久久久毛片| 色婷婷久久久亚洲欧美| 久久av网站| 婷婷色综合大香蕉| 日韩免费高清中文字幕av| 午夜影院在线不卡| 这个男人来自地球电影免费观看 | 亚洲精品美女久久av网站| 久久久久精品久久久久真实原创| 2021少妇久久久久久久久久久| 久久狼人影院| 91国产中文字幕| 国产精品女同一区二区软件| 精品亚洲成国产av| 亚洲国产欧美一区二区综合| 在线观看国产h片| 热re99久久精品国产66热6| 岛国毛片在线播放| 成人国产av品久久久| 在线天堂最新版资源| 亚洲综合色网址| 久久人人爽人人片av| 捣出白浆h1v1| 亚洲综合色网址| 国产日韩欧美视频二区| 90打野战视频偷拍视频| 美女扒开内裤让男人捅视频| 久久久久久人妻| 黄频高清免费视频| 精品第一国产精品| 国产日韩欧美亚洲二区| 国产av精品麻豆| 国产97色在线日韩免费| 日韩中文字幕欧美一区二区 | 人人妻人人澡人人看| 一级毛片我不卡| 久久精品熟女亚洲av麻豆精品| 亚洲精品自拍成人| 亚洲情色 制服丝袜| 国产爽快片一区二区三区| 一级毛片黄色毛片免费观看视频| 精品第一国产精品| 黑人巨大精品欧美一区二区蜜桃| a级毛片在线看网站| 久久99热这里只频精品6学生| 丝瓜视频免费看黄片| 亚洲欧美精品自产自拍| 国产日韩欧美视频二区| 亚洲成人免费av在线播放| 中文字幕最新亚洲高清| 在线观看免费日韩欧美大片| 视频区图区小说| 视频区图区小说| 午夜老司机福利片| 亚洲成国产人片在线观看| 啦啦啦中文免费视频观看日本| 国产亚洲av高清不卡| avwww免费| av.在线天堂| 成人国产av品久久久| 黄频高清免费视频| 国产又色又爽无遮挡免| 日韩熟女老妇一区二区性免费视频| 欧美日韩视频精品一区| 久久国产亚洲av麻豆专区| 国产精品蜜桃在线观看| 国产在线视频一区二区| 日本色播在线视频| 国产视频首页在线观看| 下体分泌物呈黄色| 国产亚洲精品第一综合不卡| 日韩熟女老妇一区二区性免费视频| 亚洲美女黄色视频免费看| 亚洲国产中文字幕在线视频| 国产精品久久久久久精品电影小说| 日韩视频在线欧美| 最近最新中文字幕大全免费视频 | 性高湖久久久久久久久免费观看| 精品国产乱码久久久久久小说| 久久久精品94久久精品| 丝袜脚勾引网站| 亚洲少妇的诱惑av| 日韩,欧美,国产一区二区三区| 成人手机av| 成人漫画全彩无遮挡| 亚洲三区欧美一区| 亚洲精品美女久久久久99蜜臀 | 亚洲伊人久久精品综合| 久久韩国三级中文字幕| 纯流量卡能插随身wifi吗| 18禁国产床啪视频网站| 国产黄色免费在线视频| 免费av中文字幕在线| 亚洲欧美中文字幕日韩二区| 男女无遮挡免费网站观看| 天天操日日干夜夜撸| 成人国产av品久久久| 国产片特级美女逼逼视频| 欧美在线黄色| 母亲3免费完整高清在线观看| 国产亚洲午夜精品一区二区久久| 日韩一区二区三区影片| 一区二区日韩欧美中文字幕| 美女大奶头黄色视频| 久久久久精品国产欧美久久久 | 成人毛片60女人毛片免费| 2018国产大陆天天弄谢| 亚洲精品第二区| 精品人妻熟女毛片av久久网站| 日韩不卡一区二区三区视频在线| 中文字幕精品免费在线观看视频| 一区二区日韩欧美中文字幕| 美女主播在线视频| 国产精品亚洲av一区麻豆 | 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 一级毛片黄色毛片免费观看视频| 国产成人精品福利久久| 亚洲国产av新网站| 一级毛片我不卡| 久久狼人影院| 国产在线视频一区二区| 美女大奶头黄色视频| 免费不卡黄色视频| netflix在线观看网站| 十八禁高潮呻吟视频| 国产熟女欧美一区二区| 国产97色在线日韩免费| 无限看片的www在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲国产精品一区二区三区在线| 亚洲国产av影院在线观看| 啦啦啦中文免费视频观看日本| 国产精品久久久久久精品古装| 亚洲男人天堂网一区| 亚洲天堂av无毛| 王馨瑶露胸无遮挡在线观看| 国产又爽黄色视频| 18在线观看网站| av卡一久久| 日韩精品免费视频一区二区三区| 只有这里有精品99| 精品卡一卡二卡四卡免费| 国产xxxxx性猛交| 香蕉国产在线看| 婷婷色综合www| 欧美变态另类bdsm刘玥| 人人妻人人澡人人看| 久久久久网色| 在线精品无人区一区二区三| 日本wwww免费看| 久久久久精品性色| 亚洲在久久综合| 女人精品久久久久毛片| 黄网站色视频无遮挡免费观看| 国产高清不卡午夜福利| 久久久久精品国产欧美久久久 | 麻豆av在线久日| 久久人人爽av亚洲精品天堂| 伊人久久国产一区二区| 国产熟女欧美一区二区| 亚洲av男天堂| 久久精品亚洲熟妇少妇任你| 国产成人系列免费观看| 成人毛片60女人毛片免费| 亚洲综合色网址| 美女国产高潮福利片在线看| 深夜精品福利| 日韩不卡一区二区三区视频在线| 日本欧美国产在线视频| 欧美在线黄色| 欧美在线一区亚洲| 丰满乱子伦码专区| 国产精品免费视频内射| 蜜桃在线观看..| 亚洲一卡2卡3卡4卡5卡精品中文| netflix在线观看网站| 日韩一区二区视频免费看| 免费观看a级毛片全部| 一本大道久久a久久精品| 黄片小视频在线播放| 看非洲黑人一级黄片| 日本欧美国产在线视频| 亚洲欧美成人精品一区二区| 亚洲欧美精品自产自拍| 国产欧美亚洲国产| 哪个播放器可以免费观看大片| 高清不卡的av网站| 天天影视国产精品| 一级片免费观看大全| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久精品古装| 精品国产露脸久久av麻豆| 激情五月婷婷亚洲| av女优亚洲男人天堂| 国产一卡二卡三卡精品 | 国产av一区二区精品久久| 伊人久久国产一区二区| 老汉色av国产亚洲站长工具| 日本av免费视频播放| 观看美女的网站| av线在线观看网站| 亚洲七黄色美女视频| 亚洲精品国产色婷婷电影| 午夜精品国产一区二区电影| 欧美xxⅹ黑人| 久久影院123| 男女午夜视频在线观看| 婷婷色麻豆天堂久久| 热re99久久国产66热| 久久精品国产a三级三级三级| 女人久久www免费人成看片| 中文字幕人妻熟女乱码| 久久热在线av| 久久久精品区二区三区| 国产在线视频一区二区| 可以免费在线观看a视频的电影网站 | 国产精品免费大片| 婷婷成人精品国产| 人体艺术视频欧美日本| 丰满乱子伦码专区| 国产在线一区二区三区精| 1024视频免费在线观看| 久久热在线av| 91老司机精品| 婷婷色综合www| 秋霞伦理黄片| 香蕉国产在线看| 日本爱情动作片www.在线观看| 性色av一级| 90打野战视频偷拍视频| 亚洲精品乱久久久久久| 一级a爱视频在线免费观看| 看免费成人av毛片| 99久久精品国产亚洲精品| 国产精品熟女久久久久浪| 午夜免费男女啪啪视频观看| 午夜av观看不卡| 丝袜美足系列| 一区福利在线观看| 国产精品一国产av| 日韩欧美精品免费久久| 蜜桃在线观看..| 久久这里只有精品19| 亚洲精品日本国产第一区| 午夜福利,免费看| 十分钟在线观看高清视频www| 99热全是精品| 午夜福利免费观看在线| 熟女少妇亚洲综合色aaa.| 国产精品久久久久久精品古装| 亚洲国产精品一区二区三区在线| 欧美黑人欧美精品刺激| 看十八女毛片水多多多| 各种免费的搞黄视频| 亚洲成人一二三区av| 黄频高清免费视频| 精品一区二区三区av网在线观看 | av女优亚洲男人天堂| 日韩熟女老妇一区二区性免费视频| 国产成人啪精品午夜网站| 伊人久久大香线蕉亚洲五| 母亲3免费完整高清在线观看| 午夜福利视频精品| 久热这里只有精品99| 日本vs欧美在线观看视频| 欧美成人午夜精品| 国产av码专区亚洲av| 丰满迷人的少妇在线观看| 欧美国产精品va在线观看不卡| 国产精品久久久久成人av| 国产伦理片在线播放av一区| 国产精品人妻久久久影院| 亚洲国产成人一精品久久久| 欧美精品一区二区大全| 日日爽夜夜爽网站| 亚洲第一青青草原| 中文字幕色久视频| 超碰97精品在线观看| 男女下面插进去视频免费观看| 午夜福利视频精品| 宅男免费午夜| 大码成人一级视频| 女的被弄到高潮叫床怎么办| 国产女主播在线喷水免费视频网站| 毛片一级片免费看久久久久| 十八禁高潮呻吟视频| 久久免费观看电影| 夜夜骑夜夜射夜夜干| 久久av网站| 日本猛色少妇xxxxx猛交久久| 999久久久国产精品视频| 国产精品久久久久久人妻精品电影 | 精品久久久久久电影网| 久久精品久久久久久久性| 精品免费久久久久久久清纯 | 99香蕉大伊视频| 免费黄色在线免费观看| 精品国产一区二区三区久久久樱花| 久久久久久久久免费视频了| 国产xxxxx性猛交| 午夜老司机福利片| 国产高清国产精品国产三级| 亚洲av综合色区一区| 欧美在线一区亚洲| 中文字幕高清在线视频| 国产午夜精品一二区理论片| 色吧在线观看| 亚洲国产欧美日韩在线播放| 伊人亚洲综合成人网| 午夜91福利影院| 熟女av电影| 成人国语在线视频| 国产一级毛片在线| 欧美精品人与动牲交sv欧美| 嫩草影院入口| 岛国毛片在线播放| 校园人妻丝袜中文字幕| 国产不卡av网站在线观看| 精品国产一区二区久久| 下体分泌物呈黄色| 亚洲人成77777在线视频| 男女国产视频网站| 精品亚洲成国产av| 美女主播在线视频| 欧美日韩精品网址| 在线天堂最新版资源| 一区二区三区四区激情视频| kizo精华| 久久久久视频综合| 久久精品国产a三级三级三级| 亚洲国产欧美一区二区综合| 夜夜骑夜夜射夜夜干| 欧美日本中文国产一区发布| 大片电影免费在线观看免费| 极品少妇高潮喷水抽搐| 欧美人与性动交α欧美精品济南到| 亚洲精品第二区| 男女之事视频高清在线观看 | 最新在线观看一区二区三区 | 男男h啪啪无遮挡| 午夜福利一区二区在线看| e午夜精品久久久久久久| 妹子高潮喷水视频| 男的添女的下面高潮视频| 热re99久久国产66热| 久久久久精品人妻al黑| 精品一区在线观看国产| 在线观看一区二区三区激情| 日韩不卡一区二区三区视频在线| 激情视频va一区二区三区| 亚洲av中文av极速乱| 又黄又粗又硬又大视频| 日本黄色日本黄色录像| 日本欧美国产在线视频| 一区福利在线观看| 国产一区亚洲一区在线观看| 国产在线一区二区三区精| 国产一区有黄有色的免费视频| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 亚洲激情五月婷婷啪啪| 老司机影院成人| 亚洲欧美精品自产自拍| 女人爽到高潮嗷嗷叫在线视频| 美女高潮到喷水免费观看| 我的亚洲天堂| 亚洲第一青青草原| 成人影院久久| av视频免费观看在线观看| svipshipincom国产片| 人人妻人人爽人人添夜夜欢视频| av国产久精品久网站免费入址| 午夜福利网站1000一区二区三区| 国产无遮挡羞羞视频在线观看| 精品一区二区免费观看| 成人午夜精彩视频在线观看| 日韩成人av中文字幕在线观看| 国产男女超爽视频在线观看| 欧美精品亚洲一区二区| 一区在线观看完整版| 国产亚洲av片在线观看秒播厂| 国产成人啪精品午夜网站| 精品人妻熟女毛片av久久网站| 国语对白做爰xxxⅹ性视频网站| 久久久亚洲精品成人影院| 欧美成人精品欧美一级黄| 亚洲精品乱久久久久久| 欧美黄色片欧美黄色片| 亚洲国产最新在线播放| 丝袜人妻中文字幕| 99久久人妻综合| 国产亚洲午夜精品一区二区久久| www.av在线官网国产| 超碰成人久久| 欧美日韩成人在线一区二区| 97在线人人人人妻| 国产亚洲最大av| av有码第一页| 曰老女人黄片| 久久精品久久久久久噜噜老黄| 亚洲欧美色中文字幕在线| 久久热在线av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟女毛片儿| 性少妇av在线| 久久毛片免费看一区二区三区| 少妇猛男粗大的猛烈进出视频| 男女下面插进去视频免费观看| 999精品在线视频| 少妇的丰满在线观看| 免费看不卡的av| 色播在线永久视频| 男女边摸边吃奶| 久久人人97超碰香蕉20202| 国产激情久久老熟女| 欧美激情极品国产一区二区三区| 国产精品久久久久久精品电影小说| 69精品国产乱码久久久| 亚洲国产看品久久| 丁香六月欧美| 久久免费观看电影| av线在线观看网站| 国产视频首页在线观看| 大陆偷拍与自拍| 国产日韩欧美视频二区| 国产97色在线日韩免费| 高清视频免费观看一区二区| 人妻人人澡人人爽人人| 黄片无遮挡物在线观看| 欧美av亚洲av综合av国产av | 丝袜美腿诱惑在线| 激情视频va一区二区三区| 国产精品亚洲av一区麻豆 | 人妻人人澡人人爽人人| 街头女战士在线观看网站| av在线老鸭窝| 久久99热这里只频精品6学生| 满18在线观看网站| 国产欧美日韩一区二区三区在线| 国产成人啪精品午夜网站| 久久久久久久久久久免费av| 侵犯人妻中文字幕一二三四区| 亚洲欧美成人综合另类久久久| 精品人妻在线不人妻| 久久韩国三级中文字幕| 这个男人来自地球电影免费观看 | 久久ye,这里只有精品| 人人妻人人澡人人爽人人夜夜| 国产黄色视频一区二区在线观看| 亚洲欧洲国产日韩| 亚洲欧美成人精品一区二区| 我要看黄色一级片免费的| 亚洲熟女精品中文字幕| 成年动漫av网址| 丝袜美足系列| 在线观看免费日韩欧美大片| 巨乳人妻的诱惑在线观看| 久久97久久精品| 天天躁夜夜躁狠狠久久av| 国产乱人偷精品视频| 久久午夜综合久久蜜桃| 男女之事视频高清在线观看 | 久久国产精品男人的天堂亚洲| 亚洲色图综合在线观看| 日韩av不卡免费在线播放| av在线app专区| 两个人看的免费小视频| 在线看a的网站| 自线自在国产av| 久久影院123| 国产成人精品久久久久久| 一区二区三区激情视频| 国产精品秋霞免费鲁丝片| 国产免费又黄又爽又色| 亚洲国产精品一区三区| 成人免费观看视频高清| 在现免费观看毛片| 汤姆久久久久久久影院中文字幕| 欧美亚洲日本最大视频资源| 免费不卡黄色视频| 赤兔流量卡办理| 人妻人人澡人人爽人人| 69精品国产乱码久久久| 国产精品久久久人人做人人爽| 亚洲精品国产av成人精品| 别揉我奶头~嗯~啊~动态视频 | 久久国产精品男人的天堂亚洲| 久久 成人 亚洲| 超色免费av| 精品一区二区三卡| 91精品国产国语对白视频| 亚洲av中文av极速乱| 午夜影院在线不卡| 中文字幕高清在线视频| 久久性视频一级片| 精品一品国产午夜福利视频| 亚洲婷婷狠狠爱综合网| 亚洲熟女精品中文字幕| 欧美变态另类bdsm刘玥| av不卡在线播放| 国产极品粉嫩免费观看在线| 久久亚洲国产成人精品v| 免费日韩欧美在线观看| 日韩制服骚丝袜av| 不卡视频在线观看欧美|