• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pushing the limits of existing plasma focus towards 1016 fusion neutrons with Q=0.01

    2022-11-17 02:59:30SingLEE
    Plasma Science and Technology 2022年11期

    Sing LEE

    1 Institute for Plasma Focus Studies,32 Oakpark Drive,Chadstone VIC3148,Australia

    2 Physics Department,University of Malaya,Kuala Lumpur 50603,Malaysia

    3 INTI International University,Nilai 71800,Malaysia

    4 Fuse Energy Technologies,Napierville QC J0J 1L0,Canada

    Abstract Existing conventional megajoule plasma focus machines with 2-3 MA are producing fusion neutron yields of several times 1011 in deuterium operation,the fusion yields predominantly being the beam-gas target.Increasing the current to 10 MA and using 50%-50% D-T mixture will scale the neutron yield towards 1016 D-T fusion neutrons.In this work,we derive the Lawson criterion for plasma focus devices with a beam-target fusion neutron mechanism,so that we may glimpse what future technological advancements are needed for a break-even Q=1 plasma focus.We perform numerical experiments with a present-day feasible 0.9 MV,8.1 MJ,11 MA machine operating in 100 Torr in 50%-50% D-T mixture.The Lee Code simulation gives a detailed description of the plasma focus dynamics through each phase,and provides plasma and yield parameters which show that out of 1.1×1019 fast beam ions produced in the plasma focus pinch,only 1.24×1014 ions take part in beam-target fusion reactions within the pinch,producing the same number of D-T neutrons.The remnant beam ions,numbering at least 1019,exit the focus pinch at 1.9 MeV,which is far above the 115 keV ion energy necessary for an optimum beam-target cross-section.We propose to regain the lost fusion rates by using a high-pressure D-T-filled drift-tube to attenuate the energy of the remnant beam ions until they reach the energy for the optimum fusion cross-section.Such a fusion enhancement tube would further harvest beam-target fusion reactions by increasing the interaction path length(1 m)at increased interaction density(6 atm).A gain factor of 300 is conservatively estimated,with a final yield of 3.7×1016 D-T neutrons carrying kinetic energy of 83.6 kJ,demonstrating Q=0.01.

    Keywords:plasma focus simulation,neutron enhancement,fusion harvester,plasma focus

    1.Introduction

    Current plasma focus(PF)machines for research on conventional megaampere(MA)include the PF1000[1,2]and the NIR(neutron imaging radiography)[3],both operating around the 2-2.5 MA level.The PF1000 is a 40 kV,1332 mF machine with 1 MJ at full voltage operated for the International Centre for Dense Magnetized Plasmas(ICDMP)in Poland.The NIR at Lawrence Livermore National Laboratory,USA,is a 1 MJ machine operating at up to 100 kV with four parallel modules of Marx generators,with currents at the level of 2.5 MA.According to plasma focus scaling of D-D neutron yield[4,5],Yn=1.8×1010(Ipeak)3.8(Ipeakin MA).This scaling was derived on the basis of numerical experiments using the Lee Code over a range of peak discharge currentIpeakof 0.3-5.7 MA.Similarly,experimental results from 50 kA to almost 3 MA produce a scaling law ofYn=8×109(Ipeak)4.4[6].The PF1000[1]reports that its good shots have neutron yields around several times 1011,whilst the NIR reports[3]best yields of 3.8×1011.Both these yields are in agreement with both scaling laws,which giveYnin the range of(2.5-6)×1011(numerically derived scaling law given above)and(1.7-4.5)×1011(experimentally derived scaling law given above),respectively.On the other hand,the HAWK plasma focus at the Naval Research Laboratory,USA,uses a 640 kV high inductance(607 nH 150 mW,stiff)current source to power an injected plasma upstream of an on-axis gas puff,producing 5×1010D-D neutrons at 0.67 MA[6,7].This yield is 13 times and 37 times in excess of that produced by a conventional dense plasma focus(DPF)according to the above-mentioned(Ipeak)3.8scaling and(Ipeak)4.4scaling,respectively.A five times enhancement(energy-based comparison)in neutron yield was observed for SPEED 1[8],which also used a highvoltage stiff(160 mW)current source.The energy-based comparison of HAWK with PF1000[6]shows a similar enhancement factor.It may be postulated that the high impedance of the current source reduces the drop in the current(current dip)during the pinch phase.This reduction is responsible for much of the enhancement.The method of mass delivery of HAWK gives better control and is reported to eliminate trailing mass and restrikes,thus enabling 100%current delivery to the pinch.The use of increasingly higher voltages[3,6,7]with designed high bank impedance and new methods of mass delivery[6]represent innovative approaches and new interest from the leading large laboratories.This concerted effort of these and other large laboratories may be expected to overcome the problem of the socalled neutron saturation in plasma focus.The problem of an apparent neutron limit was summarized in 2012 by Struve and Freeman[9],with data showing that the Los Alamos National Laboratory DPF 6.5 reached 2×1012D-D neutrons,a number which seemed unsurpassable and which was claimed by Nikulin and Polukhin[10]in 2007 as due to neutron saturation imposed by the need to increase anode length with increasing capacitance.Lee[11],in 2009,showed that the Nikulin and Polukhin scenario was erroneous and that the current and neutron‘saturation’was a misnomer for current and neutron scaling deterioration.Numerical experiments using the Lee Code further suggest that,to progress experiments to higher currents,it is advantageous[4,5,11]to go to higher voltages,rather than to try to increase the current by simply increasing the bank capacitance.This is because the speed of the plasma focus current sheath constitutes a‘dynamic’resistance of several mW during the rise of the discharge current.This resistance is beginning to dominate the total circuit impedance,so that the reduction of bank impedance by increasing the already very large bank capacitance leads to a situation of diminishing returns,resulting in a deteriorating scaling of the current.Thus,at several MA,a voltage of 100 kV may be efficient but,at 10 MA,1 MV may be advantageous.Nikulin and Polukhin[10]also pointed out the advantages of higher voltages.The experience of SPEED 2[12]suggested that at 300 kV an upper limit to sheath energy density caused sheath destruction,prevention of which required an additional surface irradiation conditioning process or an artificially coppered insulator surface.The gas puff and gas injection methods of HAWK[6]appear to have eliminated not just such insulator problems but also the re-strike problems[3]associated with trailing mass that plague conventional plasma focus machines.Thus,it appears that high voltages approaching MV may be feasible and should be the basis in our quest to develop bigger plasma focus machines.To envisage what the direction could be,we derive the Lawson criterion[13]for the plasma focus.In this derivation it is necessary to start with the fusion mechanism.The first question that needs to be asked is whether the fusion mechanism in a plasma focus is the beam-gas target or thermonuclear.

    It is now known with certainty that plasma focus machines,from small sub-kJ to large MJ devices,all operate with the same speed factors,resulting in axial speeds of around 10 cm μs-1and radial speeds around 20-30 cm μs-1;the wider range of radial speeds are due to the range of the radius ratioc=b/a,wherebis the cathode radius andais the anode radius[5,14].Such speeds induce voltages ofIdL/dt(whereLis the tube inductance andIis the tube current)that is easily computed to be in the range of tens to hundreds of kV.The induced voltages are largest when the current sheath is compressed by its own magnetic field to a small radius in the radial phase.These high inductive voltages accelerate the beam ions to tens and hundreds of keV and beyond.A comprehensive review of the experimental evidence,on neutron production mechanisms[2]in experiments performed in plasma focus machines world-wide,clearly shows the properties and the dominance of these fast beam ions on the neutron production processes in the plasma focus pinch.On the other hand,the kinetic energies associated with the highly supersonic plasma sheaths are shown to generate temperatures in the stagnated pinched regions of less than 0.5 keV.To show the stark contrast between observed beam ion energies and plasma temperatures within the context of fusion mechanisms,figures 1 and 2 represent a good visual summary.Figures 1 and 2 relate the observed plasma focus beam ion energies to the beam-gas target fusion cross-sections σ[15,16]and,respectively,the observed focus pinch temperatures to the thermonuclear fusion reactivity〈σv〉[15,16].

    Figure 1.The D-D beam-gas target fusion cross-section σ in cm2.

    Figure 2.D-D fusion reactivity〈σv〉in cm3 s-1 for thermonuclear fusion.

    Figures 1 and 2 contrast that the plasma focus beam ions have energies near the optimum of the D-D beam-gas target fusion cross-sections,whereas the plasma focus plasma temperatures are so low that the fusion reactivity〈σv〉are 8 to 14 orders of magnitude below the optimum thermonuclear cross-section.Moreover,the bigger plasma focus machines,for example PF1000 and NIR,have lower radial speeds due to their smaller values of the cathode to anode radius ratioc,typically 1.5 compared with small PFs,which tend to havecabout 3.Therefore,the bigger PFs have gross pinch temperatures close to 0.1 keV.Experiments have suggested that instabilities in pinches[17]may further inject energy from the magnetic fields into the plasma to the extent of 3 to 4 times that of the kinetic energies.This still does not alter the situation significantly.Thus,from energy considerations,conventional plasma focus machines are cold from a thermonuclear fusion point of view.Whilst these remarks may not apply to composite(hybrid)Z-pinches such as magnetized linear inertial fusion(MAGLIF)it must be noted that those composite systems invariably require a two-step process,which can be designed to lead to superior end-point compressions and temperatures[18].For conventional,even highvoltage,plasma focus machines,there is no escaping the fact that the gross pinch is cold from a thermonuclear point of view.The fusion cross-sections for D-T have the same general features as D-D,but the values of the cross-sections are generally 100 times bigger.Therefore,plasma focus machines operating in D-T also produce fusion neutrons through the beam-gas target mechanism.Hence,to derive the Lawson criterion[13]for plasma focus machines,we use the beamgas target fusion mechanism.

    Figure 3.The value of the beam-target cross-section parameter σ/U1/2 versus U for D-T:σ is in cm-2.Note:the optimum value of σ/U1/2 is found to be 5×10-25 cm2 keV-0.5 at beam energy U of 115 keV.

    Figure 4.The discharge current and scaled tube voltage(×10)of DPFQ0.01.

    2.Lawson criterion for beam-gas target PF

    2.1.Developing the Lawson criterion

    We ask the question:how many D-T neutrons(from beamtarget)do we get per unit pinch energy?Modelling by the Lee Code[2,5,19,20]provides the number of beam-target neutrons[21,22]as follows:

    whereIpinchis the current flowing through the pinch at the start of the slow compression phase;rpandzpare the pinch radius and length at the end of that phase;andniis the pinch ion density.Here,Cnis a constant which,in practice,we had calibrated with an experimental point.Here,all the quantities are in SI units(unless otherwise stated)with the beam ion energyU=3Vmax(Vmaxis the maximum induced tube voltage)in keV and the constantCn=1.4×107(a calibrated value)[21,22].The pinch energy[23]at temperatureTis

    wherek=Boltzmann constant,γ=specific heat ratio=5/3,andZeff=1(for fully ionized D-T plasma).

    We assume an equilibrium pinch,equate the confining magnetic pressure to the hydrostatic plasma pressure and we use:

    We divideYb-tbyEpinch,replacinginYb-twith the RHS of equation(3),and we get the required number of beamtarget neutrons per unit pinch energy.Note:((ln(b/rp))~2 andzp~1.4afor a fully ionized hollow anode DPF[24,25],whereais the anode radius.

    Thus,as a first step we obtain the general scaling for the number of D-T DPF beam-target neutrons

    This general scaling stipulates that the number of beam-target neutrons depends on the pinch ion density,the anode radiusaand the energy of the D-T beam ions through the fusion crosssection parameter[σ/U1/2].

    Table 1.The machine configuration of the 1 m PF at 1.2 MV 6 atm D-T operation for DPFQ1.

    Using the optimum value of σ/U1/2(see figure 3),we obtain the optimized scaling as:

    A D-T neutron has energy of 14.1 MeV,i.e.2.26×10-12J.By conservatively estimating thatEpinch~10% of the stored energyE0,then we may take the throughput ratio

    ForQ>1(i.e.better than break-even)

    This may be taken as the equivalent Lawson criterion for the PF.

    2.2.An example

    As an example,we take:a=1 m then forQ>1

    ni>1.7 ×1026m-3(at optimum beam energy of 115 keV)

    (i.e.6 atm of fill pressure is sufficient for break-even,allowing for 50% particle loss from pinch).

    We ran several series of numerical experiments witha=1 m at 4000 Torr.We concluded with the following configuration,shown in table 1.

    The required peak current is 350 MA,and the break-even point(DPFQ1)requires extreme conditions,far beyond what is technologically proven in present-generation DPF machines.For example,the highest pressure that DPFs have been operated at is not much more than 50 Torr[26,27],less than 0.1 atm.Not least among the problems of operating at such high pressures is the localization of currents,leading to sparks and filaments causing asymmetry and breakup of the current sheet.The discharge of currents of the order of 10 MA and more is found to be associated with electrode damage.This indeed threatens the integrity of the whole structure and diagnostic accessories since the explosive powers of the submicrosecond transfer of just multi-megajoule between parts of the system exceed that of exploding dynamite sticks within the confines of the system.The structural engineering of suchlarge plasma focus systems is itself a formidable task,as would be experienced in MAGLIF experiments[28,29].

    Table 2.The machine configuration[5,14,19]of DPFQ0.01:a=15 cm,at 0.9 MV,100 Torr D-T.

    We note that this example ofQ=1 plasma focus is based on a single-step compression.It was shown from conservation of energy and momentum that in inertial fusion schemes,a two-step compression is much more efficient[18,30]than a single-pulse compression.For example,the MAGLIF concept[28,29]uses a laser to provide the first stage of heating,a liner capsule and high current compression as second stage compression,with simulated break-even at about 60 MA.We have shown that a plasma focus operated with a current step[31]achieves much improved efficiency in terms of neutron yield per unit stored energy.It is expected that an improved two-stage scheme coupled with a method to trap some of the remnant fast beam ions(to be discussed below)would further lower the energy and current requirements of the break-even plasma focus to be competitive with other inertial fusion schemes.More work is planned for further simulation of such a two-step or hybrid plasma focus system.

    3.Achievable plasma focus with Q=0.01

    3.1.Proposed configuration

    As an intermediate step towards a DPFQ1 project,a technologically feasible device is proposed-DPFQ0.01 to reachQ~0.01.Linear Transformer Driver LTD technology is progressing towards efficient and reliable implementation at the MV level[32-34],and can be adapted for this configuration.The bank and tube parameters are given in table 2.These parameters were decided upon after numerous runs using the Lee Code discussed below.It is pertinent to note that even this technologically feasible device would still operate at 8 MJ,with currents of just over 10 MA,and would still present formidable challenges of proper current sheath formation and the engineering of the anode and structural integrity mentioned above.

    3.2.Simulation and results

    3.2.1.Description of the LEE Code.The Lee Code is a widely used radiation-coupled code[2,5,14,19]for simulating the plasma focus in various gases,including H2,He,N2,Ne,Ar,Kr,Xe,D2and D-T mixtures.It divides the plasma focus dynamics into five sub-phases,namely the axial phase,the radial inward shock phase,the reflected shock phase,the slow compression pinch phase and the expanded column post-pinch phase.The axial phase uses a snow-plow model,simply for time-matching purposes.The radial inward shock phase uses a slug model separating the magnetic piston from the shock front,and incorporates the all-important signal delay between the current sheath and shock front,as does the reflected shock phase.The pinch phase uses a radiationcoupled equation producing soft x-ray(SXR)yields in neon and nitrogen that agree with measured values,and demonstrates realistic effects of radiative cooling and radiative collapse when operated in the noble gases[23].In each phase,the equation(s)of motion are coupled to the circuit equation.Thermodynamics is implemented in the equations of motion.In the formulation,energy,charge,mass and momentum conservation is carefully maintained.Inductive voltages are considered as the driver of the observed fast ion beams.Realistic simulations are achieved for axial and radial dynamics[35],fast ion beams[36]and relativistic electron beams[37],and post-pinch fast plasma flows[38],with all these having been verified against experimental measurements.The simulated neutron yields in D and D-T have been compared extensively with experimental measurements in various machines,most recently by Marciniaket alin the Polish machine PF-24[39],with wider agreement than achievable by any other codes[2,5].The code has been used in planning and designing machines,for diagnostic references and for predicting yields of SXR,fast beam ions,plasma flows and fusion neutrons[2,5].Scaling laws and insights have been developed using this code[2,5,14,20-23].The scaling has been verified from sub-kJ machines to the MJ PF1000,particularly for neutron yield in terms of anode radius and discharge currents[2,5].The general and specific verification of this code has been reviewed recently by the ICDMP[2].Recent use of the code includes developing the concept of thermalization of the plasma focus using a tapered anode which,by increasing the value of(I/a)in the tapered pinch,increases the temperature of the focus pinch,for the pinch to transition from a beam-target fusion source to one of a thermonuclear fusion source[40,41].By adjusting the taper ratio,the pinch temperature is tunable up to 200 keV,sufficient for aneutronic fusion applications[27,42].

    3.2.2.Simulation results.The Lee Code was run with the configuration of table 2.The main results for DPFQ0.01 are summarized in table 3.The simulated current and voltage waveforms are shown in figure 4.The current sheath accelerates along the axial phase,reaching a speed of 8 cm μs-1with a current rising to 9 MA,at the end of the axial phase at 1.18 μs.As the current sheath transitions into the radial phase the current continues rising,until a peak current of 11.1 MA is reached at 1.9 μs.The current then starts to drop and reaches 9.8 MA at 2.32 μs,as the radially inwardmoving shock wave hits the axis 30 ns after reaching a peak speed of 19.4 cm μs-1,starting the reflected shock phase.Meanwhile,the current sheath,portrayed as a magnetic piston in the code,reaches a peak speed of 12.7 cm μs-1,200 ns before the inward radial shock hits the axis,and slows rapidly to 3 cm μs-1,as the radially inward-moving shock hits the axis.The reflected shock wave moves radially outwards at a speed just under 7 cm μs-1and reaches the slowly inwardmoving magnetic piston after another 0.5 μs.The hardly compressing pinch phase lasts 314 ns.The axial phase takes 1.18 μs,whilst the radial phase takes a total period of 1.98 μs.The peak inductive voltage of 635 kV is reached at the time the piston reaches its peak speed,just before the inward radial shock front hits the axis.

    Table 3.The computed properties of DPFQ0.01.

    The axial and radial mass and plasma current factors in table 3 are assumed model parameters based on experience with a range of machines.The radial phase current dip is not as severe as that typically observed in smaller plasma focus machines.This is due to two factors:(a)the large ratioa/z0of value 3 resulting in a relatively long-duration pinch,and(b)the relatively large surge impedance of the capacitor bank.This large surge impedance is made possible by the high voltage and is deliberately designed to minimize the current drop to optimize the energy transfer to the pinch.The voltage spike corresponding to the pinch dynamics peaks at 635 kV.This is an important indicator that is associated with the energy of the fast beam ions accelerated by the plasma focus mechanism.These fast beam ions are responsible for the fusion reactions.The neutrons will be emitted from a plasma pinch with radius of 3.3 cm and length of 22.9 cm.Half the length of the pinch will protrude from the hollow anode and the other half will extend inside the hollow anode.The neutrons are assumed to be emitted nearly isotropically with a small forward bias.

    3.2.3.Discussion of the simulation results.The code computes aQof 3×10-5,with a beam ion energy of 1.9 MeV.This excessively high ion energy has dropped the fusion cross-section parameter[σ/U1/2]by about 100 times from the optimum value(see figure 3).The operational pressure is 100 Torr;therefore,the exit path in the DPF chamber does not attenuate the beam ion energy sufficiently towards the optimum for fusion.The code shows that the number of beam ions available for fusion is 1.1×1019,and only 1.24×1014of those ions have been involved in fusion in the pinch.Hence,there is a remnant beam consisting of at least 1019ions at 1.9 MeV exiting the plasma focus pinch.A suitable fusion-enhancing tube with length of 1 m containing 6 atm D-T gas is proposed to be placed downstream of the plasma focus,to harvest a proportion of this remnant beam for fusion reactions.This high-pressure section is separated from the DPF chamber by a sub-millisecond shutter,which opens momentarily to allow the remnant ion beam to enter this fusion harvest tube.The D-T ions exit the pinch in a beam with divergence around 20 degrees[1,2,36].A beam-shaper with a suitable magnetic field could be designed to reduce the divergence so that a large fraction of the remnant ions travels down the fusion harvest tube.

    Three factors are expected to contribute to the beam-gas target fusion yield of the harvest tube.First,upon traversing the harvest tube,based on consideration of beam attenuation through the high-pressure tube,the remnant beam ion energy drops from above MeV towards 115 keV,the energy for optimum fusion cross-section;thus,σ increases.In figure 3,it is seen that this recovery of σ contributes up to 100 times to the fusion yield of the harvest tube.Second,the number density of the gas serving as a target to the remnant beam ions is 12 times that of the pinch target densityni.Third,the interaction distance of the remnant beam ion is 5 times that of the interaction distance of the beam ions within the pinch lengthzp.From equation(1)it is seen that beam-target interaction is proportional to target density.It may also be shown from the same equation that the beam-target interaction is also proportional to interaction length.In this situation,the above second and third factors will have a contribution proportional to the ratio of the tube density to pinch density multiplied by the ratio of tube interaction to the pinch length.The product of these two factors is 60.This should be confirmed by Monte Carlo N Particle calculations,which are being planned but are outside the scope of this study.In the meantime,we feel confident that the above discussion allows us to conservatively estimate a minimum number of 300 for the enhancement of the fusion harvesting tube,leading to 3.7×1016D-T neutrons carrying kinetic energy of 83.6 kJ.The result is aQ=0.01 device.

    4.Conclusion

    Scaling using a beam-gas target mechanism in the plasma focus suggests that a 1.2 MV,5 atm D-T DPF with a peak current of 350 MA would suffice for break-even at stored capacitor energy of 7 GJ in a device designated as DPFQ1.The required current could be significantly reduced to below 100 MA with a two-step compression design.Even so,a device of such a scale is beyond the present-day capabilities when one considers that the largest currents reported from the biggest national laboratories are far less than 100 MA.A present-day technologically feasible point(DPFQ0.01:900 kV(8 MJ),11 MA,100 Torr withQ~0.01)is proposed for initial tests.The Lee Code is used to find a suitable configuration of such an operational point.The numerical experiments confirm that all the parameters of such a machine are technologically feasible.The simulations also suggest the necessity to add a high-pressure fusion harvest tube[43]to address the problem of excessive remnant beam ions exiting the plasma focus pinch region and to further enhance beamtarget fusion reactions by increasing the interaction path length at increased interaction density.A final yield of 3.7×1016D-T neutrons carrying kinetic energy of 83.6 kJ is conservatively estimated,demonstratingQ=0.01.Detailed computation is planned,to verify and quantify the enhancement mechanisms of the proposed harvest tube.It is important to note that the Lee Code has been tested by comparison with experiments only up to the level of 2.5 MA,12 cm anode radius and 50 Torr.All the results beyond these levels discussed in this paper await the next generation of machines for comparison with experimental results.

    亚洲专区字幕在线| 国产又黄又爽又无遮挡在线| 天堂影院成人在线观看| 九九在线视频观看精品| 精品国产三级普通话版| 日本a在线网址| 操出白浆在线播放| 亚洲欧美日韩高清在线视频| 999久久久精品免费观看国产| 婷婷六月久久综合丁香| 一边摸一边抽搐一进一小说| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看视频国产中文字幕亚洲| 美女免费视频网站| 亚洲狠狠婷婷综合久久图片| 一进一出抽搐动态| 亚洲av成人精品一区久久| 国产毛片a区久久久久| 日韩欧美精品v在线| 综合色av麻豆| 欧美黄色淫秽网站| 日本熟妇午夜| 国内揄拍国产精品人妻在线| 亚洲国产欧美一区二区综合| av黄色大香蕉| 亚洲电影在线观看av| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩卡通动漫| 日韩欧美在线二视频| 岛国在线观看网站| 色综合亚洲欧美另类图片| cao死你这个sao货| 亚洲第一电影网av| 亚洲色图av天堂| 一级a爱片免费观看的视频| 久久中文字幕人妻熟女| 中出人妻视频一区二区| 国内精品一区二区在线观看| 黄色女人牲交| 两性夫妻黄色片| 国产人伦9x9x在线观看| 亚洲 欧美 日韩 在线 免费| 99在线人妻在线中文字幕| 久久九九热精品免费| 国产又黄又爽又无遮挡在线| 99久久久亚洲精品蜜臀av| www.999成人在线观看| 亚洲五月婷婷丁香| 亚洲人成网站高清观看| 大型黄色视频在线免费观看| 久久久国产精品麻豆| 在线观看日韩欧美| 欧美乱码精品一区二区三区| 久久人人精品亚洲av| 最近视频中文字幕2019在线8| 老司机午夜十八禁免费视频| 久久久久久久久中文| 日韩人妻高清精品专区| 我要搜黄色片| 色尼玛亚洲综合影院| 欧美日韩精品网址| 精品乱码久久久久久99久播| 可以在线观看的亚洲视频| 国产伦精品一区二区三区四那| 国产高清视频在线播放一区| 久久中文字幕人妻熟女| 一卡2卡三卡四卡精品乱码亚洲| 不卡av一区二区三区| 精华霜和精华液先用哪个| 国产精品免费一区二区三区在线| 夜夜看夜夜爽夜夜摸| 久久人妻av系列| 99热精品在线国产| 9191精品国产免费久久| 人妻久久中文字幕网| 久久久久国内视频| 俺也久久电影网| 啪啪无遮挡十八禁网站| 香蕉国产在线看| 九色国产91popny在线| 精品国产亚洲在线| 午夜视频精品福利| 国产精品免费一区二区三区在线| 久久久久国内视频| 可以在线观看毛片的网站| 好男人电影高清在线观看| 九九热线精品视视频播放| 热99re8久久精品国产| 人人妻人人看人人澡| 国产精品影院久久| 黄频高清免费视频| 国产又黄又爽又无遮挡在线| 精品电影一区二区在线| 身体一侧抽搐| 亚洲18禁久久av| 后天国语完整版免费观看| 国产探花在线观看一区二区| 亚洲美女黄片视频| 亚洲国产欧美一区二区综合| 脱女人内裤的视频| 久久人人精品亚洲av| 欧美成人性av电影在线观看| 91老司机精品| 好男人电影高清在线观看| av在线天堂中文字幕| 狂野欧美激情性xxxx| 又黄又爽又免费观看的视频| 99精品欧美一区二区三区四区| 国产欧美日韩一区二区精品| 亚洲精品久久国产高清桃花| 校园春色视频在线观看| 亚洲av五月六月丁香网| 岛国视频午夜一区免费看| 麻豆成人午夜福利视频| 熟妇人妻久久中文字幕3abv| 精品国产美女av久久久久小说| 亚洲五月婷婷丁香| 国产熟女xx| 一a级毛片在线观看| 欧美成人一区二区免费高清观看 | 亚洲人成网站在线播放欧美日韩| 美女午夜性视频免费| 男女视频在线观看网站免费| 伦理电影免费视频| 999精品在线视频| 视频区欧美日本亚洲| 少妇的丰满在线观看| h日本视频在线播放| 久久精品国产清高在天天线| 精品一区二区三区四区五区乱码| 久久精品亚洲精品国产色婷小说| avwww免费| 男人的好看免费观看在线视频| 一级毛片精品| 巨乳人妻的诱惑在线观看| 在线观看美女被高潮喷水网站 | 免费在线观看视频国产中文字幕亚洲| 热99在线观看视频| 欧美色视频一区免费| 天堂av国产一区二区熟女人妻| 午夜福利18| 亚洲aⅴ乱码一区二区在线播放| 国产久久久一区二区三区| 精品国产亚洲在线| or卡值多少钱| 亚洲男人的天堂狠狠| 亚洲中文字幕日韩| 最近视频中文字幕2019在线8| 99久久综合精品五月天人人| 成人特级黄色片久久久久久久| 亚洲精品国产精品久久久不卡| 最新在线观看一区二区三区| 白带黄色成豆腐渣| 琪琪午夜伦伦电影理论片6080| 女人被狂操c到高潮| 国产精品1区2区在线观看.| 精品乱码久久久久久99久播| 午夜激情福利司机影院| 久久香蕉精品热| 亚洲熟妇熟女久久| 欧美黄色淫秽网站| 免费在线观看影片大全网站| 亚洲国产精品成人综合色| 精品久久久久久久久久免费视频| 一级a爱片免费观看的视频| a在线观看视频网站| 国产激情欧美一区二区| 男女下面进入的视频免费午夜| 国产亚洲精品久久久com| 黑人操中国人逼视频| 在线观看一区二区三区| 1024手机看黄色片| 国产成+人综合+亚洲专区| 婷婷六月久久综合丁香| 国产亚洲欧美98| 国产乱人伦免费视频| АⅤ资源中文在线天堂| 婷婷丁香在线五月| 成人av一区二区三区在线看| 国产精品久久久久久人妻精品电影| 九色国产91popny在线| www.自偷自拍.com| 高清毛片免费观看视频网站| 日本熟妇午夜| 久久久国产精品麻豆| 国产精品久久电影中文字幕| 1000部很黄的大片| 欧美xxxx黑人xx丫x性爽| 成人欧美大片| 黄色女人牲交| www国产在线视频色| 夜夜看夜夜爽夜夜摸| 亚洲九九香蕉| 高潮久久久久久久久久久不卡| 午夜影院日韩av| 色精品久久人妻99蜜桃| 特级一级黄色大片| 麻豆国产97在线/欧美| 色综合欧美亚洲国产小说| 成年女人看的毛片在线观看| 搡老妇女老女人老熟妇| 亚洲人成网站高清观看| 久久亚洲精品不卡| 精品一区二区三区四区五区乱码| 亚洲 欧美 日韩 在线 免费| 成人午夜高清在线视频| 久久久久久久久中文| 男人舔女人下体高潮全视频| 毛片女人毛片| 国产精品 欧美亚洲| 国产 一区 欧美 日韩| av福利片在线观看| 亚洲国产精品sss在线观看| 哪里可以看免费的av片| 久久精品91无色码中文字幕| 91麻豆av在线| 国产午夜精品论理片| 麻豆成人av在线观看| av中文乱码字幕在线| 淫秽高清视频在线观看| 国产av一区在线观看免费| 亚洲精品在线观看二区| 99精品久久久久人妻精品| 亚洲午夜精品一区,二区,三区| 亚洲精品美女久久久久99蜜臀| www国产在线视频色| 精品国产亚洲在线| 男女视频在线观看网站免费| 国产午夜精品论理片| 欧美黑人欧美精品刺激| 精品99又大又爽又粗少妇毛片 | 日韩有码中文字幕| 亚洲欧美精品综合一区二区三区| 91av网站免费观看| 麻豆一二三区av精品| 久久精品国产亚洲av香蕉五月| 黄色片一级片一级黄色片| 国产黄片美女视频| 一个人免费在线观看电影 | 国内毛片毛片毛片毛片毛片| 啦啦啦观看免费观看视频高清| 午夜福利欧美成人| 热99re8久久精品国产| 国产视频一区二区在线看| 色综合站精品国产| 日韩欧美国产在线观看| 成人av一区二区三区在线看| 俄罗斯特黄特色一大片| 可以在线观看毛片的网站| 伊人久久大香线蕉亚洲五| 久久久精品欧美日韩精品| 伦理电影免费视频| 国产高清激情床上av| 午夜激情福利司机影院| 丰满人妻熟妇乱又伦精品不卡| av天堂在线播放| 亚洲成av人片免费观看| 国产精品99久久99久久久不卡| 欧美一区二区国产精品久久精品| 一级毛片女人18水好多| 亚洲国产看品久久| 中出人妻视频一区二区| 亚洲精品在线观看二区| 无人区码免费观看不卡| 国内精品一区二区在线观看| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 国产一区在线观看成人免费| 国产单亲对白刺激| 午夜福利高清视频| 男人的好看免费观看在线视频| 欧美精品啪啪一区二区三区| 90打野战视频偷拍视频| 免费观看精品视频网站| 欧美黑人欧美精品刺激| 亚洲avbb在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 无人区码免费观看不卡| 成人av一区二区三区在线看| 精品欧美国产一区二区三| 亚洲最大成人中文| 日韩欧美免费精品| 久久精品国产综合久久久| 亚洲av美国av| 欧美国产日韩亚洲一区| 久久精品aⅴ一区二区三区四区| xxxwww97欧美| 日韩欧美国产一区二区入口| 在线观看免费午夜福利视频| av在线蜜桃| 十八禁人妻一区二区| 国产精品一区二区三区四区免费观看 | 成人国产一区最新在线观看| 亚洲国产色片| 国产一区二区三区视频了| 久久亚洲真实| 免费无遮挡裸体视频| 极品教师在线免费播放| 欧美中文综合在线视频| 手机成人av网站| 黄片小视频在线播放| 亚洲人成伊人成综合网2020| 亚洲在线观看片| 国产三级中文精品| 欧美在线一区亚洲| 国产单亲对白刺激| 国产成人精品久久二区二区免费| ponron亚洲| 亚洲精品美女久久av网站| 欧美色视频一区免费| 人人妻人人看人人澡| 少妇人妻一区二区三区视频| 我要搜黄色片| 高清在线国产一区| 亚洲中文字幕一区二区三区有码在线看 | 中国美女看黄片| 怎么达到女性高潮| 人人妻,人人澡人人爽秒播| 国产黄色小视频在线观看| 日本三级黄在线观看| 精品一区二区三区视频在线观看免费| 琪琪午夜伦伦电影理论片6080| 欧美中文日本在线观看视频| 不卡一级毛片| 美女cb高潮喷水在线观看 | 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 少妇裸体淫交视频免费看高清| 少妇的逼水好多| 美女高潮喷水抽搐中文字幕| 中文在线观看免费www的网站| 国产不卡一卡二| 亚洲第一欧美日韩一区二区三区| 无遮挡黄片免费观看| 精品无人区乱码1区二区| 我的老师免费观看完整版| 十八禁人妻一区二区| 网址你懂的国产日韩在线| 欧美激情在线99| 亚洲最大成人中文| 日韩av在线大香蕉| 曰老女人黄片| 免费搜索国产男女视频| 老熟妇乱子伦视频在线观看| a级毛片在线看网站| 亚洲av五月六月丁香网| 久久精品91无色码中文字幕| 一级黄色大片毛片| 久久久久国内视频| av福利片在线观看| 男插女下体视频免费在线播放| 国产精品1区2区在线观看.| 99久久无色码亚洲精品果冻| 亚洲专区国产一区二区| 18美女黄网站色大片免费观看| 国内精品一区二区在线观看| 一个人观看的视频www高清免费观看 | 久久人人精品亚洲av| 美女 人体艺术 gogo| 免费在线观看影片大全网站| 欧美色视频一区免费| 国内精品美女久久久久久| 亚洲成av人片免费观看| 国产高清视频在线播放一区| 久99久视频精品免费| 我的老师免费观看完整版| 1024手机看黄色片| 久久精品人妻少妇| 99久久精品国产亚洲精品| 久久欧美精品欧美久久欧美| 国产日本99.免费观看| 国产三级中文精品| 亚洲一区高清亚洲精品| 美女免费视频网站| 亚洲国产精品久久男人天堂| 亚洲激情在线av| 国产精品 欧美亚洲| 精品国产三级普通话版| 久久午夜综合久久蜜桃| 老汉色av国产亚洲站长工具| 真人做人爱边吃奶动态| 国产伦一二天堂av在线观看| 叶爱在线成人免费视频播放| 香蕉久久夜色| 欧美日韩乱码在线| 欧美不卡视频在线免费观看| 亚洲国产欧美一区二区综合| 小说图片视频综合网站| 一本一本综合久久| 久久久久久人人人人人| 美女 人体艺术 gogo| 又粗又爽又猛毛片免费看| 成人av在线播放网站| 午夜视频精品福利| 非洲黑人性xxxx精品又粗又长| 国产爱豆传媒在线观看| 国内精品久久久久久久电影| 国产野战对白在线观看| 欧美一级毛片孕妇| 亚洲美女视频黄频| 国产aⅴ精品一区二区三区波| 色吧在线观看| 国内精品久久久久精免费| 免费高清视频大片| 一级毛片高清免费大全| 久久久精品欧美日韩精品| 欧美日本视频| 一夜夜www| 欧美激情久久久久久爽电影| 久久久久国内视频| 12—13女人毛片做爰片一| 99久久国产精品久久久| 成人三级黄色视频| 亚洲精品乱码久久久v下载方式 | 黄片大片在线免费观看| 人妻夜夜爽99麻豆av| 精品熟女少妇八av免费久了| 亚洲美女黄片视频| 精品久久久久久成人av| 精品国产美女av久久久久小说| 久久午夜综合久久蜜桃| 亚洲国产欧美人成| 熟妇人妻久久中文字幕3abv| a级毛片在线看网站| 亚洲国产高清在线一区二区三| 给我免费播放毛片高清在线观看| 悠悠久久av| 国产成人av教育| 亚洲自拍偷在线| 精品99又大又爽又粗少妇毛片 | 一级毛片女人18水好多| 中文字幕熟女人妻在线| 又黄又粗又硬又大视频| 天天躁日日操中文字幕| 亚洲精品在线美女| x7x7x7水蜜桃| 色噜噜av男人的天堂激情| 天堂影院成人在线观看| 亚洲国产欧美人成| 欧美乱色亚洲激情| 舔av片在线| 欧美绝顶高潮抽搐喷水| 91久久精品国产一区二区成人 | 日韩人妻高清精品专区| 国产av麻豆久久久久久久| 免费高清视频大片| 国产午夜精品论理片| 免费人成视频x8x8入口观看| 国产精品久久久久久久电影 | 小蜜桃在线观看免费完整版高清| 男女之事视频高清在线观看| 麻豆成人av在线观看| 亚洲欧美日韩高清专用| 国产三级在线视频| 亚洲第一电影网av| 国产精品九九99| 国产成+人综合+亚洲专区| 天天躁日日操中文字幕| 12—13女人毛片做爰片一| 亚洲成a人片在线一区二区| 少妇丰满av| 国产在线精品亚洲第一网站| 嫩草影院精品99| 亚洲欧美日韩东京热| 在线观看午夜福利视频| 91字幕亚洲| 99久国产av精品| 国产免费av片在线观看野外av| 亚洲欧美日韩高清在线视频| 国产精品女同一区二区软件 | 无人区码免费观看不卡| 亚洲国产看品久久| 黑人欧美特级aaaaaa片| 久久久久久大精品| 婷婷亚洲欧美| 久久久国产成人免费| 日本五十路高清| 欧美另类亚洲清纯唯美| 长腿黑丝高跟| 亚洲va日本ⅴa欧美va伊人久久| 久久久久国内视频| 亚洲av成人不卡在线观看播放网| 色av中文字幕| 久久精品影院6| 国产精品亚洲美女久久久| 欧美xxxx黑人xx丫x性爽| 老熟妇仑乱视频hdxx| 精品久久蜜臀av无| 深夜精品福利| 国产伦一二天堂av在线观看| 十八禁人妻一区二区| 成人国产一区最新在线观看| 亚洲男人的天堂狠狠| 亚洲av成人av| 好看av亚洲va欧美ⅴa在| 国产高清有码在线观看视频| 午夜福利在线观看免费完整高清在 | 国产三级黄色录像| 757午夜福利合集在线观看| 男插女下体视频免费在线播放| 欧美又色又爽又黄视频| 日本三级黄在线观看| 亚洲av成人av| 搞女人的毛片| 最近最新免费中文字幕在线| 伊人久久大香线蕉亚洲五| 免费看日本二区| 少妇丰满av| www.熟女人妻精品国产| 国产私拍福利视频在线观看| 一本精品99久久精品77| 国产精品久久久av美女十八| 欧美午夜高清在线| 午夜福利在线观看吧| 国产精品一区二区精品视频观看| 91久久精品国产一区二区成人 | 精品久久久久久久久久免费视频| 久久久久久久久久黄片| 天堂网av新在线| 床上黄色一级片| 中文字幕av在线有码专区| 最近视频中文字幕2019在线8| 国产熟女xx| 我要搜黄色片| 特级一级黄色大片| 最近最新中文字幕大全免费视频| 色老头精品视频在线观看| 国产精品亚洲av一区麻豆| 午夜激情福利司机影院| 日韩欧美在线二视频| 亚洲午夜精品一区,二区,三区| 久久精品91无色码中文字幕| 国产一区二区三区视频了| 国产97色在线日韩免费| 在线永久观看黄色视频| 午夜久久久久精精品| 在线免费观看的www视频| 中文字幕av在线有码专区| 香蕉丝袜av| 欧美不卡视频在线免费观看| 一级作爱视频免费观看| 亚洲自拍偷在线| 欧美国产日韩亚洲一区| 久久精品国产亚洲av香蕉五月| 日韩大尺度精品在线看网址| 精品国产乱码久久久久久男人| 亚洲人成网站在线播放欧美日韩| 99热6这里只有精品| 久久精品aⅴ一区二区三区四区| 脱女人内裤的视频| 日日干狠狠操夜夜爽| 久久国产精品影院| 精品一区二区三区四区五区乱码| 黄色女人牲交| 9191精品国产免费久久| 性色avwww在线观看| 成人国产一区最新在线观看| 美女扒开内裤让男人捅视频| 久久久久久国产a免费观看| 亚洲色图av天堂| 欧美成人一区二区免费高清观看 | 精品久久久久久成人av| 国产成人福利小说| 成年版毛片免费区| 国产成人aa在线观看| 欧美在线黄色| 一级毛片精品| 性色av乱码一区二区三区2| 国产一区二区三区视频了| 色av中文字幕| 国产亚洲欧美在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| bbb黄色大片| 九九久久精品国产亚洲av麻豆 | 男女床上黄色一级片免费看| 老司机深夜福利视频在线观看| 国产亚洲精品久久久com| 天天躁狠狠躁夜夜躁狠狠躁| 淫妇啪啪啪对白视频| 国产高清有码在线观看视频| 久久久久久人人人人人| 亚洲男人的天堂狠狠| 久久久国产精品麻豆| 久久国产精品影院| 国产单亲对白刺激| 99在线人妻在线中文字幕| 色噜噜av男人的天堂激情| 欧美最黄视频在线播放免费| 色播亚洲综合网| 日韩免费av在线播放| 日本三级黄在线观看| 露出奶头的视频| 久久香蕉精品热| 日本黄色片子视频| 一二三四社区在线视频社区8| www日本在线高清视频| 久99久视频精品免费| 久久婷婷人人爽人人干人人爱| 久久精品国产综合久久久| 毛片女人毛片| 啦啦啦免费观看视频1| 麻豆一二三区av精品| 十八禁人妻一区二区| 美女免费视频网站| 真人做人爱边吃奶动态| 午夜福利视频1000在线观看| 97人妻精品一区二区三区麻豆| 成人欧美大片| 18美女黄网站色大片免费观看| 村上凉子中文字幕在线| 日韩大尺度精品在线看网址| 色精品久久人妻99蜜桃| 亚洲成人精品中文字幕电影| 亚洲 欧美一区二区三区| 又大又爽又粗|