趙丹丹,郭天宇,趙瑞花,3,杜建平,4
電催化二氧化碳還原制乙烯銅基催化劑研究進(jìn)展*
趙丹丹1,郭天宇2,4,趙瑞花1,3,杜建平1,4?
(1. 太原理工大學(xué) 化學(xué)學(xué)院,太原 030024;2. 太原理工大學(xué) 環(huán)境科學(xué)與工程學(xué)院,山西 晉中 030600;3. 山西昆明煙草有限責(zé)任公司,太原 030032;4. 氣體能源高效利用山西省重點(diǎn)實(shí)驗(yàn)室,太原 030024)
由太陽能、風(fēng)能驅(qū)動(dòng)CO2電化學(xué)還原為高附加值的燃料和化學(xué)品是緩解溫室效應(yīng)和實(shí)現(xiàn)碳減排的方法。銅基催化劑作為CO2還原為碳?xì)浠衔锏拇呋瘎┦艿綇V泛的關(guān)注,但反應(yīng)過電位高、目標(biāo)產(chǎn)物選擇性低和催化劑穩(wěn)定性差等仍是開發(fā)銅基催化劑需解決的問題和面臨的挑戰(zhàn)。簡述了電催化還原CO2為乙烯的反應(yīng)機(jī)理,總結(jié)了最近銅基催化劑形貌和晶面調(diào)控、缺陷構(gòu)造、雜原子摻雜以及雙金屬合金化對(duì)其性能影響的研究進(jìn)展,為電催化CO2還原制乙烯高效催化劑的研發(fā)提供參考。
銅基催化劑;電催化還原;二氧化碳;乙烯
隨著工業(yè)的快速發(fā)展,人類對(duì)能源的需求主要依賴傳統(tǒng)化石能源,由此產(chǎn)生以二氧化碳為主的溫室氣體導(dǎo)致全球氣候變暖,嚴(yán)重影響人類生命健康和社會(huì)發(fā)展。如果將其轉(zhuǎn)化為高附加值的燃料和化學(xué)品,有利于減少碳排放,加速實(shí)現(xiàn)“碳達(dá)峰”和“碳中和”的目標(biāo)。
目前二氧化碳轉(zhuǎn)化的方法有光催化、電催化和熱能轉(zhuǎn)化等[1-3]。研究表明,電催化還原CO2可得到高附加值化學(xué)品[4-5]和C1產(chǎn)物[6-7],如一氧化碳和甲酸,其法拉第效率接近100%;由于生成多碳(C2+)產(chǎn)物需要復(fù)雜的多電子/質(zhì)子耦合和C?C耦合[8],致使C2+產(chǎn)物的法拉第效率較低。近年來,研究人員進(jìn)行了電催化還原CO2制C2H4工作[9-10],為開發(fā)新型高效催化劑提供了依據(jù)。本文簡述二氧化碳還原制備乙烯的反應(yīng)機(jī)理,從催化劑形貌調(diào)控、晶面調(diào)控、缺陷構(gòu)造、原子摻雜和合金化幾個(gè)方面總結(jié)銅基催化劑的設(shè)計(jì)策略,分析存在的問題,并對(duì)繼續(xù)研發(fā)高效催化劑進(jìn)行展望。
深入理解電催化還原CO2反應(yīng)(CO2RR)機(jī)理對(duì)設(shè)計(jì)性能優(yōu)良的電催化劑至關(guān)重要。研究表明,在無機(jī)鹽水溶液中,Cu電極能將CO2電化學(xué)還原為C2H4,其過程為:*CO作為反應(yīng)中間體先被還原為*CH2,再進(jìn)一步轉(zhuǎn)化為C2H4[11]。相關(guān)文獻(xiàn)也表明,在Cu2O(111)晶面,*CO質(zhì)子化為*COH后轉(zhuǎn)化為*CH2,*CH2?*CH2耦合生成C2H4[12]。SANTATIWONGCHAI等[13]通過模擬Cu(100)晶面上C2H4的生成機(jī)理表明,CO2被還原為CO后,會(huì)發(fā)生*CO?*CO、*CO?*CHO或*CO?*COH耦合等形式的C?C耦合,形成關(guān)鍵中間體*CCH后,進(jìn)一步生成C2H4。由此可見,在電催化CO2還原過程中,CO2會(huì)先還原為*CO,但C?C耦合的形式卻各有不同(圖1)。相關(guān)DFT計(jì)算表明,在Cu(111)表面,CO2還原為C2H4的途徑為CO2→ *CO → *CHO → *COCHO → C2H4[14]。CHEN等[15]通過理論研究證實(shí),4H Au@Cu催化劑之所以對(duì)C2H4有較高的選擇性,是由于該催化劑更有利于*CHO的形成,通過*CO?*CHO耦合,促進(jìn)了C2H4的生成。目前,在研究銅基催化劑電催化CO2還原生成C2H4的機(jī)理方面,學(xué)者們進(jìn)行了較為廣泛的探索,但不同中間體的C?C耦合會(huì)生成不同的產(chǎn)物,干擾目標(biāo)產(chǎn)物生成。因此,闡明C?C耦合路徑及電催化還原CO2機(jī)理,明確生成目標(biāo)產(chǎn)物的關(guān)鍵步驟,對(duì)制備高選擇性和高活性的電催化劑具有重要指導(dǎo)作用。
圖1 電催化還原CO2制C2H4的途徑
納米催化劑的形貌直接影響電催化CO2還原反應(yīng)的活性和產(chǎn)物的選擇性[16]。研究人員在氮摻雜石墨烯上原位制備了葉片狀CuO(圖2a),在0.1 mol/L KHCO3中,生成C2H4的法拉第效率約為30%[17]。在球形和立方形納米銅(圖2b)的比較研究中,立方形納米銅(邊長44 nm)比球形納米銅(直徑27 nm)有更大的電流密度,C2H4法拉第效率達(dá)到了41%[18],這與邊緣活性位點(diǎn)的分布有關(guān),邊緣活性位點(diǎn)不但有利于關(guān)鍵中間體的吸附和穩(wěn)定,而且能抑制析氫反應(yīng)(hydrogen evolution reaction, HER)。通過模型法對(duì)立方形納米銅的(100)晶面研究發(fā)現(xiàn),以邊長24 nm和63 nm的立方形納米銅為催化劑,C2H4法拉第效率分別為9%和25%。44 nm的納米銅對(duì)C2H4具有較高的選擇性,是由于具有最佳的邊緣活性位點(diǎn)與晶面活性位點(diǎn)比(edge/100= 0.025)。納米針狀銅(圖2c)作為CO2還原的催化劑,表現(xiàn)出較高的C2H4選擇性,由于納米針曲率大,其尖端具有較強(qiáng)的局部電場,降低了*CO?*CO耦合反應(yīng)勢壘,有利于C2H4的生成[19]。
圖 2 不同催化劑的電鏡照片:(a)葉片狀CuO[17];(b)立方形納米Cu[18];(c)納米針狀Cu[19];(d)海膽狀復(fù)合Cu/SiO2[20];(e)多殼層CuO[21];(f)枝狀CuO[22]
YANG等[20]采用靜電耦合和水熱法合成了海膽狀復(fù)合Cu/SiO2催化劑(圖2d),顯示了高的催化活性和產(chǎn)物選擇性,C2的產(chǎn)率達(dá)到70.5%,C2H4法拉第效率達(dá)到了46%。海膽狀結(jié)構(gòu)的分支含有大量的尖端和邊緣,不但有較高的比表面積,而且有利于電催化過程中局部環(huán)境的形成。相比銅催化劑,以多殼層CuO微顆粒(圖2e)為催化劑,在0.1 mol/L K2SO4溶液中CO2還原生成C2H4的法拉第效率可達(dá)51.3%[21],這種結(jié)構(gòu)不僅具有較大的比表面積和較小的電荷轉(zhuǎn)移阻力,而且能夠促進(jìn)中間體CO的吸附,抑制生成的OH?擴(kuò)散,促進(jìn)C?C偶聯(lián)反應(yīng),從而有利于生成C2H4。以枝狀CuO(圖2f)為催化劑,C2H4的法拉第效率達(dá)到70%以上,反應(yīng)12 h后法拉第效率仍高于65%[22],說明該催化劑具有較高的穩(wěn)定性;而以立方形Cu2O為催化劑,C2H4法拉第效率僅為36%??梢姡ㄟ^調(diào)控銅或氧化銅催化劑的微觀形貌,改變局部電場強(qiáng)度或增大催化劑比表面積,可以改善催化劑的性能和CO2還原產(chǎn)物的選擇性。
金屬催化劑的晶面影響催化劑的活性和產(chǎn)物的選擇性。在CO2RR過程中,Cu(100)晶面不但能吸附較多的反應(yīng)中間體,而且具有較低的*CO二聚活化能,有利于C2H4的生成[23]。研究人員通過理論計(jì)算研究了CO2還原過程中C?C耦合對(duì)Cu晶面的依賴性,表明Cu(100)和(211)晶面比(111)晶面更有利于C2H4的生成[24]。ROBERTS等[25]通過原位合成法制備了分別具有(100)、(211)和(111)晶面的單晶Cu納米立方體,進(jìn)一步證明了Cu(100)晶面具有最高的C2H4選擇性,Cu(211)晶面次之,而Cu(111)晶面對(duì)C2H4的選擇性最差。
HUANG等[26]發(fā)現(xiàn),在Cu(100)晶面生成C2H4的起始電位為?0.7 V(相對(duì)于可逆氫電極,如無特殊說明,均指相對(duì)可逆氫電極電位),低于Cu(111)晶面的起始電位(?0.9 V)。通過密度泛函理論(density functional theory, DFT)計(jì)算表明,Cu(100)具有較高的*CO覆蓋率,并能夠在低過電位下使CO*二聚反應(yīng)生成C2H4。由Cu(OH)2衍生的銅催化劑可暴露出(110) 和(100)晶面,由其自組裝的Cu(210)和Cu(310)催化劑促進(jìn)了CO的吸附和聚合,提高了對(duì)C2H4的選擇性[27]。在0.1 mol/L KHCO3中,C2H4的法拉第效率為41%,在1 mol/L KOH的流動(dòng)電解槽中,電位為?0.54 V時(shí),C2H4的法拉第效率為58%。CHOI等[28]通過對(duì)Cu納米線的(100)晶面進(jìn)行原位電化學(xué)活化,得到了具有高活性表面和性能穩(wěn)定的Cu納米線,顯示出了較高的C2H4選擇性,其法拉第效率約為77.4%。理論計(jì)算表明,Cu(511)更有利于CO2還原為C2產(chǎn)物,在Cu(511)[3(100) × (111)]上,生成C2比C1產(chǎn)物所需的能量低,有較高的C2H4選擇性。由此表明,金屬催化劑的晶面調(diào)控對(duì)其活性和CO2還原產(chǎn)物的選擇性有顯著影響,可以通過調(diào)節(jié)暴露晶面實(shí)現(xiàn)高選擇性生成目標(biāo)產(chǎn)物。
催化材料的微觀缺陷對(duì)催化劑的性能有顯著影響,構(gòu)造缺陷的常用方法有原位重構(gòu)、引入離子/原子空位、刻蝕和預(yù)處理等。通過原位電化學(xué)還原可以構(gòu)造微觀缺陷,調(diào)控電化學(xué)活性表面,提高催化劑性能。研究人員利用原位電沉積在碳紙上制備了三維多級(jí)孔結(jié)構(gòu)的金屬/聚合物電極材料,提供了較大的電化學(xué)活性表面積和結(jié)構(gòu)缺陷,催化劑的活性得到較大提高,C2H4的法拉第效率為59.4%,電流密度為30.2 mA/cm2[29]。利用微波合成法合成CuO納米線和納米片,通過原位電化學(xué)重構(gòu)位錯(cuò)和孿晶缺陷(圖3a),在?0.56 V時(shí),C2H4的法拉第效率為62%(圖3b),電流密度為324 mA/cm2[30]。通過原位電化學(xué)還原CuO納米片,得到缺陷豐富的Cu納米片催化劑(圖3c),C2H4的法拉第效率達(dá)到83.2%(圖3d),電流密度為66.5 mA/cm2,反應(yīng)14 h后該催化劑表現(xiàn)出良好的穩(wěn)定性,計(jì)算結(jié)果表明,納米Cu催化劑的缺陷有利于反應(yīng)中間體的吸附和促進(jìn)C?C偶聯(lián)生成C2H4[31]。因此,通過電化學(xué)法原位重構(gòu)缺陷為設(shè)計(jì)高效穩(wěn)定的電催化劑提供了依據(jù)。催化劑的氧空位調(diào)控也是重要的策略,比如含有豐富氧空位的納米CuO枝晶催化劑在?1.4 V時(shí),C2H4的法拉第效率為63%[32]。研究表明,CuO表面的氧空位與*CO和*COH中間體有較強(qiáng)的親和力,與*CH2的親和力較弱,從而可顯著提高C2H4的生成速率。
圖3 CuO納米線的高分辨透射電鏡照片(a)和產(chǎn)物的法拉第效率圖(b)[30];Cu納米片的掃描電鏡照片(c)和產(chǎn)物的法拉第效率圖(d)[31]
摻雜是調(diào)節(jié)金屬催化劑表面電子結(jié)構(gòu)的有效途徑,是提高CO2還原效率和選擇性的有效方法[33-34],常見的摻雜方法分為非金屬摻雜和金屬摻雜。在Cu2O中引入N原子后可有效提高CO2的吸附能力,增強(qiáng)中間體的結(jié)合,促進(jìn)CO2電還原,研究表明CO和C2H4的產(chǎn)率提高了兩倍[35]。
研究人員制備了F摻雜的Cu催化劑(F-Cu),C2H4的法拉第效率比Cu為催化劑時(shí)提高了一倍[36]。原位表面增強(qiáng)拉曼光譜表明,F(xiàn)-Cu能在較低的電位下生成CO,并對(duì)其有較強(qiáng)的吸附能力,有利于C?C耦合,促進(jìn)C2H4的生成。ZHANG等[37]通過DFT計(jì)算發(fā)現(xiàn),Zn摻雜的Cu(100)晶面具有較高的CO2RR活性,更有利于CO2還原為C2H4。機(jī)理研究表明,Zn的摻雜改變了Cu周圍的電子結(jié)構(gòu),調(diào)整了活性位點(diǎn)上的原子排列,降低了C?C二聚反應(yīng)的能壘,有利于CO2向C2H4轉(zhuǎn)化。ZHOU等[38]制備B摻雜的銅催化劑(B-Cu),在CO2還原反應(yīng)中,C2H4的法拉第效率為52%,穩(wěn)定性可達(dá)40 h。這是由于Cu與B之間發(fā)生了電子轉(zhuǎn)移,調(diào)節(jié)了Cu的平均氧化態(tài),從而控制了CO的吸附與二聚。CHEN等[39]在氧化衍生銅(OD-Cu)中摻雜B后,改變了Cu的電子結(jié)構(gòu),穩(wěn)定了Cu+,從而促進(jìn)了CO2RR,提高了C2H4的法拉第效率。因此,可以通過雜原子摻雜提高目標(biāo)產(chǎn)物的選擇性。
雙金屬合金化是改善催化劑性能的另一有效策略,在主催化劑中加入第二種金屬形成合金,可以調(diào)節(jié)中間體與催化劑之間的結(jié)合能,從而提高催化劑的催化性能,有效提高目標(biāo)產(chǎn)物的選擇性[40-41]。研究表明,Ag-Cu和Zn-Cu雙金屬催化劑在?1.2 V時(shí)的C2H4法拉第效率分別為41.3%和38.3%,電流密度分別為8.45 mA/cm2和6.15 mA/cm2,高于同等電位下銅為催化劑時(shí)的法拉第效率和電流密度(9.5%,0.78 mA/cm2),且雙金屬催化劑具有良好的穩(wěn)定性[42]。通過電沉積方法在碳紙上制備的Cu-Pd雙金屬催化劑能有效將CO2還原為C2H4,在?1.2 V下,C2H4法拉第效率為45.2%,而純Cu為催化劑時(shí),C2H4的法拉第效率僅為29.97%[43]。理論研究表明,與Cu(100)晶面相比,CuPd(100)晶面具有更強(qiáng)的CO2吸附能力,并且能顯著降低*CO2氫化的能壘,為C—C耦合提供充足的*CO,促進(jìn)C2H4的生成[44],說明雙金屬合金化是提高C2H4選擇性的有效措施。當(dāng)Cu和Sb摩爾比為10∶1時(shí),Cu-Sb雙金屬納米催化劑性能最佳(圖4)。在?1.19 V電位條件下,C2H4的法拉第效率為49.7%,電流密度為28.5 mA/cm2,而以Cu為催化劑的C2H4法拉第效率僅為15.8%[45],說明雙金屬合金催化也是提高銅基催化劑還原CO2性能的有效途徑。
圖4 催化劑Cu(a)和Cu10Sb1(b)的掃描電鏡照片;(c)不同催化劑在?1.19 V時(shí)乙烯的法拉第效率[45]
隨著人們對(duì)銅基催化劑電催化CO2制乙烯反應(yīng)機(jī)理的不斷探索,通過調(diào)控形貌、晶面調(diào)控、缺陷構(gòu)造、原子摻雜和合金化等策略對(duì)銅基催化劑進(jìn)行改性和修飾,在一定程度上提高了銅基催化劑的CO2還原活性和目標(biāo)產(chǎn)物的選擇性。但銅基催化劑電催化還原CO2依舊面臨諸多挑戰(zhàn)。銅基催化劑的穩(wěn)定性較差,易失活。例如,Cu2O催化劑在電催化CO2還原過程中會(huì)被部分歧化為CuO或Cu,形成混合物催化劑,以至難以區(qū)分具體物質(zhì)對(duì)C2H4生成的真正影響;而且,不同銅物種之間的團(tuán)聚會(huì)導(dǎo)致催化劑失活。工業(yè)實(shí)現(xiàn)CO2還原反應(yīng)需要在過電位為0.5 V、電流密度大于300 mA/cm2,C2H4法拉第效率大于70%。目前報(bào)道的銅基催化劑與此相比還有差距,因此,可以通過同時(shí)定向控制晶面和形貌、引入多種原子/分子促進(jìn)協(xié)同作用和構(gòu)造缺陷,增加反應(yīng)活性位點(diǎn)等方法進(jìn)一步改善催化劑。同時(shí),由于銅物種之間的相互轉(zhuǎn)化較為容易,可以通過對(duì)失活的銅基催化劑進(jìn)行簡單處理實(shí)現(xiàn)催化劑的循環(huán)利用??梢酝ㄟ^使用緩沖作用較小的電解液,增大溶液pH,提高C2H4的法拉第效率,或使用離子溶液,增大電流密度,增強(qiáng)催化活性。通過建立模型,結(jié)合先進(jìn)表征技術(shù),深入研究CO2電還原的反應(yīng)機(jī)理,掌握關(guān)鍵中間體的形成規(guī)律及C?C耦合步驟的影響因素,降低C?C耦合反應(yīng)的能量勢壘,探尋生成各目標(biāo)產(chǎn)物的有效低能路徑。綜上所述,設(shè)計(jì)和研發(fā)在低過電位下具有高選擇性、高活性和穩(wěn)定性的銅基電催化劑對(duì)CO2的利用和減排有重大意義。
[1] XU Z, WU T C, CAO Y, et al. Dynamic restructuring induced Cu nanoparticles with ideal nanostructure for selective multi-carbon compounds production via carbon dioxide electroreduction[J]. Journal of catalysis, 2020, 383: 42-50. DOI: 10.1016/j.jcat.2020.01.002.
[2] 賴潔, 楊楠, 袁健發(fā), 等. 電化學(xué)催化還原二氧化碳研究進(jìn)展[J]. 新能源進(jìn)展, 2019, 7(5): 429-435. DOI: 10.3969/j.issn.2095-560X.2019.05.007.
[3] GALADIMA A, MURAZA O. Catalytic thermal conversion of CO2into fuels: perspective and challenges[J]. Renewable and sustainable energy reviews, 2019, 115: 109333. DOI: 10.1016/j.rser.2019.109333.
[4] LI Z, YANG Y, YIN Z L, et al. Interface-enhanced catalytic selectivity on the C2products of CO2electroreduction[J]. ACS catalysis, 2021, 11(5): 2473-2482. DOI: 10.1021/acscatal.0c03846.
[5] SANG J Q, WEI P F, LIU T F, et al. A reconstructed Cu2P2O7catalyst for selective CO2electroreduction to multicarbon products[J]. Angewandte chemie international edition, 2022, 61(5): e202114238. DOI: 10.1002/anie.202114238.
[6] 張少陽, 商陽陽, 趙瑞花, 等. 電催化還原二氧化碳制一氧化碳催化劑研究進(jìn)展[J]. 化工進(jìn)展, 2022, 41(4): 1848-1857. DOI: 10.16085/j.issn.1000-6613.2021-0804.
[7] DUAN Y X, ZHOU Y T, YU Z, et al. Boosting production of HCOOH from CO2electroreduction via Bi/CeO[J]. Angewandte chemie international edition, 2021, 60(16): 8798-8802. DOI: 10.1002/anie.202015713.
[8] ZHI X, JIAO Y, ZHENG Y, et al. Directing the selectivity of CO2electroreduction to target C2productsnon-metal doping on Cu surfaces[J]. Journal of materials chemistry A, 2021, 9(10): 6345-6351. DOI: 10.1039/d0ta11604a.
[9] SHAO P, ZHOU W, HONG Q L, et al. Synthesis of a boron-imidazolate framework nanosheet with dimer copper units for CO2electroreduction to ethylene[J]. Angewandte chemie international edition, 2021, 60(30): 16687-16692. DOI: 10.1002/anie.202106004.
[10] ZHENG M, ZHOU X, ZHOU Y, et al. Theoretical insights into mechanisms of electrochemical reduction of CO2to ethylene catalyzed by Pd3Au[J]. Applied surface science, 2022, 572: 151474. DOI: 10.1016/j.apsusc.2021.151474.
[11] HORI Y, MURATA A, TAKAHASHI R. Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution[J]. Journal of the chemical society, faraday transactions 1: physical chemistry in condensed phases, 1989, 85(8): 2309-2326. DOI: 10.1039/F19898502309.
[12] REN X N, ZHANG X W, CAO X Z, et al. Efficient electrochemical reduction of carbon dioxide into ethylene boosted by copper vacancies on stepped cuprous oxide[J]. Journal of CO2utilization, 2020, 38: 125-131. DOI: 10.1016/j.jcou.2020.01.018.
[13] SANTATIWONGCHAI J, FAUNGNAWAKIJ K, HIRUNSIT P. Comprehensive mechanism of CO2electroreduction toward ethylene and ethanol: The solvent effect from explicit water-Cu(100) interface models[J]. ACS catalysis, 2021, 11(15): 9688-9701. DOI: 10.1021/acscatal.1c01486.
[14] GUAN A X, YANG C, WANG Q H, et al. Atomic-level copper sites for selective CO2electroreduction to hydrocarbon[J]. ACS sustainable chemistry & engineering,2021, 9(40): 13536-13544. DOI: 10.1021/acssuschemeng.1c04519.
[15] CHEN Y, FAN Z X, WANG J, et al. Ethylene selectivity in electrocatalytic CO2reduction on Cu nanomaterials: a crystal phase-dependent study[J]. Journal of the American chemical society, 2020, 142(29): 12760-12766. DOI: 10.1021/jacs.0c04981.
[16] JUNG H, LEE S Y, LEE C W, et al. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C-C coupling from CO2reduction reaction[J]. Journal of the American chemical society, 2019, 141(11): 4624-4633. DOI: 10.1021/jacs.8b11237.
[17] TAN Z H, PENG T Y, TAN X J, et al. Controllable synthesis of leaf-like CuO nanosheets for selective CO2electroreduction to ethylene[J]. ChemElectroChem, 2020, 7(9): 2020-2025. DOI: 10.1002/celc.202000235.
[18] LOIUDICE A, LOBACCARO P, KAMALI E A, et al. Tailoring copper nanocrystals towards C2products in electrochemical CO2reduction[J]. Angewandte chemie international edition, 2016, 55(19): 5789-5792. DOI: 10.1002/anie.201601582.
[19] LI H J W, ZHOU H M, ZHOU Y J, et al. Electric-field promoted C-C coupling over Cu nanoneedles for CO2electroreduction to C2products[J]. Chinese journal of catalysis, 2022, 43(2): 519-525. DOI: 10.1016/S1872-2067(21)63866-4.
[20] YANG R, ZENG Z P, PENG Z, et al. Amorphous urchin-like copper@nanosilica hybrid for efficient CO2electroreduction to C2+ products[J]. Journal of energy chemistry, 2021, 61: 290-296. DOI: 10.1016/j.jechem.2020.12.032.
[21] TAN D X, ZHANG J L, YAO L, et al. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene[J]. Nano research, 2020, 13(3): 768-774. DOI: 10.1007/s12274-020-2692-1.
[22] KIM J, CHOI W, PARK J W, et al. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction[J]. Journal of the American chemical society, 2019, 141(17): 6986-6994. DOI: 10.1021/jacs.9b00911.
[23] WANG Y H, WANG Z Y, DINH C T, et al. Catalyst synthesis under CO2electroreduction favours faceting and promotes renewable fuels electrosynthesis[J]. Nature catalysis, 2020, 3(2) 98-106. DOI: 10.1038/s41929-019-0397-1.
[24] JIANG K, SANDBERG R B, AKEY A J, et al. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2reduction[J]. Nature catalysis, 2018, 1(2): 111-119. DOI: 10.1038/s41929-017-0009-x.
[25] ROBERTS F S, KUHL K P, NILSSON A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts[J]. Angewandte chemie international edition, 2015, 54(17): 5179-5182. DOI: 10.1002/anie.201412214.
[26] HUANG Y, HANDOKO A D, HIRUNSIT P, et al. Electrochemical reduction of CO2using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene[J]. ACS catalysis, 2017, 7(3): 1749-1756. DOI: 10.1021/acscatal.6b03147.
[27] ZHONG D Z, ZHAO Z J, ZHAO Q, et al. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols[J]. Angewandte chemie international edition, 2021, 60(9): 4879-4885. DOI: 10.1002/anie.202015159.
[28] CHOI C, KWON S, CHENG T, et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2reduction to C2H4[J]. Nature catalysis, 2020, 3(10): 804-812. DOI: 10.1038/s41929-020-00504-x.
[29] JIA S Q, ZHU Q G, CHU M G, et al. Hierarchical metal-polymer hybrids for enhanced CO2electroreduction[J]. Angewandte chemie international edition, 2021, 60(19): 10977-10982. DOI: 10.1002/anie.202102193.
[30] ZHANG J F, LI Z Y, XIA S, et al. Reconstructing two-dimensional defects in CuO nanowires for efficient CO2electroreduction to ethylene[J]. Chemical communications, 2021, 57(67): 8276-8279. DOI: 10.1039/d1cc03171f.
[31] ZHANG B X, ZHANG J L, HUA M L, et al. Highly Electrocatalytic ethylene production from CO2on nanodefective Cu nanosheets[J]. Journal of the American chemical society, 2020, 142(31): 13606-13613. DOI: 10.1021/jacs.0c06420.
[32] GU Z X, YANG N, HAN P, et al. Oxygen vacancy tuning toward efficient electrocatalytic CO2reduction to C2H4[J]. Small methods, 2019, 3(2): 1800449. DOI: 10.1002/ smtd.201800449.
[33] CHEN C J, SUN X F, YAN X P, et al. Boosting CO2electroreduction on N,P-Co-doped carbon aerogels[J]. Angewandte chemie international edition, 2020, 59(27): 11123-11129. DOI: 10.1002/anie.202004226.
[34] LAN Y C, NIU G Q, WANG F, et al. SnO2-modified two-dimensional CuO for enhanced electrochemical reduction of CO2to C2H4[J]. ACS applied materials & interfaces, 2020, 12(32): 36128-36136. DOI: 10.1021/ acsami.0c09240.
[35] YAN C L, LUO W, YUAN H M, et al. Stabilizing intermediates and optimizing reaction processes with N doping in Cu2O for enhanced CO2electroreduction[J]. Applied catalysis B: environmental, 2022, 308: 121191. DOI: 10.1016/j.apcatb.2022.121191.
[36] YAN X P, CHEN C J, WU Y H, et al. Boosting CO2electroreduction to C2+products on fluorine-doped copper[J]. Green chemistry, 2022, 24(5): 1989-1994. DOI: 10.1039/d1gc04824d.
[37] ZHANG Y F, ZHAO Y, WANG C Y, et al. Zn-Doped Cu(100) facet with efficient catalytic ability for the CO2electroreduction to ethylene[J]. Physical chemistry chemical physics, 2019, 21(38): 21341-21348. DOI: 10.1039/c9cp03692j.
[38] ZHOU Y S, CHE F L, LIU M, et al. Dopant-induced electron localization drives CO2reduction to C2hydrocarbons[J]. Nature chemistry, 2018, 10(9): 974-980. DOI: 10.1038/s41557-018-0092-x.
[39] CHEN C J, SUN X F, LU L, et al. Efficient electroreduction of CO2to C2products over B-doped oxide-derived copper[J]. Green chemistry, 2018, 20(20): 4579-4583. DOI: 10.1039/c8gc02389a.
[40] ZHU W J, ZHANG L, YANG P P, et al. Morphological and compositional design of Pd-Cu bimetallic nanocatalysts with controllable product selectivity toward CO2electroreduction[J]. Small, 2018, 14(7): 1703314. DOI: 10.1002/smll.201703314.
[41] HOANG T T H, VERMA S, MA S C, et al. Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2to ethylene and ethanol[J]. Journal of the American chemical society, 2018, 140(17): 5791-5797. DOI: 10.1021/jacs.8b01868.
[42] HOU L, HAN J Y, WANG C, et al. Ag nanoparticle embedded Cu nanoporous hybrid arrays for the selective electrocatalytic reduction of CO2towards ethylene[J]. Inorganic chemistry frontiers, 2020, 7(10): 2097-2106. DOI: 10.1039/d0qi00025f.
[43] FENG R T, ZHU Q G, CHU M G, et al. Electrodeposited Cu-Pd bimetallic catalysts for the selective electroreduction of CO2to ethylene[J]. Green chemistry, 2020, 22(21): 7560-7565. DOI: 10.1039/d0gc03051a.
[44] ZHU L, LIN Y Y, LIU K, et al. Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2electroreduction to C2products[J]. Chinese journal of catalysis, 2021, 42(9): 1500-1508. DOI: 10.1016/S1872-2067(20)63754-8.
[45] JIA S Q, ZHU Q G, WU H H, et al. Efficient electrocatalytic reduction of carbon dioxide to ethylene on copper-antimony bimetallic alloy catalyst[J]. Chinese journal of catalysis, 2020, 41(7): 1091-1098. DOI: 10.1016/S1872-2067(20)63542-2.
Research Progress of Cu-Based Catalysts for Electrocatalytic Reduction of CO2to Ethylene
ZHAO Dan-dan1, GUO Tian-yu2,4, ZHAO Rui-hua1,3, DU Jian-ping1,4
(1. College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, China;2. College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, Shanxi, China;3. Shanxi Kunming Tobacco Limited Liability Company, Taiyuan 030032, China;4.Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan, 030024, China)
It is one of the effective routes for the electrochemical conversion of CO2into high-value fuels and chemicals driven by solar and wind energy to alleviate the greenhouse effect and reduce carbon emission. Copper-based catalysts for the conversion of CO2to hydrocarbons have attracted great concerns. However, high reaction overpotential, poor selectivity of target products, and low stability are great challenges in the development of copper-based catalysts. In this paper, the reaction mechanisms of electrocatalytic CO2to ethylene were introduced. The morphology and crystal facet regulation, defect construction, heteroatomic doping, and bimetallic alloy formation and their effects on the performance of Cu-based catalysts were also summarized. This review provides a reference for the research and development of a high-efficiency catalyst for electrocatalytic CO2reduction to ethylene.
Cu-based catalysts; electrocatalytic reduction; carbon dioxide; ethylene
2095-560X(2022)05-0471-06
TK09;O643.36
A
10.3969/j.issn.2095-560X.2022.05.010
2022-06-01
2022-08-02
國家自然科學(xué)基金項(xiàng)目(51572185);山西省重點(diǎn)研發(fā)計(jì)劃國際合作項(xiàng)目(201903D421079)
杜建平,E-mail:dujp518@163.com
趙丹丹(1994-),女,碩士研究生,主要從事納米催化材料制備及應(yīng)用研究。
杜建平(1973-),男,教授,博士生導(dǎo)師,主要從事能源和環(huán)境納米材料應(yīng)用研究。