劉書暢,駱 萱,張靈志
鋰離子電池用(聚)離子液體電解質(zhì)*
劉書暢1,2,3,4,駱 萱1,2,3,5,張靈志1,2,3,4?
(1. 中國(guó)科學(xué)院廣州能源研究所,廣州 510640;2. 中國(guó)科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州 510640;3. 廣東省新能源和可再生能源研究開發(fā)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,廣州 510640;4. 中國(guó)科學(xué)技術(shù)大學(xué),合肥 230026;5. 中國(guó)科學(xué)院大學(xué),北京 100049)
鋰離子電池已廣泛應(yīng)用于便攜式電子設(shè)備和電動(dòng)汽車等領(lǐng)域,然而商用鋰離子電池中含有大量易燃的碳酸酯類有機(jī)溶劑,容易造成安全隱患。離子液體具有蒸汽壓低、化學(xué)結(jié)構(gòu)設(shè)計(jì)多樣性、熱穩(wěn)定性及電化學(xué)穩(wěn)定性優(yōu)異等優(yōu)點(diǎn),可以用來(lái)代替易燃有機(jī)溶劑,在電化學(xué)儲(chǔ)能領(lǐng)域具有廣闊的應(yīng)用前景。聚離子液體是一類聚合物重復(fù)單元上含有陰、陽(yáng)離子的新型聚合物電解質(zhì)材料,兼具離子液體和聚合物固態(tài)電解質(zhì)不漏液、易于加工的優(yōu)勢(shì)。根據(jù)離子液體和聚離子液體化學(xué)結(jié)構(gòu)的設(shè)計(jì)合成及其在鋰離子電池中的應(yīng)用形式,綜述了近年來(lái)離子液體電解質(zhì)的研究進(jìn)展,并提出了離子液體電解質(zhì)未來(lái)的應(yīng)用挑戰(zhàn)和發(fā)展方向。
鋰離子電池;高安全性電解質(zhì);離子液體;聚離子液體
鋰離子電池相對(duì)于其他二次電池,具有較高的工作電壓、能量密度和更長(zhǎng)的循環(huán)壽命,這些優(yōu)點(diǎn)使其成為最具發(fā)展前景的電池[1-2]。傳統(tǒng)的鋰離子電池含有大量易燃的有機(jī)溶劑,在鋰離子電池生產(chǎn)應(yīng)用中存在安全隱患[3-4],隨著鋰離子電池在便攜式電子設(shè)備、電動(dòng)汽車等領(lǐng)域的廣泛使用,研發(fā)更高安全性的鋰離子電池引起了人們的廣泛關(guān)注[5-7]。離子液體具有蒸汽壓低、結(jié)構(gòu)可設(shè)計(jì)、優(yōu)異的熱穩(wěn)定性及電化學(xué)穩(wěn)定性和不易燃等優(yōu)點(diǎn);聚離子液體繼承了離子液體的部分優(yōu)點(diǎn),同時(shí)又兼具聚合物無(wú)漏液、易于加工等優(yōu)勢(shì)。近年來(lái),離子液體在鋰離子電池電解質(zhì)領(lǐng)域展現(xiàn)出了令人欣喜的應(yīng)用潛力[8]。
離子液體是由有機(jī)陽(yáng)離子和無(wú)機(jī)/有機(jī)陰離子組成,在室溫或接近室溫條件下呈液態(tài)的離子化合物[9]。可以按照組成離子液體的陰陽(yáng)離子結(jié)構(gòu)不同對(duì)離子液體進(jìn)行分類,離子液體中常見的陰陽(yáng)離子化學(xué)結(jié)構(gòu)列于圖1。
圖1 離子液體常見陰、陽(yáng)離子化學(xué)結(jié)構(gòu)[10]
以離子液體中陽(yáng)離子結(jié)構(gòu)不同來(lái)劃分,離子液體可分為咪唑類、吡啶類、哌啶類、吡咯烷類、季銨鹽類、季膦鹽類等[10]。
1.1.1 吡啶類
吡啶類離子液體是一種含有一個(gè)氮原子的不飽和六元環(huán),是最早研究的一類離子液體。1948年,HURLEY[11],WIER等[12-13]制備了無(wú)色透明的N-烷基吡啶類氯鋁酸鹽離子液體,為第一代離子液體。但由于大部分吡啶類離子液體的熔點(diǎn)較高,黏度較大,其在電化學(xué)器件方面的應(yīng)用受到一定限制。DILEO等[14],將一系列咪唑類和吡啶類離子液體與碳酸酯類溶劑混合得到電解液,測(cè)得在同等條件下,吡啶類離子液體的離子電導(dǎo)率均低于咪唑類離子液體。GUPTA等[15]制備了含1-丁基-3-甲基吡啶鎓雙三氟甲磺酰亞胺鹽(B1M3Py-TFSI)的聚環(huán)氧乙烷(polyethylene oxide, PEO)基聚合物電解質(zhì),熱分解溫度達(dá)到376℃,但常溫離子電導(dǎo)率僅為2.54 × 10?5S/cm。
1.1.2 咪唑類
咪唑類離子液體是研究最多的離子液體,1992年WILKES等[16]首次報(bào)道制備了一種在空氣和水分條件下保持穩(wěn)定的離子液體1-乙基-3-甲基咪唑四氟硼酸鹽(EtMeim-BF4),是第二代離子液體的開端。咪唑類離子液體是一種含有兩個(gè)氮原子的不飽和五元環(huán),這種特殊結(jié)構(gòu)使正電荷在N-C-N之間離域,降低了陽(yáng)離子與陰離子之間的相互作用,使得其具有低黏度、低熔點(diǎn)和較高的離子電導(dǎo)率。然而,咪唑類離子液體的C-2位很容易被酸質(zhì)子化,在鋰離子電池中,C-2位很容易在陽(yáng)極上發(fā)生還原反應(yīng),將C-2位上的氫用烷烴取代可以降低C-2位質(zhì)子化的還原活性[8],SCHMITZ等[17]研究了兩種用甲基取代C-2位酸性質(zhì)子的改性咪唑類離子液體,使用兩種改性的離子液體作為電解質(zhì)組分,40℃下,在Li||LFP電池前90個(gè)循環(huán)里比放電容量和庫(kù)侖效率均優(yōu)于未改性離子液體電池。
1.1.3 季銨鹽類和季膦鹽類
季銨鹽類離子液體具有較高的電化學(xué)穩(wěn)定性,氧化電位高于5.0 V(vs. Li/Li+),還原電位低于0 V(vs. Li/Li+),不容易發(fā)生氧化還原反應(yīng)。但季銨陽(yáng)離子體積較大,導(dǎo)致此類離子液體的黏度偏高,離子電導(dǎo)率較低,SUN等[18]研究了一系列烷基季銨鹽,測(cè)得N-三乙基-N-正己基季銨雙三氟甲磺酰亞胺鹽(N2226-TFSI)的離子電導(dǎo)率最高,但僅為6.7 × 10?4S/cm。RAUBER等[19]研究了一系列三甲基季銨鹽離子液體,與N-三甲基-N-正戊基季銨三氟甲磺酰亞胺鹽(N1115-TFSI)相比,N-三甲基-N-正丁基季銨三氟甲磺酰亞胺鹽(N1114-TFSI)和N-三甲基-2-乙氧基季銨三氟甲磺酰亞胺鹽(N111(2O2)-TFSI)的黏度分別從136.9 mPa?s降低至99.17 mPa?s和57.81 mPa?s,室溫離子電導(dǎo)率分別從1.35×10?3S/cm升高至1.99×10?3S/cm和2.90×10?3S/cm。證明縮短側(cè)鏈和引入適量醚基能夠有效降低離子液體的黏度,提高離子電導(dǎo)率。季膦鹽類離子液體與季銨鹽類離子液體結(jié)構(gòu)類似,TSUNASHIMA等[20]發(fā)現(xiàn)取代基相同時(shí),季膦鹽類離子液體相較于季胺鹽類離子液體表現(xiàn)出更低的黏度和更高的離子電導(dǎo)率,例如P-三乙基-P-正戊基季膦雙三氟甲磺酰亞胺鹽(P2225-TFSI)的黏度為88 mPa?s,離子電導(dǎo)率為1.73 × 10?3S/cm,而N-三乙基-N-正戊基季銨雙三氟甲磺酰亞胺鹽(N2225-TFSI)的黏度和離子電導(dǎo)率分別為172 mPa?s和9.8 × 10?4S/cm。
1.1.4 吡咯類和哌啶類
吡咯烷類和哌啶類離子液體可以看作是環(huán)狀的季銨鹽類離子液體,前者為五元環(huán),后者為六元環(huán)。兩者與季銨鹽類離子液體類似,都具有優(yōu)異的電化學(xué)穩(wěn)定性,另外環(huán)狀結(jié)構(gòu)更接近于平面,使得兩種離子液體的黏度相對(duì)較低,離子電導(dǎo)率較高,在高溫下更穩(wěn)定[21]。由N-甲基-N-丙基吡咯烷鎓雙三氟甲磺酰亞胺鹽(Pyr13-TFSI)和雙三氟甲磺酰亞胺鋰(LiTFSI)組成的電解液熱分解溫度接近400℃,氧化電位達(dá)到5.3 V(vs. Li/Li+),在高溫下具有良好的性能[22-24],75℃時(shí),Li||LFP電池在1 C和2 C的恒電流條件下分別具有150.9 mA?h/g和140.9 mA?h/g的放電容量。
以陰離子結(jié)構(gòu)不同來(lái)劃分,離子液體可分為鹵化鹽類,如Cl?、Br?、I?等;非鹵化鹽類,如PF6?、BF4?、TFSI?、FSI?等[25-26]。而作為電解質(zhì)常用的陰離子主要為非鹵化鹽類,包括BF4?[27-28]、FSI?[29-30]、TFSI?[31]和PF6?[32]。其中含有BF4?和PF6?的離子液體在空氣和水氛圍下相對(duì)穩(wěn)定,但與路易斯酸反應(yīng)強(qiáng)烈。而FSI?和TFSI?具有以下特點(diǎn):首先,這兩種離子的電荷分布高度非定域,減弱了離子液體中陰、陽(yáng)離子之間的相互作用;其次,陰離子兩端的-SO2CF3基團(tuán)可以旋轉(zhuǎn),使得結(jié)構(gòu)具有一定的靈活性;最后,它們都具有較小的離子半徑(TFSI?為0.379 nm,F(xiàn)SI?為0.264 nm)[8]。這些特點(diǎn)可以降低離子液體的黏度,在鋰離子電池中促進(jìn)鋰離子的轉(zhuǎn)移,提高離子電導(dǎo)率,因此FSI?和TFSI?是離子液體中最常用的兩種陰離子。
聚離子液體[poly(ionic liquid)s, PIL]是一類重復(fù)單元中包含離子液體單體的聚合物[33]。PIL可以由離子液體單體直接聚合或由離子液體和其他單體混合進(jìn)行嵌段聚合來(lái)制備,也可使用離子液體對(duì)已有聚合物進(jìn)行改性/修飾得到PIL[34]。根據(jù)主鏈上離子所帶電荷不同,可分為聚陰離子液體、聚陽(yáng)離子液體和聚兩性離子液體(圖2)。與離子液體相比,聚離子液體繼承了離子液體優(yōu)異的熱穩(wěn)定性及電化學(xué)穩(wěn)定性和不易燃等優(yōu)點(diǎn),而且具有更高的可加工性、安全性和機(jī)械性能,同時(shí)無(wú)漏液風(fēng)險(xiǎn),是開發(fā)新一代聚合物電解質(zhì)的優(yōu)秀原材料[35]。
圖2 聚離子液體的常見結(jié)構(gòu)類型[33]
鋰離子電池的電解液通常由碳酸酯類有機(jī)溶劑[如碳酸乙烯酯(ethylene carbonate, EC)、碳酸丙烯酯(propylene carbonate, PC)、碳酸二甲酯(dimethyl carbonate, DMC)或碳酸二乙酯(diethyl carbonate, DEC)等]和鋰鹽組成,這些有機(jī)溶劑具有高揮發(fā)性和易燃性,是導(dǎo)致電池安全問題的主要原因。離子液體具有阻燃性和良好的熱穩(wěn)定性,將其作為電解質(zhì)的組分,可以提高電池的安全性[9]。另外,功能化的離子液體可以在石墨或鋰金屬負(fù)極形成固體電解質(zhì)界面(solid electrolyte interface, SEI)膜,抑制鋰枝晶生長(zhǎng),從而提高電池使用壽命和安全性[36-39]。
離子液體可以直接作為電解液中的溶劑,然而此類電解液的離子電導(dǎo)率受黏度影響很大,而電解液的黏度與離子液體結(jié)構(gòu)、溫度和鋰鹽濃度有很大關(guān)系。
SANO等[40]使用N-甲基-N-丁基吡咯烷雙三氟甲磺酰亞胺鹽(C4mpyr-TFSI)作為電解液溶劑,比較所配電解液離子電導(dǎo)率與黏度和溫度的關(guān)系(表1),可以看出隨著溫度升高,電解液的黏度降低,離子電導(dǎo)率增大,并且發(fā)現(xiàn)C4mpyr-TFSI能夠有效抑制鋰枝晶在鋰金屬負(fù)極生成。
對(duì)離子液體結(jié)構(gòu)進(jìn)行優(yōu)化設(shè)計(jì)可提高純離子液體電解質(zhì)的離子電導(dǎo)率,HOSSEINI-BAB-ANARI等[41]設(shè)計(jì)合成了1-甲基吡啶鎓2,6-二羧酸鋰(Li-MM26py)(圖3),其溶解在N-甲基-N-丁基吡咯烷鎓雙三氟甲磺酰亞胺鹽(Pyr14-TFSI)中得到混合陰離子電解液,離子電導(dǎo)率在室溫下可以達(dá)到3.2 × 10?3S/cm。
表1 質(zhì)量比為10∶1的(C4mpyr-TFSI)∶LiTFSI電解質(zhì)的電導(dǎo)率與溫度和黏度關(guān)系[40]
圖3 Li-MM26py的合成路線[41]
鋰鹽濃度的增加會(huì)增加電解質(zhì)體系中鋰離子的數(shù)量,但高鋰鹽濃度會(huì)增大離子液體的黏度,降低離子電導(dǎo)率。SáNCHEZ-RAMíREZ等[42]研究了四種季膦類離子液體(圖4),在25℃下,向四種離子液體中分別加入1 mol/L LiTFSI后,四種離子液體的黏度全部增大,離子電導(dǎo)率全部減小。因此,在純離子液體基電解質(zhì)中,應(yīng)在鋰鹽濃度和黏度之間尋求最佳配比,以實(shí)現(xiàn)最優(yōu)的電化學(xué)性能。
圖4 四種季膦類離子液體化學(xué)結(jié)構(gòu)[42]
如前所述,離子液體通常黏度較大,離子電導(dǎo)率較低,其作為純電解質(zhì)材料在鋰電池中應(yīng)用有一定的局限性。因此,眾多研究人員通過(guò)將離子液體和有機(jī)溶劑混合,降低黏度,提高離子電導(dǎo)率。這些引入離子液體的有機(jī)電解液還能提高電池的容量保持率,改善電池的電化學(xué)性能。
陳真等[43]使用乙二醇二甲醚(ethylene glycol dimethyl ether, DME)作為1-乙基-3-甲基咪唑雙三氟甲磺酰亞胺鹽(EMI-TFSI)的共溶劑配制電解液。加入DME后,EMI-TFSI的黏度大幅下降,離子電導(dǎo)率從5.93 × 10?3S/cm提高到了1.42 × 10?2S/cm。ZHANG等[44]合成了一種新型季銨類兩性離子液體TL-TFSI,有機(jī)離子結(jié)構(gòu)上同時(shí)含有季銨陽(yáng)離子和磺酸陰離子,不含鋰鹽的TL-TFSI在常溫下離子電導(dǎo)率為3.7 × 10?3S/cm,將其加入1.9 mol/L LiTFSI/DOL + DME(體積比為1∶1),得到的電解液不易燃(圖5),常溫下離子電導(dǎo)率提高到4.1 × 10?3S/cm。TL-TFSI的合成路線如圖6a所示。
圖5 脫脂棉浸入T70D30(a)和T0D100(b)電解液后的燃燒試驗(yàn)[44]
MA等[45]以Pyr13-TFSI、環(huán)丁砜(tetramethylene sulfone, SL)和碳酸甲乙酯(ethyl methyl carbonate, EMC)作為混合溶劑,二氟草酸硼酸鋰(lithium Difluoro(oxalato)borate, LiDFOB)為鋰鹽組成電解液,在常溫、0.5 C恒電流條件下100次循環(huán)后,Li||NCM811電池的容量保持率為97.6%。YOON等[46]利用吩噻嗪(phenothiazine, PTZ)合成了一種季銨鹽類的離子液體PTZ-IL(圖6b),與三甘醇二甲醚(triethylene glycol dimethyl ether, TEGDME)和LiTFSI組成電解液。季銨結(jié)構(gòu)的引入能夠有效阻止PTZ與鋰金屬之間的反應(yīng),在Li||Li對(duì)稱電池中促進(jìn)鋰穩(wěn)定地剝離/電鍍;另外,與使用原始PTZ電解液相比,使用PTZ-IL電解液的鋰空氣電池顯示出更高的放電容量,達(dá)到2 500 mA?h/g,循環(huán)壽命延長(zhǎng)了2倍。
SHOMURA等[47]發(fā)現(xiàn)將一系列吡啶類離子液體加入1 mol/L LiPF6/EC + DEC + 2,2-二氟碳酸二乙酯(2,2-difluoroethyl ethyl carbonate, FDEC)(體積比為28.5∶66.5∶5)電解液中,可以在鋰離子電池正極表面形成穩(wěn)定的SEI膜,提高鋰離子電池的循環(huán)容量。LARHRIB等[48]通過(guò)向1 mol/L LiPF6/EC + EMC(質(zhì)量比為1∶1)電解液中添加質(zhì)量分?jǐn)?shù)為30%的甲基三乙基膦雙三氟甲烷磺酰亞胺鹽(Bu3MeP-TFSI),得到的電解液不易燃,而且在60℃下,Bu3MeP-TFSI可以顯著提高Li||NCA電池正極的容量(230 mA?h/g)和庫(kù)侖效率(>99%)。
圖6 離子液體的合成路線:兩性離子液體TLTFSI(a)[44]、PTZ-IL(b)[46]、PP+1,CNFSI(c)[49];(d)膽堿型離子液體SN1-IL、AN1-IL、CEN1-IL[50];(e)DTMA-TFSI[51]
ZHANG等[49]合成了一種新型離子液體N-丁腈-N-甲基哌啶鎓雙氟磺酰亞胺鹽(PP+1,CN-FSI)(圖6c),將其加入1 mol/L LiPF6/EC + DMC(質(zhì)量比為1∶1)電解液中。在Li||LNMO電池中,與使用原始電解液的電池相比,添加質(zhì)量分?jǐn)?shù)為15% PP+1,CN-FSI的電池在0.2 C恒電流條件下50次循環(huán)后的容量保持率從82.8%提高到96.8%,并且發(fā)現(xiàn)PP+1,CNFSI能夠抑制電池過(guò)充電現(xiàn)象。
本課題組[50]使用三甲基硅基(SN1)、烯丙基(AN1)和氰乙基(CEN1)取代膽堿中的羥基合成了三種膽堿型離子液體(圖6d)。對(duì)于純的三種離子液體,AN1-IL具有最高的離子電導(dǎo)率,常溫下為4.29 × 10?3S/cm。配制0.6 mol/L LiPF6+ 0.4 mol/L LiODFB/SN1-IL + DMC(體積比為1∶1)電解液,在石墨||LiCoO2電池中顯示出優(yōu)異的循環(huán)性能,在4.4 V的高電壓下90次循環(huán)后,仍具有152 mA?h/g的容量。
另外,本課題組[51]設(shè)計(jì)合成了一種離子塑晶N,N,N,-二乙基甲基-N-[(三甲基硅基)甲基]雙三氟甲磺酰亞胺鹽(DTMA-TFSI)(圖6e),DTMA-TFSI的熔點(diǎn)為54℃,常溫下為固體,將其和PC混合,以LiODFB為鋰鹽,得到了一種固態(tài)的離子塑晶電解質(zhì)。隨著鋰鹽含量增加,DTMA-TFSI電解質(zhì)的熔點(diǎn)逐漸降低,當(dāng)摻雜質(zhì)量分?jǐn)?shù)為30%的LiODFB時(shí)熔點(diǎn)降至43℃。通過(guò)優(yōu)化各組分比例,常溫下離子電導(dǎo)率最高為1 × 10?4S/cm。
離子液體可以作為增塑劑與聚合物[52-54]或無(wú)機(jī)材料[55-58]復(fù)合制備準(zhǔn)固態(tài)電解質(zhì),此類電解質(zhì)不僅具有離子液體的高安全性,而且離子液體可以與其他組分共同形成特殊的離子通道,有助于鋰離子的傳導(dǎo),通過(guò)各組分協(xié)同作用,電解質(zhì)能夠表現(xiàn)出優(yōu)異的綜合性能。
MEGHNANI等[59]將1-丁基-3-甲基咪唑雙三氟甲磺酰亞胺鹽(C4MMIm-TFSI)混合PEO制備電解質(zhì),C4MMIm-TFSI的加入能夠明顯減少PEO中的結(jié)晶區(qū)(圖7)。DING等[60]將氫化硼納米片、PEO、EMIM-TFSI和LiTFSI混合,得到電解質(zhì)。在不加離子液體時(shí),電解質(zhì)的離子電導(dǎo)率很低,不能使電池正常工作。優(yōu)化各組分比例,常溫下離子電導(dǎo)率最高為3.1 × 10–3S/cm。
SINGH等[61]利用Pyr13-FSI與聚偏二氟乙烯-六氟丙烯(PVDF-HFP)混合得到電解質(zhì),30℃時(shí),離子電導(dǎo)率可達(dá)1.6 × 10–3S/cm。LIN等[62]利用PVDF、N-甲氧基乙基-N-甲基吡咯烷鎓雙三氟甲磺酰亞胺鹽[Pyr1(2O1)-TFSI]和陶瓷電解質(zhì)磷酸鍺鋁鋰[Li1.5Al0.5Ge1.5(PO4)3, LAGP]混合,得到的電解質(zhì)在鋰金屬電池中能夠顯著抑制鋰枝晶的生成。PAN等[63]使用N-甲基-N-丙基哌啶雙三氟甲磺酰亞胺鹽(PP13-TFSI)、PVDF-HFP、LiTFSI和TiO2, MgO, SiO2, ZrO2, CeO2, NiO, Bi2O3, Al2O3等氧化物制備了一系列復(fù)合電解質(zhì),發(fā)現(xiàn)添加質(zhì)量分?jǐn)?shù)為5%的TiO2不僅可提高電解質(zhì)的離子電導(dǎo)率(1.51 × 10–3S/cm,30℃),還可改善電解質(zhì)的機(jī)械性能。BARBOSA等[64]以斜方沸石(clinoptilolite, CPT)與PVDF-HFP和離子液體1-丁基-3-甲基咪唑硫氰酸鹽(BMIM-SCN)組成一種不含鋰鹽的三元復(fù)合電解質(zhì),室溫下離子電導(dǎo)率達(dá)到1.9 × 10–4S/cm。
圖7 初始PEO(a)和PEO + 20%LiFSI + 20%IL(b)的SEM圖像[59]
DING等[65]通過(guò)水熱反應(yīng)得到一種Na-X沸石,鋰化后得到Li-X沸石,將Li-X沸石與EMIM-TFSI和LiTFSI混合,壓片得到固態(tài)電解質(zhì),其30℃時(shí)離子電導(dǎo)率最高為1.2 × 10?4S/cm。以此電解質(zhì)組裝的Li||LFP電池在60℃、0.5 C恒電流條件下,850次循環(huán)后容量保持率為96%。PAOLELLA等[66]利用陶瓷電解質(zhì)LAGP和Pyr13-TFSI與LiTFSI組成電解質(zhì),LAGP和Pyr13-TFSI之間能夠發(fā)生離子交換反應(yīng),形成LiTFSI(圖8),有助于提高離子電導(dǎo)率,優(yōu)化后電解質(zhì)常溫下的離子電導(dǎo)率最高為1.5 × 10–4S/cm。
圖8 LAGP與Pyr13-TFSI之間的離子交換[66]
研究人員發(fā)現(xiàn)MOF中的金屬原子與TFSI陰離子之間具有強(qiáng)相互作用,有助于離子液體和LiTFSI的解離,因此,將離子液體封裝在MOF材料中可以獲得較高的離子電導(dǎo)率。ZETTL等[67]報(bào)道了一種MIL-121 MOF材料,向其中加入EMIM-TFSI和LiTFSI,離子電導(dǎo)率最高可以達(dá)到5 × 10?4S/cm。
聚離子液體失去了離子液體的流動(dòng)性,進(jìn)一步克服了電解液漏液的風(fēng)險(xiǎn)。相對(duì)于傳統(tǒng)的聚合物電解質(zhì)基體(PEO、PVDF、PAN等),聚離子液體電解質(zhì)一般具有更高的離子電導(dǎo)率和良好的電化學(xué)穩(wěn)定性。同時(shí)這類電解質(zhì)一般具有良好的熱穩(wěn)定性和阻燃性,熱分解溫度通常在300℃以上,增強(qiáng)了電池的安全性。
聚離子液體和鋰鹽復(fù)合,不添加溶劑時(shí),得到聚離子液體電解質(zhì)。
ZHANG等[68]將1-乙烯基-3-丁基咪唑雙三氟甲磺酰亞胺鹽(VBIm-TFSI)和PEGDA原位聚合,加入LiTFSI,得到一種固態(tài)電解質(zhì)P(IL-PEGDA)(圖9),其熱分解溫度為325℃。在室溫和0.2 C恒電流條件下,P(IL-PEGDA)在Li||LFP電池中能夠有效抑制鋰枝晶的生長(zhǎng),并且具有140 mA?h/g的可逆比容量和接近100%的庫(kù)倫效率。通過(guò)優(yōu)化各組分的比例,30℃時(shí),P(IL-PEGDA)的離子電導(dǎo)率最高為1.4 × 10–4S/cm。
圖9 P(IL-PEGDA)的合成路線[68]
LIANG等[69]合成一種新型離子液體1-乙烯基-3-環(huán)氧丙基咪唑雙三氟甲基磺酰亞胺鹽(VEMI-TFSI),并將其接枝到聚乙烯亞胺(polyethylenimine, PEI)的胺基上,再用聚乙二醇二丙烯酸酯(PEGDA)作為交聯(lián)劑,并加入LiTFSI,得到固態(tài)電解質(zhì)PIL-PEI(圖10)。與商用隔膜Celgard 2400相比,PIL-PEI的熱分解溫度為360℃,并且具有阻燃性。優(yōu)化后PIL-PEI室溫下的離子電導(dǎo)率最高為1.03 × 10–3S/cm。
圖10 PIL-PEI的合成路線[69]
由于PIL和離子液體之間具有較強(qiáng)的化學(xué)親和力,離子液體可以被很好地封裝在PIL中,因此常使用離子液體和PIL復(fù)合制備準(zhǔn)固態(tài)電解質(zhì)[70-72]。
SHA等[73]將1-乙氧基甲基-3-乙烯基咪唑雙三氟甲磺酰亞胺鹽(Vmim1O2-TFSI)、PVDF-HFP、PEGDA和LiTFSI原位聚合,以EMIM-TFSI作為增塑劑,得到一種半互穿結(jié)構(gòu)的電解質(zhì)。該電解質(zhì)膜具有良好的機(jī)械性能,25℃下離子電導(dǎo)率最高為1.06 × 10–3S/cm。
值得一提的是,離子塑晶也可作為固態(tài)增塑劑,與聚離子液體復(fù)合制備電解質(zhì)。YANG等[74]合成了一種新型有機(jī)離子塑晶三乙基甲基銨雙氟磺酰亞胺鹽(N1222-FSI),并將其引入聚(二烯丙基二甲基銨)雙三氟甲磺酰亞胺[P(DADMA-TFSI)]中,制備了一系列N1222-FSI-PIL-LiTFSI電解質(zhì),其室溫下離子電導(dǎo)率最高為2?×?10?4S/cm。
某些無(wú)機(jī)物與聚離子液體材料復(fù)合,通過(guò)組分協(xié)同作用可提高材料的離子電導(dǎo)率和機(jī)械性能,同時(shí)電池的容量保持率和使用壽命也可以得到改善。
TSENG等[75]通過(guò)原位聚合將TiO2納米粒子混入離子液體聚合物基體中,其中添加質(zhì)量分?jǐn)?shù)為0.5% 的TiO2納米粒子的樣品在室溫下的離子電導(dǎo)率最高,為1.97 × 10?4S/cm,高于不含TiO2的樣品(1.51 × 10?4S/cm)。以此為電解質(zhì)組裝的Li||LFP電池在25℃、0.2 C條件下的比放電容量為149 mA?h/g,140次循環(huán)后,容量保持率為90%。
多面體低聚倍半硅氧烷(polyhedral oligomeric silsesquioxane, POSS)是一類有機(jī)/無(wú)機(jī)納米雜化分子[76],可以和聚離子液體混合制備復(fù)合電解質(zhì)。LI等[77]在POSS-聚乙二醇基電解質(zhì)體系中摻入P(DADMA-TFSI),得到一種半互穿的復(fù)合電解質(zhì)(PIL-IPN)(圖11),其常溫下的離子電導(dǎo)率最高為1.86 × 10–5S/cm。以PIL-IPN組裝的Li|| LFP電池在90℃、0.5 C恒流充放電條件下,電池的放電容量約為150 mA?h/g,50次充放電循環(huán)后,庫(kù)倫效率超過(guò)99%。YANG等[78]使用一種簡(jiǎn)單的多加成法,由共價(jià)鍵連接POSS、2,2-二(1-亞甲基-3-丁基-咪唑鎓)-1,3-丙二醇(ILs)、聚乙二醇(polyethylene glycol, PEG)和脲基嘧啶酮(UPy),制備了一種新型的復(fù)合電解質(zhì)(PIEU),其室溫下離子電導(dǎo)率最高為3.44?×?10?5S/cm。PIEU存在多個(gè)具有解離和復(fù)合能力的動(dòng)態(tài)氫鍵,使得電解質(zhì)具有一定的自修復(fù)能力,同時(shí),咪唑陽(yáng)離子與TFSI–之間的離子相互作用能協(xié)助愈合。
圖11 POSS-PEG-PIL的合成路線[77]
綜述了近年來(lái)不同種類(聚)離子液體電解質(zhì)的設(shè)計(jì)合成及其在鋰離子電池中的最新應(yīng)用進(jìn)展,歸納總結(jié)了(聚)離子液體電解質(zhì)的優(yōu)勢(shì):在室溫下實(shí)現(xiàn)高離子電導(dǎo)率對(duì)于離子液體電解質(zhì)應(yīng)用非常重要,離子液體可以通過(guò)與有機(jī)電解液復(fù)合降低黏度,從而提高離子電導(dǎo)率;離子液體也可與無(wú)機(jī)或高分子材料復(fù)合制備高離子電導(dǎo)率的準(zhǔn)固態(tài)電解質(zhì),并改善固態(tài)電解質(zhì)的加工性能和電化學(xué)性能;功能化的離子液體具有阻燃性,并且能在石墨或鋰金屬負(fù)極表面形成特殊組分的SEI膜,抑制鋰枝晶的生長(zhǎng),提高電池的容量保持率和安全性;聚離子液體繼承了離子液體良好的熱穩(wěn)定性和阻燃性的優(yōu)點(diǎn),還兼具了聚合物固態(tài)電解質(zhì)在電池制作時(shí)不漏液和易于加工等優(yōu)勢(shì),是一種具有應(yīng)用前景的固態(tài)電解質(zhì)材料。
與普通有機(jī)電解液相比,離子液體電解質(zhì)的最大的優(yōu)勢(shì)是安全性,在鋰離子電池中的實(shí)際應(yīng)用有光明前景,但仍面臨著一些困難和挑戰(zhàn):(1)在不同類型的離子液體中,咪唑類離子液體的黏度最小,離子電導(dǎo)率最高,最接近商用電解液,但是其電化學(xué)窗口較窄,會(huì)導(dǎo)致電池壽命縮短,增加C-2位取代基可以改善其電化學(xué)穩(wěn)定性,但會(huì)導(dǎo)致離子電導(dǎo)率下降,因此需要在兩者之間尋求最優(yōu)解。(2)在離子液體的合成過(guò)程中,一般先用鹵代化合物與仲胺、咪唑等發(fā)生親核取代,得到以鹵素為陰離子的離子液體,然后進(jìn)行離子交換。因此最終得到的離子液體會(huì)混有少量鹵素離子,易腐蝕電極,造成短路??梢栽诤铣蓵r(shí)選擇不含鹵素的化合物,如三氟甲磺酸酯等,獲得高純度無(wú)鹵素的離子液體材料。(3)相對(duì)于碳酸酯類電解液,離子液體的生產(chǎn)成本很高,制約了離子液體的實(shí)際應(yīng)用,可以通過(guò)擴(kuò)大生產(chǎn)規(guī)模、探索新的合成方法來(lái)降低成本。
隨著人們對(duì)儲(chǔ)能器件在安全性、能量密度和使用壽命等方面的要求越來(lái)越高,今后研究人員需要不斷深入對(duì)離子液體與聚離子液體的性質(zhì)理論研究,設(shè)計(jì)合成新型離子液體材料,以期獲得經(jīng)濟(jì)與實(shí)用兼具的離子液體電解質(zhì)材料。
[1] GOODENOUGH J B. Energy storage materials: a perspective[J]. Energy storage materials, 2015, 1: 158-161. DOI: 10.1016/j.ensm.2015.07.001.
[2] LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature nanotechnology, 2017, 12(3): 194-206. DOI: 10.1038/nnano.2017.16.
[3] GOLOZAR M, PAOLELLA A, DEMERS H, et al. In situ observation of solid electrolyte interphase evolution in a lithium metal battery[J]. Communications chemistry, 2019, 2(1): 131. DOI: 10.1038/s42004-019-0234-0.
[4] QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives[J]. Chemical society reviews, 2011, 40(5): 2525-2540. DOI: 10.1039/c0cs00081g.
[5] GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond-a 2030 vision[J]. Nature communications, 2020, 11(1): 6279. DOI: 10.1038/s41467-020-19991-4.
[6] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature chemistry, 2015, 7(1): 19-29. DOI: 10.1038/nchem. 2085.
[7] MA Y, HU J P, WANG Z T, et al. Poly(vinylidene fluoride)/SiO2composite membrane separators for high-performance lithium-ion batteries to provide battery capacity with improved separator properties[J]. Journal of power sources, 2020, 451: 227759. DOI: 10.1016/j. jpowsour.2020.227759.
[8] LIU K X, WANG Z Y, SHI L Y, et al. Ionic liquids for high performance lithium metal batteries[J]. Journal of energy chemistry, 2021, 59: 320-333. DOI: 10.1016/ j.jechem.2020.11.017.
[9] 張穎. 離子液體在鋰金屬電池中的應(yīng)用研究[D]. 大連: 大連理工大學(xué), 2021. DOI:10.26991/d.cnki.gdllu. 2021.002264.
[10] AZOV V A, EGOROVA K S, SEITKALIEVA M M, et al. “Solvent-in-salt” systems for design of new materials in chemistry, biology and energy research[J]. Chemical society reviews, 2018, 47(4): 1250-1284. DOI: 10.1039/ C7CS00547D.
[11] HURLEY F H. Electrodeposition of aluminum: 2446331[P]. 1948-08-03.
[12] WIER T P JR. Electrodeposition of aluminum: 2446350[P]. 1948-08-03.
[13] WIER T P JR, HURLEY F H. Electrodeposition of aluminum: 2446349[P]. 1948-08-03.
[14] DILEO R A, MARSCHILOK A C, TAKEUCHI K J, et al. Battery electrolytes based on unsaturated ring ionic liquids: conductivity and electrochemical stability[J]. Journal of the electrochemical society, 2013, 160(9): A1399-A1405. DOI: 10.1149/2.045309jes.
[15] GUPTA H, SHALU, BALO L, et al. Effect of temperature on electrochemical performance of ionic liquid based polymer electrolyte with Li/LiFePO4electrodes[J]. Solid state ionics, 2017, 309: 192-199. DOI: 10.1016/j.ssi.2017.07.019.
[16] WILKES J S, ZAWOROTKO M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Journal of the chemical society, chemical communications, 1992(13): 965-967. DOI: 10.1039/c39920000965.
[17] SCHMITZ P, KOLEK M, PYSCHIK M, et al. Modified imidazolium-based ionic liquids with improved chemical stability against lithium metal[J]. ChemistrySelect, 2017, 2(21): 6052-6056. DOI: 10.1002/slct.201701599.
[18] SUN J, FORSYTH M, MACFARLANE D R. Room-temperature molten salts based on the quaternary ammonium ion[J]. The journal of physical chemistry B, 1998, 102(44): 8858-8864. DOI: 10.1021/jp981159p.
[19] RAUBER D, HOFMANN A, PHILIPPI F, et al. Structure-property relation of trimethyl ammonium ionic liquids for battery applications[J]. Applied sciences, 2021, 11(12): 5679. DOI: 10.3390/app11125679.
[20] TSUNASHIMA K, SUGIYA M. Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes[J]. Electrochemistry communications, 2007, 9(9): 2353-2358. DOI: 10.1016/j. elecom.2007.07.003.
[21] 潘笑容, 連芳, 關(guān)紅艷, 等. 離子液體在鋰離子電池中的應(yīng)用研究進(jìn)展[J]. 化學(xué)通報(bào), 2014, 77(8): 752-759. DOI: 10.14159/j.cnki.0441-3776.2014.08.018.
[22] YANG B B, LI C H, ZHOU J H, et al. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries[J]. Electrochimica acta, 2014, 148: 39-45. DOI: 10.1016/j. electacta.2014.10.001.
[23] THEIVAPRAKASAM S, MACFARLANE D R, MITRA S. Electrochemical studies of N-Methyl N-Propyl Pyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid mixtures with conventional electrolytes in LiFePO4/Li cells[J]. Electrochimica acta, 2015, 180: 737-745. DOI: 10.1016/j.electacta.2015.08.137.
[24] PLYLAHAN N, KERNER M, LIM D H, et al. Ionic liquid and hybrid ionic liquid/organic electrolytes for high temperature lithium-ion battery application[J]. Electrochimica acta, 2016, 216: 24-34. DOI: 10.1016/j. electacta.2016.08.025.
[25] LI M T, YANG L, FANG S H, et al. Polymerized ionic liquids with guanidinium cations as host for gel polymer electrolytes in lithium metal batteries[J]. Polymer international, 2012, 61(2): 259-264. DOI: 10.1002/pi.3181.
[26] YIN K, ZHANG Z X, YANG L, et al. An imidazolium-based polymerized ionic liquid via novel synthetic strategy as polymer electrolytes for lithium ion batteries[J]. Journal of power sources, 2014, 258: 150-154. DOI: 10.1016/j.jpowsour.2014.02.057.
[27] GLENN A G, JONES P B. Thermal stability of ionic liquid BMI(BF4) in the presence of nucleophiles[J]. Tetrahedron letters, 2004, 45(37): 6967-6969. DOI: 10.1016/j.tetlet.2004.07.050.
[28] YADAV J S, REDDY B V S, BASAK A K, et al. [Bmim]PF6and BF4ionic liquids as novel and recyclable reaction media for aromatic amination[J]. Tetrahedron letters, 2003, 44(10): 2217-2220. DOI: 10.1016/S0040- 4039(03)00037-6.
[29] MATSUMOTO H, SAKAEBE H, TATSUMI K, et al. Fast cycling of Li/LiCoO2cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]?[J]. Journal of power sources, 2006, 160(2): 1308-1313. DOI: 10.1016/j.jpowsour.2006.02.018.
[30] BEST A S, BHATT A I, HOLLENKAMP A F. Ionic liquids with the Bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology[J]. Journal of the electrochemical society, 2010, 157(8): A903-A911. DOI: 10.1149/1.3429886.
[31] REITER J, NADHERNA M.-Allyl--methylpiperidinium bis(trifluoromethanesulfonyl)imide—A film forming ionic liquid for graphite anode of Li-ion batteries[J]. Electrochimica acta, 2012, 71: 22-26. DOI: 10.1016/j. electacta.2012.03.088.
[32] NGO H L, LECOMPTE K, HARGENS L, et al. Thermal properties of imidazolium ionic liquids[J]. Thermochimica acta, 2000, 357-358: 97-102. DOI: 10.1016/S0040- 6031(0)00373-7.
[33] 錢文靜, 袁超, 郭江娜, 等. 聚離子液體功能材料研究進(jìn)展[J]. 化學(xué)學(xué)報(bào), 2015, 73(4): 310-315. DOI: 10.6023/A14120873.
[34] 郭江娜, 周瑩杰, 李樂耕, 等. 聚離子液體功能材料的合成及應(yīng)用[J]. 中國(guó)科學(xué): 化學(xué), 2021, 51(10): 1391- 1405. DOI: 10.1360/SSC-2021-0096.
[35] 張婷婷. 離子液體基聚合物電解質(zhì)的制備及其性能研究[D]. 南京: 南京郵電大學(xué), 2021. DOI:10.27251/d. cnki.gnjdc.2021.000075.
[36] PERIYAPPERUMA K, ARCA E, HARVEY S, et al. Towards high rate Li metal anodes: enhanced performance at high current density in a superconcentrated ionic liquid[J]. Journal of materials chemistry A, 2020, 8(7): 3574-3579. DOI: 10.1039/C9TA12004A.
[37] YOO D J, KIM K J, CHOI J W. The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes[J]. Advanced energy materials, 2018, 8(11): 1702744. DOI: 10.1002/aenm.201702744.
[38] WANG Z Q, TAN R, WANG H B, et al. A metal–organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery[J]. Advanced materials, 2018, 30(2): 1704436. DOI: 10.1002/adma.201704436.
[39] FURUYA R, HARA T, FUKUNAGA T, et al. Deposition and dissolution of lithium in 1-Methyl-1-methoxyethylpyrrolidinium Bis(fluorosulfonyl)amide ionic liquid electrolyte with different compositions[J]. Journal of the electrochemical society, 2021, 168(10): 100516. DOI: 10.1149/1945- 7111/ac2a7e.
[40] SANO H, KITTA M, SHIKANO M, et al. Effect of temperature on Li electrodeposition behavior in room-temperature ionic liquids comprising quaternary ammonium cation[J]. Journal of the electrochemical society, 2019, 166(13): A2973-A2979. DOI: 10.1149/2. 1051913jes.
[41] HOSSEINI-BAB-ANARI E, NAVARRO-SUáREZ A M, MOTH-POULSEN K, et al. Ionic liquid based battery electrolytes using lithium and sodium pseudo-delocalized pyridinium anion salts[J]. Physical chemistry chemical physics, 2019, 21(33): 18393-18399. DOI: 10.1039/ c9cp03445e.
[42] SáNCHEZ‐RAMíREZ N, MONJE I E, MARTINS V L, et al. Four phosphonium‐based ionic liquids. synthesis, characterization and electrochemical performance as electrolytes for silicon anodes[J]. ChemistrySelect, 2022, 7(4):e202104430. DOI: 10.1002/slct.202104430.
[43] 陳真, 盧海, 符繼川, 等. 醚溶劑搭配離子液體對(duì)鋰硫電池性能的影響[J]. 電池, 2019, 49(2): 101-104. DOI: 10.19535/j.1001-1579.2019.02.004.
[44] ZHANG Z J, ZHANG P, LIU Z J, et al. A novel zwitterionic ionic liquid-based electrolyte for more efficient and safer lithium-sulfur batteries[J]. ACS applied materials & interfaces, 2020, 12(10): 11635-11642. DOI: 10.1021/acsami.9b21655.
[45] MA C C, WANG D, YANG Y, et al. Enhanced electrochemical performance of LiNi0.8Co0.1Mn0.1O2cathode with an ionic liquid-based electrolyte[J]. Journal of the electrochemical society, 2019, 166(14): A3441-A3447. DOI: 10.1149/2.1271914jes.
[46] YOON Y, SHIN S, SHIN M W. Ammonium ionic liquid-functionalized phenothiazine as a new redox mediator for high chemical stability on the anode surface in lithium-air batteries[J]. ACS applied materials & interfaces, 2022, 14(3): 4220-4229. DOI: 10.1021/acsami.1c22261.
[47] SHOMURA R, SAKAKIBARA K, MARUKANE S, et al. Novel use of a pyridinium salt to form a Solid Electrolyte Interphase (SEI) on high voltage lithium-excess layered positive active material[J]. Bulletin of the chemical society of Japan, 2021, 94(5): 1594-1601. DOI: 10.1246/bcsj.20200329.
[48] LARHRIB B, NIKIFORIDIS G, ANOUTI M. Safe and efficient phosphonium ionic liquid based electrolyte for high-potential LiMn2O4and LiNi0.8Co0.15Al0.05O2cathodes for Li-ion batteries[J]. Electrochimica acta, 2021, 371: 137841. DOI: 10.1016/j.electacta.2021.137841.
[49] ZHANG W L, MA Q C, LIU X J, et al. Novel piperidinium-based ionic liquid as electrolyte additive for high voltage lithium-ion batteries[J]. RSC advances, 2021, 11(25): 15091-15098. DOI: 10.1039/d1ra01454d.
[50] YONG T Q, ZHANG L Z, WANG J L, et al. Novel choline-based ionic liquids as safe electrolytes for high-voltage lithium-ion batteries[J]. Journal of power sources, 2016, 328: 397-404. DOI: 10.1016/j.jpowsour. 2016.08.044.
[51] ZHAO X Y, WANG J L, LUO H, et al. A novel organosilicon-based ionic plastic crystal as solid-state electrolyte for lithium-ion batteries[J]. Journal of Zhejiang university-science A, 2016, 17(2): 155-162. DOI: 10.1631/jzus.A1500099.
[52] CHEN T, KONG W H, ZHANG Z W, et al. Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries[J]. Nano energy, 2018, 54: 17-25. DOI: 10.1016/j.nanoen.2018.09.059.
[53] LI Y, WONG K W, DOU Q Q, et al. A single-ion conducting and shear-thinning polymer electrolyte based on ionic liquid-decorated PMMA nanoparticles for lithium-metal batteries[J]. Journal of materials chemistry A, 2016, 4(47): 18543-18550. DOI: 10.1039/C6TA09106G.
[54] BOSE P, DEB D, BHATTACHARYA S. Lithium- polymer battery with ionic liquid tethered nanoparticles incorporated P(VDF-HFP) nanocomposite gel polymer electrolyte[J]. Electrochimica acta, 2019, 319: 753-765. DOI: 10.1016/j.electacta.2019.07.013.
[55] SMARSLY B, KAPER H. Liquid inorganic–organic nanocomposites: novel electrolytes and ferrofluids[J]. Angewandte chemie international edition, 2005, 44(25): 3809-3811. DOI: 10.1002/anie.200500690.
[56] MOGANTY S S, JAYAPRAKASH N, NUGENT J L, et al. Ionic-liquid-tethered nanoparticles: hybrid electrolytes[J]. Angewandte chemie international edition, 2010, 49(48): 9158-9161. DOI: 10.1002/anie.201004551.
[57] LU Y Y, MOGANTY S S, SCHAEFER J L, et al. Ionic liquid-nanoparticle hybrid electrolytes[J]. Journal of materials chemistry, 2012, 22(9): 4066-4072. DOI: 10.1039/C2JM15345A.
[58] LI Y, WONG K W, NG K M. Ionic liquid decorated mesoporous silica nanoparticles: a new high-performance hybrid electrolyte for lithium batteries[J]. Chemical communications, 2016, 52(23): 4369-4372. DOI: 10.1039/C6CC01236A.
[59] MEGHNANI D, GUPTA H, SINGH S K, et al. Fabrication and electrochemical characterization of lithium metal battery using IL-based polymer electrolyte and Ni-rich NCA cathode[J]. Ionics, 2020, 26(10): 4835-4851. DOI: 10.1007/s11581-020-03656-9.
[60] DING J W, ZHENG H Y, WANG S W, et al. Hydrogenated borophene nanosheets based multifunctionalquasi-solid-state electrolytes for lithium metal batteries[J]. Journal of colloid and interface science, 2022, 615: 79-86. DOI: 10.1016/j.jcis.2022.01.163.
[61] SINGH S K, DUTTA D, SINGH R K. Enhanced structural and cycling stability of Li2CuO2-coated LiNi0.33Mn0.33Co0.33O2cathode with flexible ionic liquid-based gel polymer electrolyte for lithium polymer batteries[J]. Electrochimica acta, 2020, 343:136122. DOI: 10.1016/j.electacta.2020.136122.
[62] LIN X J, CHU C C, LI Z, et al. A high-performance, solution-processable polymer/ceramic/ionic liquid electrolyte for room temperature solid-state Li metal batteries[J]. Nano Energy, 2021, 89: 106351. DOI: 10.1016/j.nanoen.2021.106351.
[63] PAN X N, HOU Q J, LIU L, et al. Semiconductor TiO2ceramic filler for safety-improved composite ionic liquid gel polymer electrolytes[J]. Ionics, 2021, 27(5): 2045-2051. DOI: 10.1007/s11581-020-03850-9.
[64] BARBOSA J C, CORREIA D M, FERNáNDEZ E M, et al. High-performance room temperature lithium-ion battery solid polymer electrolytes based on Poly(vinylidene fluoride--hexafluoropropylene) combining ionic liquid and zeolite[J]. ACS applied materials & interfaces, 2021, 13(41): 48889-48900. DOI: 10.1021/acsami.1c15209.
[65] DING Z Y, TANG Q M, LIU Y C, et al. Integrate multifunctional ionic sieve lithiated X zeolite-ionic liquid electrolyte for solid-state lithium metal batteries with ultralong lifespan[J]. Chemical engineering journal, 2022, 433:133522. DOI: 10.1016/j.cej.2021.133522.
[66] PAOLELLA A, BERTONI G, ZHU W, et al. Unveiling the cation exchange reaction between the NASICON Li1.5Al0.5Ge1.5(PO4)3solid electrolyte and the pyr13TFSI ionic liquid[J]. Journal of the American chemical society, 2022, 144(8): 3442-3448. DOI: 10.1021/jacs.1c11466.
[67] ZETTL R, HANZU I. The origins of ion conductivity in MOF-ionic liquids hybrid solid electrolytes[J]. Frontiers in energy research, 2021, 9: 714698. DOI: 10.3389/fenrg. 2021.714698.
[68] ZHANG F R, SUN Y Y, WANG Z C, et al. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries[J]. ACS applied materials & interfaces, 2020, 12(21): 23774-23780. DOI: 10.1021/acsami.9b22945.
[69] LIANG L, YUAN W F, CHEN X H, et al. Flexible, nonflammable, highly conductive and high-safety double cross-linked poly(ionic liquid) as quasi-solid electrolyte for high performance lithium-ion batteries[J]. Chemical engineering journal, 2021, 421: 130000. DOI: 10.1016/ j.cej.2021.130000.
[70] SAFA M, CHAMAANI A, CHAWLA N, et al. Polymeric ionic liquid gel electrolyte for room temperature lithium battery applications[J]. Electrochimica acta, 2016, 213: 587-593. DOI: 10.1016/j.electacta.2016.07.118.
[71] ZHOU D, LIU R L, ZHANG J, et al. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries[J]. Nano energy, 2017, 33: 45-54. DOI: 10.1016/j.nanoen. 2017.01.027.
[72] TIAN X L, YANG P, YI Y K, et al. Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries[J]. Journal of power sources, 2020, 450: 227629. DOI: 10.1016/j. jpowsour.2019.227629.
[73] SHA Y F, YU T H, DONG T, et al.network electrolyte based on a functional polymerized ionic liquid with high conductivity toward lithium metal batteries[J]. ACS applied energy materials, 2021, 4(12): 14755-14765. DOI: 10.1021/acsaem.1c03443.
[74] YANG K H, LIAO Z, ZHANG Z X, et al. Ionic plastic crystal-polymeric ionic liquid solid-state electrolytes with high ionic conductivity for lithium ion batteries[J]. Materials letters, 2019, 236: 554-557. DOI: 10.1016/j. matlet.2018.11.003.
[75] TSENG Y-C, RAMDHANI F I, HSIANG S-H, et al. Lithium battery enhanced by the combination ofgenerated poly(ionic liquid) systems and TiO2nanoparticles[J]. Journal of membrane science, 2022, 641: 119891. DOI: 10.1016/j.memsci.2021.119891.
[76] LI G Z, WANG L C, NI H L, et al. Polyhedral Oligomeric Silsesquioxane (POSS) polymers and copolymers: a review[J]. Journal of inorganic and organometallic polymers, 2001, 11(3): 123-154. DOI: 10.1023/A:1015287910502.
[77] LI X W, ZHENG Y W, PAN Q W, et al. Polymerized ionic liquid-containing interpenetrating network solid polymer electrolytes for all-solid-state lithium metal batteries[J]. ACS applied materials & interfaces, 2019, 11(38): 34904-34912. DOI: 10.1021/acsami.9b09985.
[78] YANG G, SONG Y D, DENG L J. Polyaddition enabled functional polymer/inorganic hybrid electrolytes for lithium metal batteries[J]. Journal of materials chemistry A, 2021, 9(11): 6881-6889. DOI: 10.1039/D0TA11730G.
(Poly)Ionic Liquid Electrolytes for Lithium-Ion Batteries
LIU Shu-chang1,2,3,4, LUO Xuan1,2,3,5, ZHANG Ling-zhi1,2,3,4
(1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;2. CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China;3. Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China;4. University of Science and Technology of China, Hefei 230026, China;5. University of Chinese Academy of Sciences, Beijing 100049, China)
Lithium-ion batteries have been widely used in portable electronic devices and electric vehicles. However, the commercial electrolytes used in lithium-ion batteries are flammable due to the low flash point of carbonic ester which often causes safety hazards in practical applications. Ionic liquids hold great potential as alternative safe electrolytes to the volatile organic solvents in the conventional liquid electrolytes for lithium-ion batteries, owing to their unique advantages such as low vapor pressure, excellent chemical stability, and thermal stability. Poly(ionic liquid)s possess both advantages of ionic liquids and solid polymer electrolytes such as no electrolyte leakage and ease of processing in the production of batteries. In this article, the recent progress in the synthesis and the application of ionic liquids and poly(ionic liquid)s as electrolytes for lithium-ion batteries were reviewed. The application challenges and the development directions of these ionic liquid electrolytes were also presented.
lithium-ion battery; highly-safe electrolyte; ionic liquid; poly(ionic liquid)
2095-560X(2022)05-0419-12
TK02;TB33;TB34
A
10.3969/j.issn.2095-560X.2022.05.004
2022-06-15
2022-08-04
王寬誠(chéng)教育基金項(xiàng)目;中科院科技服務(wù)網(wǎng)絡(luò)計(jì)劃(STS)東莞專項(xiàng)項(xiàng)目(20211600200331)
張靈志,E-mail:lzzhang@ms.giec.ac.cn
劉書暢(1997-),男,碩士研究生,主要從事聚合物電解質(zhì)方面的研究。
張靈志(1969-),男,博士,研究員,博士生導(dǎo)師,長(zhǎng)期從事有機(jī)/高分子光電功能材料和納米材料的合成、制備及其在光電和電化學(xué)儲(chǔ)能器件應(yīng)用方面的研究。