• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CHARACTERIZATION OF RESIDUATED LATTICES VIA MULTIPLIERS*

    2022-11-04 09:06:24WeiWANG王偉BinZHAO趙彬
    關(guān)鍵詞:王偉

    Wei WANG (王偉) Bin ZHAO (趙彬)

    School of Mathematics and Statistics,Shaanxi Normal University,Xi’an 710119,China

    E-mail: wangwei135420@snnu.edu.cn;zhaobin@snnu.edu.cn

    Abstract In the paper,we introduce some of multipliers on residuated lattices and investigate the relations among them.First,basing on the properties of multipliers,we show that the set of all multiplicative multipliers on a residuated lattice A forms a residuated lattice which is isomorphic to A.Second,we prove that the set of all total multipliers on A is a Boolean subalgebra of the residuated lattice (which is constituted by all multiplicative multipliers on A) and is isomorphic to the Boolean center of A.Moreover,by partial multipliers,we study the maximal residuated lattices of quotients for residuated lattices.Finally,we focus on principal implicative multipliers on residuated lattices and obtain that the set of principal implicative multipliers on A is isomorphic to the set of all multiplicative multipliers on A under the opposite (dual) order.

    Key words residuated lattice;multiplier;M-multiplier;PI-multiplier;T-multiplier

    1 Introduction

    It is well known that various logical algebras have been proposed as the semantic systems of non-classical logical systems which are formal and useful tools for computer science in forms of dealing with uncertain and fuzzy information.Residuated lattices [32],as the semantics of Hhle’s Monoidal Logic,were introduced by Ward and Dilworth,and are very basic and important logical algebras.Many logical algebras are particular cases of residuated lattices,such as MV -algebras [6],BL-algebras [13],Heyting algebras [5] and MTL-algebras [9],etc.For the least two decades,the study of operator theories on these logical algebras can be divided into two classes.One consists of operators with a logical background,like modal operators[18],monadic [28] and internal states [14];some of those operators can be used to extend logical semantics.The other class consists of operators that stem from analytic theories or pure algebras;these can be used for characterizing the algebraic structure of logical algebras,such as closure operators [30],derivations [15],multipliers [3] and nuclei [12].In summary,various kinds of operators (special mappings) play a very helpful role when it comes to research on logical algebras.

    The concept of multipliers [20,24] first appears in harmonic analysis in connection with the theory of summability for Fourier series,and it has been employed in other areas of mathematics and physics,such as Banach algebras [21,31,33] and locally compact groups,partial differential equations,spectral theory [34] andC*-algebras [1,2],lattice-order algebras and logical algebras[3,8,17,26,29],etc..In the theory of summability for Fourier series,the multipliers can be used to describe those sequences {bn} for whichis always the Fourier series of a periodic integrable function wheneveris such a Fourier series.From [2,21,31],a mappingTon a Banach algebraB(orC*-algebras) into itself is called a multiplier ifT(ab)=(T a)b=a(T b)for alla,b∈B.The multipliers can not only be used to study the representation theory for Banach algebras,but can also characterize order-bounded operators inC*-algebras and give a characterization of the relative commutant of sub-C*-algebras with a unit.Analogously,a multiplier on a semigroup (A,*) [20,29] is a functionffromAintoAsuch thatf(x) *y=x*f(y) for allx,y∈A.As is well known,every commutative idempotent semigroup is a semilattice,so the theory of multipliers be developed quickly on lattices.In [25],Noor gave an equivalent characterization by multipliers for each nearlattice that has a decomposition into a direct summand.[8] and [29] present many particularly fruitful results regarding multipliers on distributive latticesL,and show that the latticeM(L) of multipliers is the maximal extension ofLwhich containsLas a join-dense ideal,in particular,giving a nonstandard construction of the maximal lattices of quotients for a distributive lattice.Following this,multipliers were introduced to many prevalent logical algebras such as MV-algebras [26],BL-algebras [3] and MTL-algebras [27] for the same purpose.Although those logical algebras are still distributive lattices,the algebraic structures of them become relatively complex.Influenced by this fact,the notion of multipliers on such logical algebras has changed,and the definition has become complicated by fours axioms (see Definition 4 of [3] or Definition 3.11 below).Meanwhile,another kind of multiplier (we call it an implicative multiplier) is discussed inBE-algebras [19],d-algebras [7] andBL-algebras [17] etc.,in order to depict algebraic structure.In particular,in[17],Khorami and Saeid discussed the relations between such multipliers and other operators,like closure operators,homomorphisms and derivations,and studied theMV-center ofBLalgebras via implicative multipliers.

    Based on the above,a natural question arises: what are the relations among such different kinds of multipliers on the same logical algebra? In this paper,we show that for every total multiplier on a residuated lattice,there exists a unique implicative multiplier such that two multipliers form a Galois connection (the more detailed information about the relation between these multipliers is shown in Figure 1 (in Section 4)).In addition,the paper is motivated by the following considerations: (1) ForMV-algebras andBL-algebras,etc.,we have observed that,although they are different algebras,they are all particular types of residuated lattice.Hence,it is meaningful to extend the concept of multipliers to the more general fuzzy structures for studying the common properties of such operators.(2) we try to clarify the connection between ideals and multipliers on residuated lattices and use multipliers to give the maximal residuated lattices of quotients for residuated lattices.(3) we want to characterize residuated lattices draw support from multipliers.

    Figure 1 The relation of different types of multipliers on residuated lattice,where the notion “A B” means “A should be B” or “B can be induced by A”,and dom(h)denotes the domain of h.

    Figure 2 Here φ,ψ and Bo are the mappings defined in Theorem 3.4,Theorem 4.6 and Theorem 3.15,respectively.“C D” means that “C should be isomorphic to D”,and“C D” means that “C is a special case of D or assign C to its Boolean center D”.

    This paper is organized as follows: in Section 2,we review some basic definitions and results on residuated lattices.In Section 3,we introduce the notion of M-multipliers and partial multipliers on a residuated latticeAand study the relation of M-multipliers and partial multipliers.Moreover,by the properties of multipliers,the maximal residuated lattices of quotients of residuated lattices are studied.In Section 4,PI-multipliers on residuated lattices are presented,and the relations among M-multipliers,(partial) multipliers and PI-multipliers are investigated.

    2 Preliminaries

    In this section,we recall some fundamental concepts related to the theory of residuated lattices and of lattices in general which shall be needed in the sequel.

    Definition 2.1(see [32]) An algebraic structure (A,∧,∨,⊙,→,0,1) of type (2,2,2,2,0,0)is called a residuated lattice provided that it satisfies the following conditions:

    (1) (A,∧,∨,0,1) is a bounded lattice,

    (2) (A,⊙,1) is a commutative monoid,

    (3)x⊙y≤zif and only ifx≤y→z,for allx,y,z∈A,where ≤is the partial order of its underlying lattice (A,∧,∨,0,1).

    Throughout this paper,byAwe denote the universe of a residuated lattice (A,∧,∨,⊙,→,0,1).For anyx,y∈A,definex*=x→0,x**=(x*)*andx⊕y=x*→y.B(A)={x∈A|x∨x*=1} is the set of all complemented elements of its underlying bounded lattice(A,∨,∧,0,1) and is the universe of a Boolean subalgebra ofA(called the Boolean center ofA).DefiningG(A)={x|x⊙x=x,x∈A},we haveB(A) ?G(A).

    Definition 2.2(see [9,13,23]) LetAbe a residuated lattice.ThenAis called

    (1) a divisible residuated lattice,ifx∧y=x⊙(x→y),?x,y∈A;

    (2) an MTL-algebra,if (x→y) ∨(y→x)=1,?x,y∈A;

    (3) a BL-algebra,ifx∧y=x⊙(x→y) and (x→y) ∨(y→x)=1,?x,y∈A;

    (4) an MV-algebra,if (x→y) →y=(y→x) →x),?x,y∈A.

    Proposition 2.3(see [9,13,16,32]) In any residuated latticeA,the following properties hold:

    (1) 1 →x=x,x→1=1,0*=1,1*=0,

    (2)x≤yif and only ifx→y=1,

    (3)x≤yimpliesy→z≤x→z,z→x≤z→yandx⊙z≤y⊙z,

    (4)x⊙y≤x∧y,y≤x→x⊙y,

    (5)x→(y→z)=(x⊙y) →z=y→(x→z),

    (6)x⊙(y∨z)=(x⊙y) ∨(x⊙z),x∨(y⊙z) ≥(x∨y) ⊙(x∨z),

    (7) (x∨y) →z=(x→z) ∧(y→z),x→(y∧z)=(x→y) ∧(x→z),

    (8) ifAis anMT L-algebra,thenx→(y∨z)=(x→y) ∨(x→z),

    (9) ifAis a divisible residuated lattice,thenx⊙(y∧z)=(x⊙y) ∧(x⊙z),

    (10) ifAis aBL-algebra,then (x∧y) →z=(x→z) ∨(y→z),for anyx,y,z∈A.

    Proposition 2.4(see [4,10]) Letx,y∈Aande,f∈B(A).Then

    (1)e⊙e=eande=e**,

    (2)e→(x→y)=(e→x) →(e→y),

    (3)e∨(x⊙y)=(e∨x) ⊙(e∨y),e∧(x⊙y)=(e∧x) ⊙(e∧y),

    (4) e*→x=(e→x) →x=e∨x,

    (5)e∧e*=0,

    (6)e⊙x=e∧x,

    (7) (e→x) ∨(e*→x)=1,

    (8)e⊙(x→y)=e⊙(e⊙x→e⊙y),

    (9)x⊙(e→f)=x⊙(x⊙e→x⊙f),

    (10) (e∧x)=e⊙(e→x)=x⊙(x→e),

    (11)e,f∈B(A) impliese→f∈B(A).IfAis anMV-algebra,then

    (12)e∈B(A) iffe⊙e=eiffe⊕e=e,

    (13)e∧(x⊕y)=(e∧x) ⊕(e∧y),e∨(x⊕y)=(e∨x) ⊕(e∨y).

    Definition 2.5(see [11]) Let (X,≤) and (Y,≤) be two posets,f:X→Yandg:Y→Xbe two order-preserving maps.Then a pair (f,g) is called a Galois connection betweenXandYprovided that,for anyx∈X,y∈Y,f(x) ≤yiffx≤g(y).

    From [22],a lattice ideal is a nonempty setI?Asatisfying that: for anyx,y∈A,(I1):x≤yandy∈Iimplyx∈I;(I2):x,y∈Iimpliesx∨y∈I.An ideal is a nonempty setI?Athat satisfies (I1) and (I3) (where (I3):x,y∈Iimpliesx⊕y∈I).

    3 Multiplicative Multipliers and Partial Multipliers on Residuated Lattices

    This section concentrates on discussing the multiplicative multipliers (simplify,M-multipliers)and partial multipliers on residuated lattices.We use partial multipliers to study the maximal residuated lattice of the quotient of a residuated lattice.

    Definition 3.1A mappingf:AAon a residuated latticeAis said to be a multiplicative multiplier (simplify,M-multiplier) onAif it satisfies that ?x,y∈A,f(x⊙y)=x⊙f(y).

    Example 3.2(1)idA(i.e.,f(x)=xfor anyx∈A) is an M-multiplier on a residuated latticeA.

    (2)0A(i.e.,f(x)=0 for anyx∈A) is an M-multiplier on a residuated latticeA.

    (3) LetA={0,a,b,c,1},0<a <b <c <1,⊙a(bǔ)nd →be defined as follows:

    Then (A,∧,∨,⊙,→,0,1) is a residuated lattice andfc(x)=c⊙xis a M-multiplier onA.

    (4) The standardMV-algebra (a special residuated lattice) is anMV-algebra [0,1]MV=([0,1],⊕,*,0),wherex⊕y=min{x+y,1},x*=1 -x.The derived operations are as follows:x⊙y=max{x+y-1,0}x→y=min{1 -x+y,1},x∨y=max{x,y},x∧y=min{x,y}.Then the functionf(x)=max{x-0.5,0} is an M-multiplier on [0,1]MV.

    (5) Given a fix real numbertand 0<t <1,letAt=([0,1],∧,∨,⊙,→,0,1) such that,for allx,y∈[0,1],

    One can check that eachAtis a residuated lattice.Moreover,the mappingsf1(x)=0.3 ⊙x,are M-multipliers onAt.

    (6) LetA1,A2be two residuated lattices.Then the Cartesian productA1×A2is a residuated lattice under pointwise operations;that is,(a,b) ?(c,d) :=(a?c,b?d),where?∈{∧,∨,⊙,→}.Assume thatf1is an M-multiplier onA1,f2is an M-multiplier onA2.Thenf((a1,a2)) :=(f1(a1),f2(a2)) is an M-multiplier onA1×A2.Moreover,ifA1=A2,theng1((a,b)) :=(f1(a),b) andg2((a,b)) :=(a,f1(b)) are two M-multipliers onA1×A1.

    Lemma 3.3Letu,vbe two M-multipliers onA.Then the following statements are equivalent:

    (1)u(x) ≤v(x),for anyx∈A;

    (2)u(1) ≤v(1).

    ProofProposition 2.3 (3) and Definition 3.1 directly indicate the result. □

    Letu,vbe two M-multipliers onA.We defineu?vbyu(x) ≤v(x) for anyx∈A.Define (u?v)(x) :=u(x) ∧v(x),(u??v)(x) :=(u(1) ∧v(1)) ⊙x,(u?v)(x) :=u(x) ∨v(x),(u?v)(x) :=(u(1) ⊙v(1)) ⊙x,(uv)(x) :=(u(1) →v(1)) ⊙x,and denote the set of all M-multipliers onAbyMM(A).Then we have the following results:

    Theorem 3.4LetAbe a residuated lattice.ThenA≌(MM(A),??,?,?,,idA,0A).

    ProofLetu,v∈MM(A).Then (u??v)(x⊙y)=(u(1)∧v(1))⊙(x⊙y)=x⊙(u??v)(y)impliesu??v∈MM(A).From Proposition 2.3 (6),we have that (u?v)(x⊙y)=u(x⊙y) ∨v(x⊙y)=(u(1) ⊙x⊙y) ∨(v(1) ⊙x⊙y)=x⊙(u?v)(y);that is,u?v∈MM(A).Then,together with Examples 3.2 (1) and (2),we can obtain that (MM(A),??,?,idA,0A) is a bound lattice.Similarly,it is easy to check thatu(x) ?v(x),u(x)v(x) ∈MM(A) and that (MM(A),?,idA) is a commutative monoid.For anyu,v,w∈MM(A),by Lemma 3.3,we get thatu?v?w?(u(1) ⊙v(1)) ⊙x≤w(1) ⊙x?u(1) ⊙v(1) ≤w(1)?u(1) ≤v(1) →w(1)?u(1) ⊙x≤(v(1) →w(1)) ⊙x?u?vw.

    Define a mappingφ:A→MM(A),φ(a)=fa(wherea∈A,fa∈MM(A)).According to the Examples 3.2 (3) and Lemma 3.3,we have thatφis well-defined.Assume thatf∈MM(A).Then there existsb∈Asuch thatf(x)=f(1) ⊙x=b⊙x=fb(x)=φ(b),and thusφis subjective.Suppose thata,b∈A,a≠bandfa=fb.Thena=fa(1)=fb(1)=b,which is a contradiction.Hence,φis injective.Moreover,for anya,b∈A,φ(a∧b)=(a∧b)⊙x=(fa(1)∧fb(1))⊙x=(fa??fb)(x)=φ(a)??φ(b).Similarly,φ(a∨b)=φ(a)?φ(b),φ(a⊙b)=φ(a) ?φ(b),φ(a→b)=φ(a)φ(b),φ(1)=idAandφ(0)=0A.ThereforeA≌(MM(A),??,?,?,,idA,0A). □

    Corollary 3.5LetAbe an MV-algebra,a BL-algebra,or a divisible residuated lattice.Then (MM(A),?,?,?,,idA,0A)=(MM(A),??,?,?,,idA,0A) is an MV-algebra,a BLalgebra,or a divisible residuated lattice,respectively,and is isomorphic toA.

    Definition 3.6Letf∈MM(A).Then

    (1)fis called semi-idealised provided thatf(1) ∈G(A);

    (2)fis called idealised provided thatf(1) ∈B(A).

    Example 3.7(1) LetAbe the residuated lattice that of Example 3.2 (3).Thenfa(x)=a⊙xandfc(x)=c⊙xare semi-idealised M-multipliers onA.

    (2) LetA={0,a1,a2,a3,a4,1},⊙,→and the Hasse diagram ofAbe defined as follows:

    Then (A,∧,∨,⊙,→,0,1) is a residuated lattice andf(x)=a1⊙xis an idealised M-multiplier onA.

    (3) LetZdenote the additive groups of integers,with the natural order,andn=(wherenis an integer andn≥2).If we definexi⊙xj=xmax{i+j-(n-1),0},xi→xj=xmin{(n-1)-i+j,n-1},xi∨xj=max{xi,xj},xi∧xj=min{xi,xj},then (n,∧,∨,⊙,→,0,1) is a residuated lattice.ConsiderAis the residuated lattices that of Example 3.2 (3),thenA×nis a residuated lattice andf((x,y))=(a,1) ⊙(x,y)is a semi-idealised M-multiplier onA×n.

    (4) LetB=[0,1] be the real unit interval.Define ⊙a(bǔ)nd →onBas follows: for anyx,y∈B,

    ThenB=([0,1],min,max,⊙,→,0,1) forms a residuated lattice.Meanwhile,ft(x)=t⊙xis a semi-idealised M-multiplier onB,wheretis a fixed number in [0,1].ConsiderAis the residuated lattice that of Item (2),theng((s,t))=(a3,1) ⊙(s,t) is an idealised M-multiplier onA×B.

    Proposition 3.8Iffis an idealised M-multiplier onA,then,for anyx,y∈A,

    (1)f(f(x))=f?f=f,(2)f(B(A)) ?B(A),

    (3)f(x∧y)=f(x) ∧f(y),(4)f(x⊙y)=f(x) ⊙f(y),

    (5)f(x→y)=f(1) ⊙(f(x) →y),(6)fis a closure operator,

    (7)f(x∨y)=f(x) ∨f(y).

    Moreover,(3) ?(4) ?(5).

    ProofItems (1)–(6) are obvious and the mutual equivalence of (3),(4) and (5) are straightforward,by Proposition 2.3 (9) and Proposition 2.4 (1),(6)–(8). □

    SettingFf(A) :={x|f(x)=x,x∈A},we can get the results below.

    Lemma 3.9Letf∈MM(A).Then,

    (1) iffis semi-idealised,then (Ff(A),?,∨,0,f(1)) is a bounded lattice (wherea?b=f(a∧b));

    (2) iffis semi-idealised andAdivisible,orfis idealised,then (Ff(A),∧,∨,0,f(1)) is a bounded lattice;

    (3) iffis semi-idealised,then (Ff(A),⊙,f(1)) is a monoid;

    (4) iffis semi-idealised andAis anMV-algebra,thenFf(A) is an ideal ofA.

    Proof(1) Iffis semi-idealised,then one can prove thatfis a closure operator and preserve ∨,which implies thatp∨q∈Ff(A) for anyp,q∈Ff(A).In fact,p∨qis the least upper bound ofp,qinFf(A).Suppose thatt∈Ff(A) andt≥p,q.Then there existx1,x2andx3such thatf(1) ⊙x1=t≥f(1) ⊙x2=p,f(1) ⊙x3=q,which implies thatt≥(f(1) ⊙x2) ∨(f(1) ⊙x3)=f(1) ⊙(x1∨x2)=p∨q;that is,t≥p∨q.Meanwhile,from the definition of ?,we obtain thatp?q∈Ff(A).Assume thats≤p,qands∈Ff(A).Then there isx4such thats=f(1) ⊙x4andf(1) ⊙x4≤f(1) ⊙x2,f(1) ⊙x3,which givess=f(1) ⊙x4=f(1) ⊙(f(1) ⊙x4) ≤f(1) ⊙((f(1) ⊙x2) ∧(f(1) ⊙x3))=f(1) ⊙(a∧b)=f(a∧b)=a?b.Hence,in combination with the fact thatfis isotone andf(0)=0,we can obtain that (Ff(A),?,∨,0,f(1)) is a bounded lattice.

    (2) According to Proposition 2.4 (6) and 3.8 (3),we can obtain the result.Item (3) is obvious and item (4) is easily proven by Proposition 2.4 (12)–(13). □

    Theorem 3.10Letf∈MM(A).Then,

    (1) iffis semi-idealised,then (Ff(A),?,∨,⊙,,0,f(1)) is a residuated lattice (wherea?b=f(a∧b),ab=f(a→b) for anya,b∈Ff(A));

    (2) iffis idealised,then (Ff(A),∧,∨,⊙,,0,f(1)) is a residuated lattice (whereab=f(a→b) for anya,b∈Ff(A));

    (3) iffis semi-idealised andAis divisible,then (Ff(A),∧,∨,⊙,,0,f(1)) is a divisible residuated lattice (whereab=f(a→b) for anya,b∈Ff(A));

    (4) iffis semi-idealised andAis an MV-algebra,then (Ff(A),∧,∨,⊙,,0,f(1)) is an MV-algebra.

    Proof(1) By Lemma 3.9,we just need to prove thata⊙b≤ciffa≤bcfor anya,b,c∈Ff(A).Assume thata,b,c∈Ff(A) anda⊙b≤c.Then there existx1,x2,x3∈Asuch thata=f(1) ⊙x1,b=f(1) ⊙x2,c=f(1) ⊙x3,which concludes thata⊙b≤cifff(1) ⊙x1⊙f(1) ⊙x2≤f(1) ⊙x3ifff(1) ⊙x1≤f(1) ⊙x2→f(1) ⊙x3.Thus,together with Proposition 2.3 (3) and Proposition 2.4 (1,8),we obtain thata=f(1)⊙x1≤f(1)⊙(f(1)⊙x2→f(1) ⊙x3)=f(1) ⊙(b→c)=f(b→c)=bc.Conversely,ifa≤bc,then we have thatf(1)⊙x1≤f(1)⊙(f(1)⊙x2→f(1)⊙x3),which implies thatf(1)⊙x1≤f(1)⊙x2→f(1)⊙x3.Thus we can get thatf(1) ⊙x1⊙f(1) ⊙x2≤f(1) ⊙x3;that is,a⊙b≤c.Therefore,(Ff(A),∧,∨,⊙,,0,f(1)) is a residuated lattice.

    (2) The proof is similar to that of item (1).

    (3) According to Lemma 3.9 (2) and item (2),we only need to prove the divisibility ofFf(A).Assume thata,b∈Ff(A).Then there existx1,x2∈Asuch thata=f(1) ⊙x1,b=f(1) ⊙x2anda∧b=(f(1) ⊙x1) ∧(f(1) ⊙x2)=(f(1) ⊙x1) ⊙(f(1) ⊙x1→f(1) ⊙x2)=f(1) ⊙x1⊙(f(1) ⊙(f(1) ⊙x1→f(1) ⊙x2))=a⊙(ab).Hence the statement holds.

    (4) From Definition 2.2 (5),Proposition 2.3 (5) and Item (2),the result is straightforward.□

    From Lemma 3.9 and Proposition 3.8,it is easy to find that the image off(namely,Ff(A)) is a lattice ideal ofA,whenAis a residuated lattice andfis idealised.In Example 3.7 (2),B(A)={a1,a3},fa1=a1⊙xandfa3=a3⊙xare idealised M-multipliers,andFfa1(A)={0,a1,a4},Ffa3(A)={0,a3} are lattice ideals ofA.In fact,for any semi-idealised M-multiplierfon a residuated latticeA,Ff(A) is not always a lattice ideal.In Example 3.2 (3),G(A)={a,c},fc(x)=c⊙xandfa(x)=a⊙xare semi-idealised,butFfc(A)={0,a,c} is not lattice ideal,andFfa(A)={0,a} is lattice ideal.In fact,for anMV-algebraA,G(A)=B(A)indicates thatfis semi-idealised ifffis idealised.We have,for anMV-algebraAwherefis semi-idealised,Ff(A) is an ideal ofA,which implies thatFf(A) is a lattice ideal ofA.The above facts bolster that of our concept of Definition 3.6.

    In what follows,we will present the fact thatfis a total multiplier wheneverf∈MM(A)andf(1) ∈B(A).A total multiplier is a special partial multiplier (that is defined in [3] and is consistent with the definition that follows,whenAis a BL-algebra or an MV-algebra).We denote the set of all down-sets ofAbyD(A);that is,D(A)={D?A|x≤y,y∈Dimpliesx∈D},↓a={x∈A|x≤a}.

    Definition 3.11LetAbe a residuated lattice.A mappingh:DA(whereD∈D(A)) is called a partial multiplier onAprovided thathsatisfies the following conditions:

    (M1)h(e⊙x)=e⊙h(x) for everye∈B(A) andx∈D,

    (M2)x⊙(x→h(x))=h(x) for everyx∈D,

    (M3) ife∈B(A) ∩D,thenh(e) ∈B(A),

    (M4)e∧h(x)=h(e) ∧xfor everyx∈Dande∈B(A) ∩D.

    In fact,(M2) ?(M2′) :h(x) ≤x,wheneverAis a divisible residuated lattice,BL-algebra or MV-algebra.A partial multiplierhis said to be a total multiplier (simplify,T-multiplier),if the domain ofhisA.Without ambiguity,in what follows we use multiplier instead of partial multiplier.

    Example 3.12(1)idAand0(h(x)=0,x∈A) are both M-multipliers and T-multipliers onA.

    (2) LetAbe a residuated lattice,D∈D(A) anda∈B(A).If a mapha:AAis defined byha(x)=a∧xfor anyx∈A,thenhais a T-multiplier onA.Moreover,ha|D:DAis a partial multiplier onA.We say such multipliers are principal.

    (3) LetAbe the residuated lattice of Example 3.2 (3) (in fact,it is not divisible (sinceb=b∧cc⊙(c→b)=c⊙b=a)).Define a maphc:↓cAbyhc(x)=c⊙(c→x) for anyx∈↓c.Thenhcis a partial multiplier onA,but it is not principal.

    (4) LetBandA×Bbe the residuated lattices of Example 3.7 (4),D=[0,0.5] ?BandD1={0,a1,a3,a4}.Then the functionh:DB,x0.2 ∧xis a partial multiplier onBand the mappingf:D1×BA×B,(x,y)(a3,1) ∧(x,y) is a partial multiplier onA×B.Moreover,it is easy to verify that the M-multipliergin Example 3.7 (4) is a T-multiplier onA×B.

    Remark 3.13Indeed,by the Definition 3.11,we have that each T-multiplier on a residuated latticeAis a particular M-multiplier.Thus the properties and results of M-multipliers always hold for T-multipliers on residuated lattices.However,M-multipliers on residuated lattices are not always T-multipliers;see examples that follow.

    Example 3.14(1) LetA={0,a,b,1},0<a <b <1 and ⊙,→be defined as follows:

    Then (A,∧,∨,⊙,→,0,1) is a residuated lattice.Moreover,one can easily check that the mapfa(x) :=a⊙xonAis an M-multiplier,but not a T-multiplier.

    (2) LetAbe the residuated lattice of Example 3.2 (3).Then the maphc:↓cA,hc(x)=c⊙(c→x) for anyx∈↓cis a partial multiplier onA,however,it cannot be obtained by an M-multiplier restricted to a down-set (such as ↓c) ofA.

    Theorem 3.15LetAbe a residuated lattice.Then,

    (1)T M(A) (the set of all T-multiplier onA) is a Boolean center ofMM(A),

    (2)T M(A)≌B(A) and the following commutate diagram hold:

    (whereBois a mapping that assigns a residuated latticeAto its Boolean center,andφis the map that of Theorem 3.4).

    Proof(1) It follows,by Remark 3.13,that every T-multiplier is an M-multiplier.ThenT M(A) ?MM(A).Assumingv(x) ∈T M(A),then we have thatv(x)=v(1) ⊙xandv(1) ∈B(A),(v?v*)(x)=v(x) ∨v*(x)=v(x) ∨(v0)(x)=(v(1) ⊙x) ∨((v(1) →0) ⊙x)=(v(1)∨(v(1))*)⊙x=1⊙x=x=idA.Similarly,(v??v*)(x)=(v(1)∧(v(1))*)⊙x=0.Hencev(x) ∈B(MM(A));that is,T M(A) ?B(MM(A)).Conversely,iff∈B(MM(A)),then one can easily check thatf??f*=0andf?f*=idA,which implies thatf(1) ∧(f(1))*=0 andf(1) ∨(f(1))*=1;that is,f(1) ∈B(A).Thusf(x)=f(1) ∧ximpliesf∈T M(A).ThenT M(A)=B(MM(A)),andT M(A) is a Boolean center ofMM(A).

    (2) SinceB(A) is a Boolean center ofAandT M(A) is a Boolean center ofMM(A),then,together with the proof of Theorem 3.4,T M(A)≌B(A) and the statements of item (2) hold.□

    Theorem 3.15 shows that T-multipliers on A are completely determined by the Boolean elements of residuated lattices.From 3.12–3.15,we realize that the M-multipliers and partial multipliers on A not only have some similarities,but also some differences.Thus we focus on partial multipliers the domain of which may be not equivalent toA.If dom(h)=A,then we denotehby.For anyD∈D(A),we denote thatM(D,A)={h:DA|his a partial multiplier onA}.For anyD1,D2∈D(A) andhi(x) ∈M(Di,A),i=1,2,we define(h1?h2)(x) :=h1(x)∨h2(x),(h1?h2)(x) :=h1(x)∧h2(x);(h1⊙h2)(x) :=h1(x)⊙(x→h2(x)),(h1h2)(x) :=x⊙(h1(x) →h2(x)).The set of all partial multipliers onAis denoted byM(A) :=∪D∈D(A)M(D,A).

    Theorem 3.16LetAbe a residuated lattice.Then (M(A),?,?,⊙,,idA,0) is a residuated lattice.

    ProofIn fact,h1?h2,h1?h2,h1⊙h2,h1h2∈M(D1∩D2,A),for anyhi∈M(Di,A),i=1,2.We just check thath1⊙h2∈M(D1∩D2,A) and other statements can be similarly obtained.Letx∈D1∩D2,e∈B(A).Then (M1) (h1⊙h2)(e⊙x)=h1(e⊙x)⊙(e⊙x→h2(e⊙x))=e⊙h1(x) ⊙(e⊙x→e⊙h2(x))=h1(x) ⊙e⊙(x→h2(x))=e⊙(h1⊙h2)(x).(M2) Since (x→h1(x)) ⊙(x→h2(x)) ≤x→(x⊙(x→h1(x)) ⊙(x→h2(x))),we obtain that (h1⊙h2)(x)=h1(x) ⊙(x→h2(x))=x⊙(x→h1(x)) ⊙(x→h2(x)) ≤x⊙[x→(x⊙(x→h1(x)) ⊙(x→h2(x)))]=x⊙[x→(h1⊙h2)(x)].Taking this together withx⊙[x→(h1⊙h2)(x)] ≤(h1⊙h2)(x),we can obtain thatx⊙[x→(h1⊙h2)(x)]=(h1⊙h2)(x).From (M2),the commutativity of ⊙onM(A) is clear.Moreover,Proposition 2.4 (8)–(9),(11)directly indicates (M3) and (M4).The rest of the proof is analogous to the standard proof.□

    Definition 3.17A nonempty subsetD?Ais called regular if,for everyx,y∈Asuch thatx∧e=y∧efor everye∈D∩B(A),we have thatx=y.

    Definition 3.18Leth1,h2,hbe multipliers onA.

    (1) We say thath2extendsh1(writeh1h2) provided that dom(h1) ?dom(h2) andh2|dom(h1)=h1.

    (2)his called maximal,provided thathcannot be extended to a strictly larger domain.We denote thatR(A)={D|Dis a regular subset ofA},thatRD(A)={D|Dis both a regular subset and down set ofA},andMr(A)={h|h∈M(A),dom(h) ∈RD(A)}.

    Lemma 3.19LetAbe a residuated lattice.Then,

    (1)D1,D2∈RD(A) impliesD1∩D2∈RD(A),

    (2)Mr(A) is a subalgebra (residuated lattice) ofM(A),

    (3) ifh1,h2∈M(A),h∈Mr(A) andhh1,hh2,thenh1,h2coincide on the dom(h1) ∩dom(h2),

    (4) everyh∈Mr(A) can be extended to a maximal multiplier.Namely,for each principal multiplierha,dom(ha) ∈RD(A),there is a uniquely T-multipliersuch thatand every non-principal multiplier can be extended to a maximal non-principal one,

    (5)θAis a congruence onMr(A).(The relationθAonMr(A) be defined by (h1,h2) ∈θAiffh1,h2coincide on dom(h1) ∩dom(h2)).

    ProofItems (1) and (3)–(4) are easy to prove by Definitions 3.17–3.18.The proof of (2)is similar to that of Theorem 3.16.Therefore,here we only prove item (5).The reflexivity and the symmetry ofθAare clear.Let (h1,h2),(h2,h3) ∈Mr(A) and assume that (h1,h3)r(A).Then there existsp∈dom(h1)∩dom(h3) such thath1(p)≠h3(p).From dom(h2) ∈RD(A),we obtain somee∈dom(h2)∩B(A) ande∧h1(p)≠e∧h3(p) ??h1(e⊙p)≠h3(e⊙p).However,e⊙p≤p,eimpliese⊙p∈dom(h1) ∩dom(h2) ∩dom(h3) andh1(e⊙p)=h3(e⊙p).This is a contradiction.Hence,θAis an equivalence relation onMr(A).Let (h1,h2),(h3,h4) ∈Mr(A)andz∈∩idom(hi).Then (h1h3)(z)=z⊙(h1(z) →h3(z))=z⊙(h2(z) →h4(z))=(h2h4)(z) implies thatθAis compatible with.Similarly,the compatibility ofθAwith ?,?,⊙is easy to check.Therefore,θAis a congruence onMr(A). □

    Example 3.20(1) LetAbe the residuated lattice in Example 3.2 (3).Define some maps as follows:

    One can easily check thath0,h1,h2,h3andh4are multipliers and thath,h5are not multipliers.However,h|D2=h2,h5|D2=h4.Moreover,andh2cannot be extended to any multipliers.

    (2) LetAbe the residuated lattice of Example 3.7 (2).ThenB(A)={0,1,a1,a3}.SettingD1={0,a1,a3,a4},D2={0,a1,a2,a3,a4},we have thatB(A) ∩D1=B(A) ∩D2,and,for everyp,q∈Aandp≠q,there exists an elemente∈B(A) ∩D1such that.HenceD1,D2∈RD(A).Moreover,define some maps as follows:

    Thenu0,w0,w1,w2,v0,v1,v2andvare multipliers onA,butuis not a multiplier.Moreover,we have thatandu0cannot be extended to any multipliers.In fact,it is obvious thatw0,w1,w2,v1,v2,v∈Mr(A),u0is a maximal non-principal multiplier onAand thatvis the unique T-multiplier onAwhich is extended byv1,v2.Meanwhile,w0,w1,w2can be extended to a unique T-multiplierw:AA,w(x)=a3⊙xonA.

    (3) LetA×Bbe the residuated lattice in Example 3.7 (4).SetD0,D1,D2as the down-sets in Item (2).ThenD1×B,D2×B∈RD(A×B).Now,considering the following mapping:

    Then,u′,w′are multipliers onA×Band′∈Mr(A×B).Moreover,can be extended to a uniqueT-multiplierv′:A×B→A×B,v((x,y))=(a1,0)⊙(x,y) onA×B(that is,),butu′is a maximal non-principal multiplier onA×Band cannot be extended.Furthermore,it is clear thatB(A×B)={(0,0),(0,1),(1,0),(1,1),(a1,0),(a1,1),(a3,0),(a3,1)},so we can obtain thatpt,i:Di×BA×B,(x,y)t⊙(x,y) is a multiplier onA×Bandpt,i∈Mr(A×B),wheret∈B(A×B) andi=1,2.

    Lemma 3.21Letbe defined byfor everya∈B(A).Then,

    Definition 3.23A residuated latticeGis called a residuated lattice of fractions ofA(writeA?G) provided that it satisfies that:

    (1)B(A) is a subalgebra ofG,

    (2) for everya,b,s∈G,a≠bthere existse∈B(A) such thate∧a≠e∧bande∧s∈B(A),

    (3) for everya∈G,e∈B(A) such thate∧a∈B(A),ift∈B(A) andt≤e,thent∧a∈B(A).

    Definition 3.24Mis called the maximal residuated lattice of quotients ofAprovided thatA?M,and for each residuated latticeGwithA?G,there is a monomorphismi:GMof residuated lattices.

    Lemma 3.25LetA?G.Then,for eacha,b∈G,a≠band any finite sequences1,···,sn∈G,there existse∈B(A) such thate∧a≠e∧bande∧si∈B(A) fori=1,2,···,n(n≥2).

    ProofBy Definitions 3.23 (1) and (2) and mathematical induction,it is easy to prove.□

    Lemma 3.26LetA?G,a∈G.ThenDa={e|e∈B(A),e∧a∈B(A)} ∈D(B(A)) ∩R(A).

    ProofObviously,Da∈D(B(A)).Assume thatp,q∈A,p≠qande∧p=e∧qfor alle∈Da∩B(A).ThenA?G,and there isd∈B(A) such thatd∧a∈B(A) (namely,d∈Da∩B(A)) andd∧p≠d∧q,which is a contradiction.HenceDa∈R(A). □

    Theorem 3.27A′′is the maximal residuated lattice of quotients ofA.

    (4) Proof of the maximality ofA′′.LetA?G(G is a residuated lattice).ThenB(A) ?B(G).Fort∈G,Dt={e∈B(A)|e∧t∈B(A)} ?D(B(A)) ∩R(A).It is easy to check thatht:DtA,ht=t∧xis a multiplier.If we definei:GA′′,i(t)=[ht,Dt] for everyt∈G,theni(0)=0.For anyt,s∈Gandx∈Dt∩Ds,(i(t)⊙i(s))(x)=(t∧x)⊙(x→s∧x)=t⊙x⊙(x→s∧x)=t⊙[x⊙(x→s∧x)]=t⊙[x⊙(1 ⊙x→s⊙x)]=t⊙[x⊙(1 →s)]=t⊙(x⊙s)=t⊙(x∧s)=(t∧s)∧x=i(t⊙s)(x),and (i(t)i(s))(x)=x⊙(i(t)(x) →i(s)(x))=x⊙(ht(x) →hs(x))=x⊙(t∧x→s∧x)=x⊙(x⊙t→s⊙x)=x⊙(t→s)=i(t→s)(x).Similarly,i(t) ∧i(s)=i(t∧s),i(t) ∨i(s)=i(t∨s).In fact,iis injective.Suppose thatt,s∈Gandi(t)=i(s).Then [ht,Dt]=[hs,Ds];that is,ht(x)=hs(x) for anyx∈Dt∩Ds,i.e.,t∧x=s∧x.Ifts,this,together with Lemma 3.25 andA?G,gives that there ise∈B(A)such thate∧t,e∧s∈B(A) ande∧t≠e∧s.However,e∧t,e∧s∈B(A) implies thate∈Dt∩Ds,which is a contradiction.Therefore,the results hold. □

    Corollary 3.28A′′is the maximal □-algebra of quotients ofAprovided thatAis a□-algebra (where □∈{MV,BL,MT L}).

    Example 3.29(1) LetA={0,1} be a Boolean algebra (a special residuated lattice).ThenA?AandB(A)=A.Clearly,Ais a unique element belonging toR(A);that is,the domain ofh∈Mr(A) must be equivalent toA.0A:AA,x0 andidA:0A:AA,xx(for anyx∈A) are all elements that belong toMr(A).Obviously,0A,idAbelongs to a different congruence class,andB={0A,idA} is a residuated lattice.Obviously,for anyMthat satisfies Definition 3.24,we haveM≌A.Moreover,A′′={[0A,A],[idA,A]} is clear andA′′≌A.

    (2) LetAbe the residuated lattice of Example 3.7 (2).By Example 3.20 (2),we haveD1,D2,A∈R(A) andw0,w1,w2,w,v1,v2,v∈Mr(A).It is clear that0A|D1,0A|D2,0A,idA|D1,idA|D2,idA∈Mr(A) and [0A,A]={0A|D1,0A|D2,0A},[idA,A]={idA|D1,idA|D2,idA},[w,A]={w0,w1,w2,w},[v,A]={v1,v2,v}.One can check thatA′′=({[0A,A],[idA,A],[v,A],[w,A]},?,?,⊙,,⊥,?) is not only a residuated lattice,but also the maximal residuated lattice of quotients ofA,where the rule of ?,?,⊙,,⊥,?is just as defined in Lemma 3.21.

    (3) LetA×Bbe the residuated lattice in Example 3.20 (3),which obviously has an infinite number of elements.ThenD1×B,D2×B,A×B∈RD(A×B) andB(A×B)={(0,0),(0,1),(1,0),(1,1),(a1,0),(a1,1),(a3,0),(a3,1)}.It is clear that0A×B((x,y))=(0,0)andidA×B((x,y))=(x,y) are multipliers and that they belong toMr(A×B).Meanwhile,we have that (A×B)′′=({[0A×B,A×B],[idA×B,A×B],[pt,i,A×B] },?,?,⊙,⊥,?) is a residuated lattice,wheret∈B(A×B),i=1,2,3,D3=A,pt,iis the multiplier onA×Bof Example 3.20 (3).Moreover,it is easy to check that (A×B)′′is the maximal residuated lattice of quotients ofA×B,by the same method of Theorem 3.27.Moreover,if we have thatPBis the set of all subsets ofB,thenPBis not only a residuated lattice,but also a complete Boolean algebra,soA×PBis also a residuated lattice andB(A×PB) has infinite members,which implies that there are infinite multipliers belonging toMr(A×PB) (since,at least,such multipliers areh(x,y)=t⊙(x,y) ∈Mr(A×PB),wheret∈B(A×PB)).Hence,one can check that (A×PB)′′,constructed in the same way as Theorem 3.27,forms the maximal residuated lattice of quotients ofA×PB,which has an infinite element.

    4 Implicative Multipliers on Residuated Lattices

    In this section,we discuss the relation of M-multipliers,T-multipliers and PI-multipliers,and present that the algebraPIM(A) of PI-multipliers onAis isomorphic to the algebraMM(A) of M-multipliers onAunder dual-order.

    Definition 4.1A mappingg:A→Aon a residuated latticeAis said to be an implicative multiplier (simplify,I-multiplier) provided that it satisfiesg(x→y)=x→g(y) for allx,y∈A.

    Definition 4.2Letgbe an I-multiplier on a residuated latticeA.Thengis said to be

    (1) an isotone I-multiplier provided thatx≤yimpliesg(x) ≤g(y) for anyx,y∈A;

    (2) an idempotent I-multiplier provided thatg(g(x))=g(x) (that is,g2=g) for anyx∈A.

    Example 4.3(1)idAandg(x)=1 for anyx∈A(simplify,1) are I-multipliers onA.

    (2)gp(x)=p→xis an I-multiplier onA,wherep∈A.gp(x) is called a principal I-multiplier (simplify,PI-multiplier) onAand every PI-multiplier is isotone.

    (3) LetA={0,a,b,1},0<a <b <1 and ⊙,→be defined as follows:

    Then (A,∧,∨,⊙,→,0,1) is a residuated lattice.Now,we define a mapgonAas follows:

    One can check thatgis an I-multiplier onA,but not isotone.

    (4) LetAbe the residuated lattice of Example 3.2 (3),and defineg,gbonAas follows:

    Thengis an isotone and idempotent I-multiplier onA.gb(x) is an isotone I-multiplier,but not idempotent.

    (5) LetAbe the residuated latticeAtin Example 3.2 (5).Thenis an isotone I-multiplier onAt,but not idempotent.However,whenAis the residuated lattice of Example 3.7 (4),we can get that the mappinggt(x)=t→xis an isotone and idempotent I-multiplier,wheretis a fixed number in an open interval (0,1).

    Denote the set of all I-multipliers onAbyIM(A) and all PI-multipliers byPIM(A).

    Lemma 4.4Letf∈MM(A).Then there exists an I-multiplierg∈PIM(A) such that(f,g) forms a Galois connection.

    ProofLetf∈MM(A).Thenf(y)=f(1) ⊙y,for anyy∈A.Assume thatf(y) ≤x.Then we can get thatf(1) ⊙y≤xiffy≤f(1) →x=gf(1)(x) (wheregf(1)(x) ∈PIM(A)).Taking this together with Proposition 2.3 (3) and Example 4.3 (2),we easily obtain that(f,gf(1)) forms a Galois connection. □

    According to Proposition 3.13,Theorem 3.15 (2),Example 4.3 (3) and Lemma 4.4,it is easy to get the following diagram:

    Proposition 4.5Leta,b∈A.Then,for anyx,y∈A,

    (1)ga(x∧y)=ga(x) ∧ga(y),

    (2)a≤biffgb≤ga,

    (3)abimpliesga≠gb,

    (4)ga°gb=ga⊙b=gb°ga,

    (5)ga?gb=ga∨b,

    (6) ifAis a BL-algebra,thenga?gb=ga∧b.

    ProofBy Lemma 4.4,Lemma 3.3 and Proposition 2.3 (3),(7),items (1)–(3) are obvious.Items (4)–(6) are straightforward,by Proposition 2.3 (5),(7),(10). □

    Corollary 4.7Let (A,∧,∨,⊙,→,0,1) be aBL-algebra (or anMV-algebra).Then(PIM(A),≤op,?op,?op,°,?,1,idA)≌(MM(A),?,?,?,?,,0A,idA)≌A(≤op:=≥,?op:=?,?op:=?).

    ProofProposition 4.5 (5)–(6),Corollary 3.5 and Theorem 4.6 directly indicate the results.□

    Corollary 4.8Let (A,∧,∨,*,0,1) be a Boolean algebra.Then (PIM(A),?,?,,g1,g0)forms a Boolean algebra,which is isomorphic to (A,∨,∧,*,0,1) (wherega:=ga*).

    ProofBy Proposition 2.4 (1)–(5) and Proposition 2.3 (7),we can get thatga(x ?y)=ga(x)?ga(y),ga?ga*=g0andga?ga*=g1,where?∈{∧,∨,⊙,→}.From this,together with Proposition 4.5 (5-6) and Theorem 4.6,we conclude that the result hold. □

    Finally,we present some examples to illustrate the relation betweenMM(A) andPI(A).

    Example 4.9(1) LetAbe the residuated lattice of Example 3.2 (3).Define mapsf,g,honAbyf(x)=a⊙x,g(x)=b⊙x,h(x)=c⊙x,respectively.ThenMM(A)={0A,f,g,h,idA}and0A≤f≤g≤h≤idA.Moreover,we have the following:

    Hence,(MM(A),?,?,?,?,,0A,idA) is a residuated lattice.

    Obviously,PIM(A)={idA,ga,gb,gc,1} andidA≤gc≤gb≤ga≤1;that is,1 ≤opga≤opgb≤opgc≤opidA.Meanwhile,we have

    5 Conclusions

    In this paper,motivated by previous research on multipliers on MV-algebras,BE-algebras and BL-algebras,we extended the concept of multipliers to the more general fuzzy structures,namely residuated lattices.The paper has introduced some multipliers on residuated lattices and investigated the relations between them.We concluded that the setMM(A) of all multiplicative multipliers on a residuated latticeAis a residuated lattice and is isomorphic toA.Each semi-idealised M-multiplier onMV-algebraAcorresponds to an ideal ofA.Moreover,the setT M(A) of all total multipliers onAis a Boolean subalgebra ofMM(A) and is isomorphic toB(A).Meanwhile,the paper has shown thatA′′is the maximal residuated lattice of the quotient for a residuated latticeA.Finally,the paper has shown that the algebraPIM(A) of PI-multipliers on a residuated latticeAis isomorphic toMM(A) under the opposite order.

    猜你喜歡
    王偉
    “平行線及其判定”初試鋒芒
    Effects of heterogeneous adoption thresholds on contact-limited social contagions
    小 蝌 蚪 的 尾 巴
    Convection: a neglected pathway for downward transfer of wind energy in the oceanic mixed layer*
    王偉:寄情山水?dāng)⑧l(xiāng)愁
    藝術(shù)百家 王偉
    警察街頭“捉”小孩“捉”住就開點(diǎn)贊單
    這個(gè)英國人在長城撿垃圾22年
    新西蘭地震震出上萬只超級大鮑魚
    王偉宋 勇者的重生
    美女xxoo啪啪120秒动态图| 美女内射精品一级片tv| 精品一区二区三区视频在线| 国产高清三级在线| 免费观看av网站的网址| 国产成人91sexporn| 日韩成人av中文字幕在线观看| 日日爽夜夜爽网站| 日本av免费视频播放| 亚洲精品自拍成人| 黑丝袜美女国产一区| 亚洲经典国产精华液单| 91精品三级在线观看| 热99久久久久精品小说推荐| 尾随美女入室| 精品视频人人做人人爽| 国产爽快片一区二区三区| 狂野欧美激情性bbbbbb| 亚洲综合精品二区| 久久久久精品久久久久真实原创| 最新中文字幕久久久久| 欧美日韩成人在线一区二区| 欧美三级亚洲精品| 精品久久久噜噜| 大香蕉97超碰在线| 亚洲色图综合在线观看| 国产精品国产三级国产av玫瑰| 五月伊人婷婷丁香| 人人妻人人澡人人看| freevideosex欧美| 成人亚洲精品一区在线观看| 久久久久久久久久人人人人人人| 欧美+日韩+精品| 久久久久久久亚洲中文字幕| 国产爽快片一区二区三区| 国产高清三级在线| 在线免费观看不下载黄p国产| 99久久精品国产国产毛片| 性色avwww在线观看| 久久精品久久精品一区二区三区| 91精品国产国语对白视频| 两个人的视频大全免费| 色婷婷久久久亚洲欧美| 王馨瑶露胸无遮挡在线观看| 免费久久久久久久精品成人欧美视频 | 欧美精品国产亚洲| 国产有黄有色有爽视频| 久久99一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲精品美女久久av网站| 全区人妻精品视频| 狠狠婷婷综合久久久久久88av| 街头女战士在线观看网站| 国产爽快片一区二区三区| 免费观看无遮挡的男女| 日韩av免费高清视频| 日韩精品有码人妻一区| 交换朋友夫妻互换小说| av.在线天堂| 久久久久久久久久久免费av| 中文字幕人妻熟人妻熟丝袜美| 热re99久久精品国产66热6| 国产亚洲精品久久久com| 久久久久久久精品精品| 午夜激情久久久久久久| 亚洲精品乱久久久久久| 亚洲国产欧美在线一区| av天堂久久9| 日本猛色少妇xxxxx猛交久久| 日韩av免费高清视频| 26uuu在线亚洲综合色| 哪个播放器可以免费观看大片| 69精品国产乱码久久久| 老司机影院毛片| 看免费成人av毛片| 天堂中文最新版在线下载| 色网站视频免费| 伦理电影大哥的女人| 伦精品一区二区三区| 成人免费观看视频高清| 十八禁网站网址无遮挡| 狠狠精品人妻久久久久久综合| 秋霞伦理黄片| 欧美亚洲日本最大视频资源| 99久国产av精品国产电影| 七月丁香在线播放| 久久久亚洲精品成人影院| 国产伦理片在线播放av一区| 热99久久久久精品小说推荐| 波野结衣二区三区在线| 久久精品熟女亚洲av麻豆精品| 美女视频免费永久观看网站| 欧美亚洲日本最大视频资源| 国产精品国产三级国产专区5o| 久久国内精品自在自线图片| 嫩草影院入口| 丝袜美足系列| 一二三四中文在线观看免费高清| av在线播放精品| 午夜激情av网站| 国产欧美日韩一区二区三区在线 | 午夜视频国产福利| 精品一品国产午夜福利视频| 在线观看免费视频网站a站| 国产精品不卡视频一区二区| 久久久欧美国产精品| 午夜精品国产一区二区电影| 国产伦精品一区二区三区视频9| 午夜福利视频在线观看免费| 国产69精品久久久久777片| 亚洲国产精品成人久久小说| 男人爽女人下面视频在线观看| 精品卡一卡二卡四卡免费| 国产成人a∨麻豆精品| 久久 成人 亚洲| 女性被躁到高潮视频| 中文乱码字字幕精品一区二区三区| 国产精品嫩草影院av在线观看| 春色校园在线视频观看| 亚洲综合精品二区| 在线观看人妻少妇| 欧美日韩一区二区视频在线观看视频在线| 18禁裸乳无遮挡动漫免费视频| 久久久久精品性色| 日韩欧美一区视频在线观看| av在线观看视频网站免费| 精品一区二区免费观看| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 丰满少妇做爰视频| 男女高潮啪啪啪动态图| 成年av动漫网址| 飞空精品影院首页| 999精品在线视频| 涩涩av久久男人的天堂| 乱人伦中国视频| 免费大片黄手机在线观看| 亚洲三级黄色毛片| 国产日韩欧美视频二区| av电影中文网址| 人人澡人人妻人| 日本av手机在线免费观看| 男女高潮啪啪啪动态图| 能在线免费看毛片的网站| 美女cb高潮喷水在线观看| 99久久精品国产国产毛片| 国内精品宾馆在线| 麻豆精品久久久久久蜜桃| 午夜福利视频在线观看免费| 国产色婷婷99| 国产在线免费精品| 日本色播在线视频| 我要看黄色一级片免费的| 久久精品国产鲁丝片午夜精品| av.在线天堂| 少妇人妻久久综合中文| 黑人欧美特级aaaaaa片| 国产69精品久久久久777片| 一个人免费看片子| 超色免费av| 男女边吃奶边做爰视频| 自线自在国产av| 黄色一级大片看看| 日本猛色少妇xxxxx猛交久久| 精品一区二区三区视频在线| 欧美变态另类bdsm刘玥| 亚洲怡红院男人天堂| 久久青草综合色| 新久久久久国产一级毛片| 成人亚洲精品一区在线观看| 99热国产这里只有精品6| 春色校园在线视频观看| 国产日韩欧美在线精品| 国产精品一国产av| 国模一区二区三区四区视频| 久热久热在线精品观看| 大陆偷拍与自拍| 亚洲欧洲国产日韩| 中文乱码字字幕精品一区二区三区| 国产成人精品一,二区| 国产男女超爽视频在线观看| 成人影院久久| a级毛色黄片| 黑丝袜美女国产一区| 国产伦精品一区二区三区视频9| 在线 av 中文字幕| 人妻系列 视频| 夜夜爽夜夜爽视频| 欧美精品人与动牲交sv欧美| 91aial.com中文字幕在线观看| 欧美性感艳星| 亚洲欧美日韩另类电影网站| 久久久久久久久久久免费av| 自拍欧美九色日韩亚洲蝌蚪91| 中文乱码字字幕精品一区二区三区| 久久99热6这里只有精品| 国产免费现黄频在线看| 高清黄色对白视频在线免费看| 人人澡人人妻人| 飞空精品影院首页| 免费观看在线日韩| 久久影院123| 欧美日韩av久久| 日本黄色日本黄色录像| 久久久久久久久大av| 最近的中文字幕免费完整| 两个人免费观看高清视频| 九草在线视频观看| 日韩av在线免费看完整版不卡| 三上悠亚av全集在线观看| 2018国产大陆天天弄谢| 久久人人爽人人爽人人片va| 欧美性感艳星| 久久精品久久久久久久性| 乱码一卡2卡4卡精品| 91成人精品电影| 考比视频在线观看| 国产成人一区二区在线| 国产日韩欧美亚洲二区| 中文字幕久久专区| 婷婷色麻豆天堂久久| 最后的刺客免费高清国语| 新久久久久国产一级毛片| 一级毛片黄色毛片免费观看视频| 人人澡人人妻人| 国产无遮挡羞羞视频在线观看| 国产熟女欧美一区二区| 黑人猛操日本美女一级片| 我要看黄色一级片免费的| 国产探花极品一区二区| 极品人妻少妇av视频| 亚洲五月色婷婷综合| 麻豆成人av视频| 久久免费观看电影| 国精品久久久久久国模美| 亚洲精品中文字幕在线视频| freevideosex欧美| 99九九在线精品视频| 免费看不卡的av| 蜜臀久久99精品久久宅男| 欧美 亚洲 国产 日韩一| 一级毛片aaaaaa免费看小| 一级毛片黄色毛片免费观看视频| 高清av免费在线| 国产亚洲精品久久久com| 久久鲁丝午夜福利片| 99热国产这里只有精品6| 最近的中文字幕免费完整| 欧美激情 高清一区二区三区| av又黄又爽大尺度在线免费看| 女性被躁到高潮视频| 欧美精品高潮呻吟av久久| 看非洲黑人一级黄片| 国产成人a∨麻豆精品| 在线播放无遮挡| 69精品国产乱码久久久| 亚洲人与动物交配视频| 国产毛片在线视频| 欧美xxⅹ黑人| 国产综合精华液| 人妻系列 视频| 久久久久久久久久成人| 最新中文字幕久久久久| 2021少妇久久久久久久久久久| 大香蕉久久网| 高清av免费在线| 亚洲国产精品国产精品| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 一级毛片aaaaaa免费看小| 国产精品秋霞免费鲁丝片| 老司机影院成人| 精品视频人人做人人爽| 我的老师免费观看完整版| 韩国高清视频一区二区三区| 中文乱码字字幕精品一区二区三区| 嘟嘟电影网在线观看| 人妻 亚洲 视频| 欧美+日韩+精品| 亚洲av日韩在线播放| 亚洲av中文av极速乱| 成年美女黄网站色视频大全免费 | 亚洲精品视频女| 精品一品国产午夜福利视频| 制服丝袜香蕉在线| 又粗又硬又长又爽又黄的视频| 一区二区三区乱码不卡18| 久久99热6这里只有精品| 国产又色又爽无遮挡免| 一本一本综合久久| 亚洲国产欧美日韩在线播放| 久久久欧美国产精品| 亚洲,欧美,日韩| 欧美日韩视频精品一区| 狂野欧美激情性xxxx在线观看| 免费看av在线观看网站| 五月开心婷婷网| 九九久久精品国产亚洲av麻豆| 亚洲婷婷狠狠爱综合网| 亚洲少妇的诱惑av| 久久国产精品大桥未久av| 成人国语在线视频| 五月天丁香电影| 蜜桃在线观看..| 亚洲精品日韩在线中文字幕| 亚洲情色 制服丝袜| 狠狠精品人妻久久久久久综合| 看免费成人av毛片| 亚洲精品自拍成人| 麻豆成人av视频| 日韩人妻高清精品专区| av又黄又爽大尺度在线免费看| 高清欧美精品videossex| 99久久精品一区二区三区| 色94色欧美一区二区| 国产无遮挡羞羞视频在线观看| 亚洲在久久综合| 中文欧美无线码| 国产高清有码在线观看视频| 亚洲精品国产av蜜桃| 夜夜看夜夜爽夜夜摸| 婷婷色麻豆天堂久久| 欧美少妇被猛烈插入视频| 国产亚洲一区二区精品| 伦理电影大哥的女人| 久久久久视频综合| 少妇人妻精品综合一区二区| 中国美白少妇内射xxxbb| 国产精品一国产av| 热re99久久国产66热| 亚洲精品久久成人aⅴ小说 | 亚洲国产av新网站| 久久 成人 亚洲| 春色校园在线视频观看| 18禁观看日本| 国产国语露脸激情在线看| 精品国产露脸久久av麻豆| 欧美日韩精品成人综合77777| 午夜91福利影院| 美女视频免费永久观看网站| 少妇猛男粗大的猛烈进出视频| 乱人伦中国视频| 日韩一本色道免费dvd| 日韩强制内射视频| 中文字幕免费在线视频6| 久久久久久久久久久免费av| 最新的欧美精品一区二区| 久久久久人妻精品一区果冻| 国产精品蜜桃在线观看| 精品酒店卫生间| 久久99蜜桃精品久久| 色视频在线一区二区三区| 成年av动漫网址| 天天操日日干夜夜撸| 校园人妻丝袜中文字幕| 国产在线一区二区三区精| 日本免费在线观看一区| 色哟哟·www| 国产黄色视频一区二区在线观看| 久久久精品免费免费高清| 高清午夜精品一区二区三区| 有码 亚洲区| 美女国产高潮福利片在线看| 久久毛片免费看一区二区三区| 免费播放大片免费观看视频在线观看| 国产片特级美女逼逼视频| 成人亚洲精品一区在线观看| 一级毛片我不卡| 人体艺术视频欧美日本| 一区二区三区免费毛片| 伦精品一区二区三区| 国产成人av激情在线播放 | 久久婷婷青草| 黑人猛操日本美女一级片| 亚洲成人一二三区av| 日本与韩国留学比较| 国产乱来视频区| 黑丝袜美女国产一区| 亚洲国产最新在线播放| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 波野结衣二区三区在线| 丰满迷人的少妇在线观看| 日韩在线高清观看一区二区三区| av又黄又爽大尺度在线免费看| 国产日韩欧美在线精品| 亚洲精品亚洲一区二区| 另类精品久久| 国产 一区精品| 热99国产精品久久久久久7| 久久99一区二区三区| 黄色毛片三级朝国网站| 九九在线视频观看精品| 一级二级三级毛片免费看| 国产午夜精品一二区理论片| 亚洲国产精品一区三区| 一级毛片aaaaaa免费看小| 黑人猛操日本美女一级片| 亚洲国产精品国产精品| 国产一区亚洲一区在线观看| 国产成人免费无遮挡视频| av视频免费观看在线观看| 激情五月婷婷亚洲| 久久国产精品男人的天堂亚洲 | 国产精品人妻久久久影院| 99热6这里只有精品| 日韩人妻高清精品专区| 一边摸一边做爽爽视频免费| 午夜福利在线观看免费完整高清在| 久久国内精品自在自线图片| 成人免费观看视频高清| 婷婷色综合www| 欧美+日韩+精品| 亚洲精品av麻豆狂野| 一个人看视频在线观看www免费| 免费av中文字幕在线| 热99久久久久精品小说推荐| 国产精品免费大片| 久久av网站| 久久久国产一区二区| 午夜视频国产福利| 色吧在线观看| 欧美97在线视频| 一区二区三区精品91| 国产精品久久久久久久久免| av播播在线观看一区| 国产成人aa在线观看| 在线观看免费日韩欧美大片 | 交换朋友夫妻互换小说| 国产免费一区二区三区四区乱码| 欧美三级亚洲精品| 久久精品久久精品一区二区三区| 黑丝袜美女国产一区| 美女cb高潮喷水在线观看| 色94色欧美一区二区| 免费观看的影片在线观看| 三级国产精品欧美在线观看| 97精品久久久久久久久久精品| tube8黄色片| 久久久国产一区二区| 97超碰精品成人国产| 国产成人精品婷婷| 色5月婷婷丁香| 久久人人爽人人爽人人片va| 国产精品不卡视频一区二区| 日韩大片免费观看网站| 亚洲人成网站在线观看播放| 日本爱情动作片www.在线观看| 亚洲人成网站在线观看播放| 国精品久久久久久国模美| 久久久久久久大尺度免费视频| 欧美国产精品一级二级三级| 国产日韩欧美视频二区| 亚洲国产日韩一区二区| 涩涩av久久男人的天堂| 欧美bdsm另类| 国产视频内射| 我的老师免费观看完整版| 丝袜美足系列| h视频一区二区三区| av免费在线看不卡| av女优亚洲男人天堂| 欧美精品高潮呻吟av久久| 免费av中文字幕在线| 亚洲丝袜综合中文字幕| 日韩成人av中文字幕在线观看| 18禁动态无遮挡网站| 欧美人与性动交α欧美精品济南到 | 美女大奶头黄色视频| 国产精品免费大片| 亚洲国产成人一精品久久久| 国产男女超爽视频在线观看| 久久久国产一区二区| 高清在线视频一区二区三区| 夜夜看夜夜爽夜夜摸| 精品一区在线观看国产| 亚洲精品av麻豆狂野| 欧美3d第一页| 国产在线视频一区二区| 综合色丁香网| 日韩欧美一区视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 蜜桃在线观看..| 国国产精品蜜臀av免费| 国产成人freesex在线| 午夜激情久久久久久久| 在线精品无人区一区二区三| 亚洲美女黄色视频免费看| 麻豆乱淫一区二区| 一区二区三区四区激情视频| 久久精品夜色国产| h视频一区二区三区| 99热国产这里只有精品6| 亚洲精品第二区| 国产精品99久久久久久久久| 97在线视频观看| 中文字幕制服av| 高清午夜精品一区二区三区| 99九九在线精品视频| 精品一区二区三卡| 成人国产麻豆网| a 毛片基地| 亚洲精华国产精华液的使用体验| 亚洲精品色激情综合| 麻豆精品久久久久久蜜桃| 免费大片黄手机在线观看| 视频中文字幕在线观看| 一级爰片在线观看| 国产成人91sexporn| 少妇熟女欧美另类| 精品酒店卫生间| 国精品久久久久久国模美| 国产成人精品一,二区| 成人国产av品久久久| 黄色怎么调成土黄色| 久久毛片免费看一区二区三区| 91久久精品国产一区二区成人| 国产欧美亚洲国产| av女优亚洲男人天堂| 免费观看在线日韩| 亚洲av综合色区一区| 久久久亚洲精品成人影院| 黄色视频在线播放观看不卡| av免费观看日本| 妹子高潮喷水视频| 亚洲精品乱久久久久久| 亚洲av成人精品一区久久| 在线观看美女被高潮喷水网站| 伦精品一区二区三区| 高清欧美精品videossex| 亚洲欧美成人精品一区二区| 成人无遮挡网站| 高清视频免费观看一区二区| 中文字幕精品免费在线观看视频 | 国产高清三级在线| 久久影院123| 日韩视频在线欧美| 高清不卡的av网站| 成人毛片60女人毛片免费| 国产老妇伦熟女老妇高清| 五月伊人婷婷丁香| 亚洲人成网站在线播| 欧美国产精品一级二级三级| 亚洲av成人精品一区久久| 天美传媒精品一区二区| 精品国产一区二区三区久久久樱花| 高清欧美精品videossex| 制服诱惑二区| 婷婷成人精品国产| 久久久国产一区二区| 日本91视频免费播放| 在线观看美女被高潮喷水网站| 一级毛片黄色毛片免费观看视频| 我要看黄色一级片免费的| 欧美日韩视频精品一区| 久久久久久久大尺度免费视频| 免费久久久久久久精品成人欧美视频 | 免费观看无遮挡的男女| 免费看不卡的av| 人妻人人澡人人爽人人| av播播在线观看一区| 国产一级毛片在线| 午夜久久久在线观看| 国产爽快片一区二区三区| 丰满乱子伦码专区| 久久女婷五月综合色啪小说| 午夜福利影视在线免费观看| 男人操女人黄网站| 晚上一个人看的免费电影| 国产男女内射视频| 女性生殖器流出的白浆| 亚洲精品国产av成人精品| 成人黄色视频免费在线看| 91精品国产九色| 午夜久久久在线观看| 久久久久久久久久久免费av| 成人无遮挡网站| 国产一区二区三区av在线| 妹子高潮喷水视频| 亚洲内射少妇av| 美女视频免费永久观看网站| 午夜日本视频在线| 午夜日本视频在线| 最后的刺客免费高清国语| 青春草视频在线免费观看| 亚洲欧洲国产日韩| 欧美3d第一页| 日本色播在线视频| 在现免费观看毛片| 成人毛片60女人毛片免费| 久久99热这里只频精品6学生| 99久久精品一区二区三区| 久久ye,这里只有精品| 久久这里有精品视频免费| 一级二级三级毛片免费看| 亚洲三级黄色毛片| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| 22中文网久久字幕| 欧美日韩国产mv在线观看视频| 亚洲,欧美,日韩| 美女内射精品一级片tv| 欧美激情国产日韩精品一区| 国产成人a∨麻豆精品| 国产在线视频一区二区| 热re99久久国产66热| 国产在线免费精品| 精品久久久精品久久久| 美女国产高潮福利片在线看| 少妇的逼水好多| 草草在线视频免费看| 亚洲精品一区蜜桃| 五月伊人婷婷丁香| 人妻人人澡人人爽人人| 日韩欧美一区视频在线观看|