• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CHARACTERIZATION OF RESIDUATED LATTICES VIA MULTIPLIERS*

    2022-11-04 09:06:24WeiWANG王偉BinZHAO趙彬
    關(guān)鍵詞:王偉

    Wei WANG (王偉) Bin ZHAO (趙彬)

    School of Mathematics and Statistics,Shaanxi Normal University,Xi’an 710119,China

    E-mail: wangwei135420@snnu.edu.cn;zhaobin@snnu.edu.cn

    Abstract In the paper,we introduce some of multipliers on residuated lattices and investigate the relations among them.First,basing on the properties of multipliers,we show that the set of all multiplicative multipliers on a residuated lattice A forms a residuated lattice which is isomorphic to A.Second,we prove that the set of all total multipliers on A is a Boolean subalgebra of the residuated lattice (which is constituted by all multiplicative multipliers on A) and is isomorphic to the Boolean center of A.Moreover,by partial multipliers,we study the maximal residuated lattices of quotients for residuated lattices.Finally,we focus on principal implicative multipliers on residuated lattices and obtain that the set of principal implicative multipliers on A is isomorphic to the set of all multiplicative multipliers on A under the opposite (dual) order.

    Key words residuated lattice;multiplier;M-multiplier;PI-multiplier;T-multiplier

    1 Introduction

    It is well known that various logical algebras have been proposed as the semantic systems of non-classical logical systems which are formal and useful tools for computer science in forms of dealing with uncertain and fuzzy information.Residuated lattices [32],as the semantics of Hhle’s Monoidal Logic,were introduced by Ward and Dilworth,and are very basic and important logical algebras.Many logical algebras are particular cases of residuated lattices,such as MV -algebras [6],BL-algebras [13],Heyting algebras [5] and MTL-algebras [9],etc.For the least two decades,the study of operator theories on these logical algebras can be divided into two classes.One consists of operators with a logical background,like modal operators[18],monadic [28] and internal states [14];some of those operators can be used to extend logical semantics.The other class consists of operators that stem from analytic theories or pure algebras;these can be used for characterizing the algebraic structure of logical algebras,such as closure operators [30],derivations [15],multipliers [3] and nuclei [12].In summary,various kinds of operators (special mappings) play a very helpful role when it comes to research on logical algebras.

    The concept of multipliers [20,24] first appears in harmonic analysis in connection with the theory of summability for Fourier series,and it has been employed in other areas of mathematics and physics,such as Banach algebras [21,31,33] and locally compact groups,partial differential equations,spectral theory [34] andC*-algebras [1,2],lattice-order algebras and logical algebras[3,8,17,26,29],etc..In the theory of summability for Fourier series,the multipliers can be used to describe those sequences {bn} for whichis always the Fourier series of a periodic integrable function wheneveris such a Fourier series.From [2,21,31],a mappingTon a Banach algebraB(orC*-algebras) into itself is called a multiplier ifT(ab)=(T a)b=a(T b)for alla,b∈B.The multipliers can not only be used to study the representation theory for Banach algebras,but can also characterize order-bounded operators inC*-algebras and give a characterization of the relative commutant of sub-C*-algebras with a unit.Analogously,a multiplier on a semigroup (A,*) [20,29] is a functionffromAintoAsuch thatf(x) *y=x*f(y) for allx,y∈A.As is well known,every commutative idempotent semigroup is a semilattice,so the theory of multipliers be developed quickly on lattices.In [25],Noor gave an equivalent characterization by multipliers for each nearlattice that has a decomposition into a direct summand.[8] and [29] present many particularly fruitful results regarding multipliers on distributive latticesL,and show that the latticeM(L) of multipliers is the maximal extension ofLwhich containsLas a join-dense ideal,in particular,giving a nonstandard construction of the maximal lattices of quotients for a distributive lattice.Following this,multipliers were introduced to many prevalent logical algebras such as MV-algebras [26],BL-algebras [3] and MTL-algebras [27] for the same purpose.Although those logical algebras are still distributive lattices,the algebraic structures of them become relatively complex.Influenced by this fact,the notion of multipliers on such logical algebras has changed,and the definition has become complicated by fours axioms (see Definition 4 of [3] or Definition 3.11 below).Meanwhile,another kind of multiplier (we call it an implicative multiplier) is discussed inBE-algebras [19],d-algebras [7] andBL-algebras [17] etc.,in order to depict algebraic structure.In particular,in[17],Khorami and Saeid discussed the relations between such multipliers and other operators,like closure operators,homomorphisms and derivations,and studied theMV-center ofBLalgebras via implicative multipliers.

    Based on the above,a natural question arises: what are the relations among such different kinds of multipliers on the same logical algebra? In this paper,we show that for every total multiplier on a residuated lattice,there exists a unique implicative multiplier such that two multipliers form a Galois connection (the more detailed information about the relation between these multipliers is shown in Figure 1 (in Section 4)).In addition,the paper is motivated by the following considerations: (1) ForMV-algebras andBL-algebras,etc.,we have observed that,although they are different algebras,they are all particular types of residuated lattice.Hence,it is meaningful to extend the concept of multipliers to the more general fuzzy structures for studying the common properties of such operators.(2) we try to clarify the connection between ideals and multipliers on residuated lattices and use multipliers to give the maximal residuated lattices of quotients for residuated lattices.(3) we want to characterize residuated lattices draw support from multipliers.

    Figure 1 The relation of different types of multipliers on residuated lattice,where the notion “A B” means “A should be B” or “B can be induced by A”,and dom(h)denotes the domain of h.

    Figure 2 Here φ,ψ and Bo are the mappings defined in Theorem 3.4,Theorem 4.6 and Theorem 3.15,respectively.“C D” means that “C should be isomorphic to D”,and“C D” means that “C is a special case of D or assign C to its Boolean center D”.

    This paper is organized as follows: in Section 2,we review some basic definitions and results on residuated lattices.In Section 3,we introduce the notion of M-multipliers and partial multipliers on a residuated latticeAand study the relation of M-multipliers and partial multipliers.Moreover,by the properties of multipliers,the maximal residuated lattices of quotients of residuated lattices are studied.In Section 4,PI-multipliers on residuated lattices are presented,and the relations among M-multipliers,(partial) multipliers and PI-multipliers are investigated.

    2 Preliminaries

    In this section,we recall some fundamental concepts related to the theory of residuated lattices and of lattices in general which shall be needed in the sequel.

    Definition 2.1(see [32]) An algebraic structure (A,∧,∨,⊙,→,0,1) of type (2,2,2,2,0,0)is called a residuated lattice provided that it satisfies the following conditions:

    (1) (A,∧,∨,0,1) is a bounded lattice,

    (2) (A,⊙,1) is a commutative monoid,

    (3)x⊙y≤zif and only ifx≤y→z,for allx,y,z∈A,where ≤is the partial order of its underlying lattice (A,∧,∨,0,1).

    Throughout this paper,byAwe denote the universe of a residuated lattice (A,∧,∨,⊙,→,0,1).For anyx,y∈A,definex*=x→0,x**=(x*)*andx⊕y=x*→y.B(A)={x∈A|x∨x*=1} is the set of all complemented elements of its underlying bounded lattice(A,∨,∧,0,1) and is the universe of a Boolean subalgebra ofA(called the Boolean center ofA).DefiningG(A)={x|x⊙x=x,x∈A},we haveB(A) ?G(A).

    Definition 2.2(see [9,13,23]) LetAbe a residuated lattice.ThenAis called

    (1) a divisible residuated lattice,ifx∧y=x⊙(x→y),?x,y∈A;

    (2) an MTL-algebra,if (x→y) ∨(y→x)=1,?x,y∈A;

    (3) a BL-algebra,ifx∧y=x⊙(x→y) and (x→y) ∨(y→x)=1,?x,y∈A;

    (4) an MV-algebra,if (x→y) →y=(y→x) →x),?x,y∈A.

    Proposition 2.3(see [9,13,16,32]) In any residuated latticeA,the following properties hold:

    (1) 1 →x=x,x→1=1,0*=1,1*=0,

    (2)x≤yif and only ifx→y=1,

    (3)x≤yimpliesy→z≤x→z,z→x≤z→yandx⊙z≤y⊙z,

    (4)x⊙y≤x∧y,y≤x→x⊙y,

    (5)x→(y→z)=(x⊙y) →z=y→(x→z),

    (6)x⊙(y∨z)=(x⊙y) ∨(x⊙z),x∨(y⊙z) ≥(x∨y) ⊙(x∨z),

    (7) (x∨y) →z=(x→z) ∧(y→z),x→(y∧z)=(x→y) ∧(x→z),

    (8) ifAis anMT L-algebra,thenx→(y∨z)=(x→y) ∨(x→z),

    (9) ifAis a divisible residuated lattice,thenx⊙(y∧z)=(x⊙y) ∧(x⊙z),

    (10) ifAis aBL-algebra,then (x∧y) →z=(x→z) ∨(y→z),for anyx,y,z∈A.

    Proposition 2.4(see [4,10]) Letx,y∈Aande,f∈B(A).Then

    (1)e⊙e=eande=e**,

    (2)e→(x→y)=(e→x) →(e→y),

    (3)e∨(x⊙y)=(e∨x) ⊙(e∨y),e∧(x⊙y)=(e∧x) ⊙(e∧y),

    (4) e*→x=(e→x) →x=e∨x,

    (5)e∧e*=0,

    (6)e⊙x=e∧x,

    (7) (e→x) ∨(e*→x)=1,

    (8)e⊙(x→y)=e⊙(e⊙x→e⊙y),

    (9)x⊙(e→f)=x⊙(x⊙e→x⊙f),

    (10) (e∧x)=e⊙(e→x)=x⊙(x→e),

    (11)e,f∈B(A) impliese→f∈B(A).IfAis anMV-algebra,then

    (12)e∈B(A) iffe⊙e=eiffe⊕e=e,

    (13)e∧(x⊕y)=(e∧x) ⊕(e∧y),e∨(x⊕y)=(e∨x) ⊕(e∨y).

    Definition 2.5(see [11]) Let (X,≤) and (Y,≤) be two posets,f:X→Yandg:Y→Xbe two order-preserving maps.Then a pair (f,g) is called a Galois connection betweenXandYprovided that,for anyx∈X,y∈Y,f(x) ≤yiffx≤g(y).

    From [22],a lattice ideal is a nonempty setI?Asatisfying that: for anyx,y∈A,(I1):x≤yandy∈Iimplyx∈I;(I2):x,y∈Iimpliesx∨y∈I.An ideal is a nonempty setI?Athat satisfies (I1) and (I3) (where (I3):x,y∈Iimpliesx⊕y∈I).

    3 Multiplicative Multipliers and Partial Multipliers on Residuated Lattices

    This section concentrates on discussing the multiplicative multipliers (simplify,M-multipliers)and partial multipliers on residuated lattices.We use partial multipliers to study the maximal residuated lattice of the quotient of a residuated lattice.

    Definition 3.1A mappingf:AAon a residuated latticeAis said to be a multiplicative multiplier (simplify,M-multiplier) onAif it satisfies that ?x,y∈A,f(x⊙y)=x⊙f(y).

    Example 3.2(1)idA(i.e.,f(x)=xfor anyx∈A) is an M-multiplier on a residuated latticeA.

    (2)0A(i.e.,f(x)=0 for anyx∈A) is an M-multiplier on a residuated latticeA.

    (3) LetA={0,a,b,c,1},0<a <b <c <1,⊙a(bǔ)nd →be defined as follows:

    Then (A,∧,∨,⊙,→,0,1) is a residuated lattice andfc(x)=c⊙xis a M-multiplier onA.

    (4) The standardMV-algebra (a special residuated lattice) is anMV-algebra [0,1]MV=([0,1],⊕,*,0),wherex⊕y=min{x+y,1},x*=1 -x.The derived operations are as follows:x⊙y=max{x+y-1,0}x→y=min{1 -x+y,1},x∨y=max{x,y},x∧y=min{x,y}.Then the functionf(x)=max{x-0.5,0} is an M-multiplier on [0,1]MV.

    (5) Given a fix real numbertand 0<t <1,letAt=([0,1],∧,∨,⊙,→,0,1) such that,for allx,y∈[0,1],

    One can check that eachAtis a residuated lattice.Moreover,the mappingsf1(x)=0.3 ⊙x,are M-multipliers onAt.

    (6) LetA1,A2be two residuated lattices.Then the Cartesian productA1×A2is a residuated lattice under pointwise operations;that is,(a,b) ?(c,d) :=(a?c,b?d),where?∈{∧,∨,⊙,→}.Assume thatf1is an M-multiplier onA1,f2is an M-multiplier onA2.Thenf((a1,a2)) :=(f1(a1),f2(a2)) is an M-multiplier onA1×A2.Moreover,ifA1=A2,theng1((a,b)) :=(f1(a),b) andg2((a,b)) :=(a,f1(b)) are two M-multipliers onA1×A1.

    Lemma 3.3Letu,vbe two M-multipliers onA.Then the following statements are equivalent:

    (1)u(x) ≤v(x),for anyx∈A;

    (2)u(1) ≤v(1).

    ProofProposition 2.3 (3) and Definition 3.1 directly indicate the result. □

    Letu,vbe two M-multipliers onA.We defineu?vbyu(x) ≤v(x) for anyx∈A.Define (u?v)(x) :=u(x) ∧v(x),(u??v)(x) :=(u(1) ∧v(1)) ⊙x,(u?v)(x) :=u(x) ∨v(x),(u?v)(x) :=(u(1) ⊙v(1)) ⊙x,(uv)(x) :=(u(1) →v(1)) ⊙x,and denote the set of all M-multipliers onAbyMM(A).Then we have the following results:

    Theorem 3.4LetAbe a residuated lattice.ThenA≌(MM(A),??,?,?,,idA,0A).

    ProofLetu,v∈MM(A).Then (u??v)(x⊙y)=(u(1)∧v(1))⊙(x⊙y)=x⊙(u??v)(y)impliesu??v∈MM(A).From Proposition 2.3 (6),we have that (u?v)(x⊙y)=u(x⊙y) ∨v(x⊙y)=(u(1) ⊙x⊙y) ∨(v(1) ⊙x⊙y)=x⊙(u?v)(y);that is,u?v∈MM(A).Then,together with Examples 3.2 (1) and (2),we can obtain that (MM(A),??,?,idA,0A) is a bound lattice.Similarly,it is easy to check thatu(x) ?v(x),u(x)v(x) ∈MM(A) and that (MM(A),?,idA) is a commutative monoid.For anyu,v,w∈MM(A),by Lemma 3.3,we get thatu?v?w?(u(1) ⊙v(1)) ⊙x≤w(1) ⊙x?u(1) ⊙v(1) ≤w(1)?u(1) ≤v(1) →w(1)?u(1) ⊙x≤(v(1) →w(1)) ⊙x?u?vw.

    Define a mappingφ:A→MM(A),φ(a)=fa(wherea∈A,fa∈MM(A)).According to the Examples 3.2 (3) and Lemma 3.3,we have thatφis well-defined.Assume thatf∈MM(A).Then there existsb∈Asuch thatf(x)=f(1) ⊙x=b⊙x=fb(x)=φ(b),and thusφis subjective.Suppose thata,b∈A,a≠bandfa=fb.Thena=fa(1)=fb(1)=b,which is a contradiction.Hence,φis injective.Moreover,for anya,b∈A,φ(a∧b)=(a∧b)⊙x=(fa(1)∧fb(1))⊙x=(fa??fb)(x)=φ(a)??φ(b).Similarly,φ(a∨b)=φ(a)?φ(b),φ(a⊙b)=φ(a) ?φ(b),φ(a→b)=φ(a)φ(b),φ(1)=idAandφ(0)=0A.ThereforeA≌(MM(A),??,?,?,,idA,0A). □

    Corollary 3.5LetAbe an MV-algebra,a BL-algebra,or a divisible residuated lattice.Then (MM(A),?,?,?,,idA,0A)=(MM(A),??,?,?,,idA,0A) is an MV-algebra,a BLalgebra,or a divisible residuated lattice,respectively,and is isomorphic toA.

    Definition 3.6Letf∈MM(A).Then

    (1)fis called semi-idealised provided thatf(1) ∈G(A);

    (2)fis called idealised provided thatf(1) ∈B(A).

    Example 3.7(1) LetAbe the residuated lattice that of Example 3.2 (3).Thenfa(x)=a⊙xandfc(x)=c⊙xare semi-idealised M-multipliers onA.

    (2) LetA={0,a1,a2,a3,a4,1},⊙,→and the Hasse diagram ofAbe defined as follows:

    Then (A,∧,∨,⊙,→,0,1) is a residuated lattice andf(x)=a1⊙xis an idealised M-multiplier onA.

    (3) LetZdenote the additive groups of integers,with the natural order,andn=(wherenis an integer andn≥2).If we definexi⊙xj=xmax{i+j-(n-1),0},xi→xj=xmin{(n-1)-i+j,n-1},xi∨xj=max{xi,xj},xi∧xj=min{xi,xj},then (n,∧,∨,⊙,→,0,1) is a residuated lattice.ConsiderAis the residuated lattices that of Example 3.2 (3),thenA×nis a residuated lattice andf((x,y))=(a,1) ⊙(x,y)is a semi-idealised M-multiplier onA×n.

    (4) LetB=[0,1] be the real unit interval.Define ⊙a(bǔ)nd →onBas follows: for anyx,y∈B,

    ThenB=([0,1],min,max,⊙,→,0,1) forms a residuated lattice.Meanwhile,ft(x)=t⊙xis a semi-idealised M-multiplier onB,wheretis a fixed number in [0,1].ConsiderAis the residuated lattice that of Item (2),theng((s,t))=(a3,1) ⊙(s,t) is an idealised M-multiplier onA×B.

    Proposition 3.8Iffis an idealised M-multiplier onA,then,for anyx,y∈A,

    (1)f(f(x))=f?f=f,(2)f(B(A)) ?B(A),

    (3)f(x∧y)=f(x) ∧f(y),(4)f(x⊙y)=f(x) ⊙f(y),

    (5)f(x→y)=f(1) ⊙(f(x) →y),(6)fis a closure operator,

    (7)f(x∨y)=f(x) ∨f(y).

    Moreover,(3) ?(4) ?(5).

    ProofItems (1)–(6) are obvious and the mutual equivalence of (3),(4) and (5) are straightforward,by Proposition 2.3 (9) and Proposition 2.4 (1),(6)–(8). □

    SettingFf(A) :={x|f(x)=x,x∈A},we can get the results below.

    Lemma 3.9Letf∈MM(A).Then,

    (1) iffis semi-idealised,then (Ff(A),?,∨,0,f(1)) is a bounded lattice (wherea?b=f(a∧b));

    (2) iffis semi-idealised andAdivisible,orfis idealised,then (Ff(A),∧,∨,0,f(1)) is a bounded lattice;

    (3) iffis semi-idealised,then (Ff(A),⊙,f(1)) is a monoid;

    (4) iffis semi-idealised andAis anMV-algebra,thenFf(A) is an ideal ofA.

    Proof(1) Iffis semi-idealised,then one can prove thatfis a closure operator and preserve ∨,which implies thatp∨q∈Ff(A) for anyp,q∈Ff(A).In fact,p∨qis the least upper bound ofp,qinFf(A).Suppose thatt∈Ff(A) andt≥p,q.Then there existx1,x2andx3such thatf(1) ⊙x1=t≥f(1) ⊙x2=p,f(1) ⊙x3=q,which implies thatt≥(f(1) ⊙x2) ∨(f(1) ⊙x3)=f(1) ⊙(x1∨x2)=p∨q;that is,t≥p∨q.Meanwhile,from the definition of ?,we obtain thatp?q∈Ff(A).Assume thats≤p,qands∈Ff(A).Then there isx4such thats=f(1) ⊙x4andf(1) ⊙x4≤f(1) ⊙x2,f(1) ⊙x3,which givess=f(1) ⊙x4=f(1) ⊙(f(1) ⊙x4) ≤f(1) ⊙((f(1) ⊙x2) ∧(f(1) ⊙x3))=f(1) ⊙(a∧b)=f(a∧b)=a?b.Hence,in combination with the fact thatfis isotone andf(0)=0,we can obtain that (Ff(A),?,∨,0,f(1)) is a bounded lattice.

    (2) According to Proposition 2.4 (6) and 3.8 (3),we can obtain the result.Item (3) is obvious and item (4) is easily proven by Proposition 2.4 (12)–(13). □

    Theorem 3.10Letf∈MM(A).Then,

    (1) iffis semi-idealised,then (Ff(A),?,∨,⊙,,0,f(1)) is a residuated lattice (wherea?b=f(a∧b),ab=f(a→b) for anya,b∈Ff(A));

    (2) iffis idealised,then (Ff(A),∧,∨,⊙,,0,f(1)) is a residuated lattice (whereab=f(a→b) for anya,b∈Ff(A));

    (3) iffis semi-idealised andAis divisible,then (Ff(A),∧,∨,⊙,,0,f(1)) is a divisible residuated lattice (whereab=f(a→b) for anya,b∈Ff(A));

    (4) iffis semi-idealised andAis an MV-algebra,then (Ff(A),∧,∨,⊙,,0,f(1)) is an MV-algebra.

    Proof(1) By Lemma 3.9,we just need to prove thata⊙b≤ciffa≤bcfor anya,b,c∈Ff(A).Assume thata,b,c∈Ff(A) anda⊙b≤c.Then there existx1,x2,x3∈Asuch thata=f(1) ⊙x1,b=f(1) ⊙x2,c=f(1) ⊙x3,which concludes thata⊙b≤cifff(1) ⊙x1⊙f(1) ⊙x2≤f(1) ⊙x3ifff(1) ⊙x1≤f(1) ⊙x2→f(1) ⊙x3.Thus,together with Proposition 2.3 (3) and Proposition 2.4 (1,8),we obtain thata=f(1)⊙x1≤f(1)⊙(f(1)⊙x2→f(1) ⊙x3)=f(1) ⊙(b→c)=f(b→c)=bc.Conversely,ifa≤bc,then we have thatf(1)⊙x1≤f(1)⊙(f(1)⊙x2→f(1)⊙x3),which implies thatf(1)⊙x1≤f(1)⊙x2→f(1)⊙x3.Thus we can get thatf(1) ⊙x1⊙f(1) ⊙x2≤f(1) ⊙x3;that is,a⊙b≤c.Therefore,(Ff(A),∧,∨,⊙,,0,f(1)) is a residuated lattice.

    (2) The proof is similar to that of item (1).

    (3) According to Lemma 3.9 (2) and item (2),we only need to prove the divisibility ofFf(A).Assume thata,b∈Ff(A).Then there existx1,x2∈Asuch thata=f(1) ⊙x1,b=f(1) ⊙x2anda∧b=(f(1) ⊙x1) ∧(f(1) ⊙x2)=(f(1) ⊙x1) ⊙(f(1) ⊙x1→f(1) ⊙x2)=f(1) ⊙x1⊙(f(1) ⊙(f(1) ⊙x1→f(1) ⊙x2))=a⊙(ab).Hence the statement holds.

    (4) From Definition 2.2 (5),Proposition 2.3 (5) and Item (2),the result is straightforward.□

    From Lemma 3.9 and Proposition 3.8,it is easy to find that the image off(namely,Ff(A)) is a lattice ideal ofA,whenAis a residuated lattice andfis idealised.In Example 3.7 (2),B(A)={a1,a3},fa1=a1⊙xandfa3=a3⊙xare idealised M-multipliers,andFfa1(A)={0,a1,a4},Ffa3(A)={0,a3} are lattice ideals ofA.In fact,for any semi-idealised M-multiplierfon a residuated latticeA,Ff(A) is not always a lattice ideal.In Example 3.2 (3),G(A)={a,c},fc(x)=c⊙xandfa(x)=a⊙xare semi-idealised,butFfc(A)={0,a,c} is not lattice ideal,andFfa(A)={0,a} is lattice ideal.In fact,for anMV-algebraA,G(A)=B(A)indicates thatfis semi-idealised ifffis idealised.We have,for anMV-algebraAwherefis semi-idealised,Ff(A) is an ideal ofA,which implies thatFf(A) is a lattice ideal ofA.The above facts bolster that of our concept of Definition 3.6.

    In what follows,we will present the fact thatfis a total multiplier wheneverf∈MM(A)andf(1) ∈B(A).A total multiplier is a special partial multiplier (that is defined in [3] and is consistent with the definition that follows,whenAis a BL-algebra or an MV-algebra).We denote the set of all down-sets ofAbyD(A);that is,D(A)={D?A|x≤y,y∈Dimpliesx∈D},↓a={x∈A|x≤a}.

    Definition 3.11LetAbe a residuated lattice.A mappingh:DA(whereD∈D(A)) is called a partial multiplier onAprovided thathsatisfies the following conditions:

    (M1)h(e⊙x)=e⊙h(x) for everye∈B(A) andx∈D,

    (M2)x⊙(x→h(x))=h(x) for everyx∈D,

    (M3) ife∈B(A) ∩D,thenh(e) ∈B(A),

    (M4)e∧h(x)=h(e) ∧xfor everyx∈Dande∈B(A) ∩D.

    In fact,(M2) ?(M2′) :h(x) ≤x,wheneverAis a divisible residuated lattice,BL-algebra or MV-algebra.A partial multiplierhis said to be a total multiplier (simplify,T-multiplier),if the domain ofhisA.Without ambiguity,in what follows we use multiplier instead of partial multiplier.

    Example 3.12(1)idAand0(h(x)=0,x∈A) are both M-multipliers and T-multipliers onA.

    (2) LetAbe a residuated lattice,D∈D(A) anda∈B(A).If a mapha:AAis defined byha(x)=a∧xfor anyx∈A,thenhais a T-multiplier onA.Moreover,ha|D:DAis a partial multiplier onA.We say such multipliers are principal.

    (3) LetAbe the residuated lattice of Example 3.2 (3) (in fact,it is not divisible (sinceb=b∧cc⊙(c→b)=c⊙b=a)).Define a maphc:↓cAbyhc(x)=c⊙(c→x) for anyx∈↓c.Thenhcis a partial multiplier onA,but it is not principal.

    (4) LetBandA×Bbe the residuated lattices of Example 3.7 (4),D=[0,0.5] ?BandD1={0,a1,a3,a4}.Then the functionh:DB,x0.2 ∧xis a partial multiplier onBand the mappingf:D1×BA×B,(x,y)(a3,1) ∧(x,y) is a partial multiplier onA×B.Moreover,it is easy to verify that the M-multipliergin Example 3.7 (4) is a T-multiplier onA×B.

    Remark 3.13Indeed,by the Definition 3.11,we have that each T-multiplier on a residuated latticeAis a particular M-multiplier.Thus the properties and results of M-multipliers always hold for T-multipliers on residuated lattices.However,M-multipliers on residuated lattices are not always T-multipliers;see examples that follow.

    Example 3.14(1) LetA={0,a,b,1},0<a <b <1 and ⊙,→be defined as follows:

    Then (A,∧,∨,⊙,→,0,1) is a residuated lattice.Moreover,one can easily check that the mapfa(x) :=a⊙xonAis an M-multiplier,but not a T-multiplier.

    (2) LetAbe the residuated lattice of Example 3.2 (3).Then the maphc:↓cA,hc(x)=c⊙(c→x) for anyx∈↓cis a partial multiplier onA,however,it cannot be obtained by an M-multiplier restricted to a down-set (such as ↓c) ofA.

    Theorem 3.15LetAbe a residuated lattice.Then,

    (1)T M(A) (the set of all T-multiplier onA) is a Boolean center ofMM(A),

    (2)T M(A)≌B(A) and the following commutate diagram hold:

    (whereBois a mapping that assigns a residuated latticeAto its Boolean center,andφis the map that of Theorem 3.4).

    Proof(1) It follows,by Remark 3.13,that every T-multiplier is an M-multiplier.ThenT M(A) ?MM(A).Assumingv(x) ∈T M(A),then we have thatv(x)=v(1) ⊙xandv(1) ∈B(A),(v?v*)(x)=v(x) ∨v*(x)=v(x) ∨(v0)(x)=(v(1) ⊙x) ∨((v(1) →0) ⊙x)=(v(1)∨(v(1))*)⊙x=1⊙x=x=idA.Similarly,(v??v*)(x)=(v(1)∧(v(1))*)⊙x=0.Hencev(x) ∈B(MM(A));that is,T M(A) ?B(MM(A)).Conversely,iff∈B(MM(A)),then one can easily check thatf??f*=0andf?f*=idA,which implies thatf(1) ∧(f(1))*=0 andf(1) ∨(f(1))*=1;that is,f(1) ∈B(A).Thusf(x)=f(1) ∧ximpliesf∈T M(A).ThenT M(A)=B(MM(A)),andT M(A) is a Boolean center ofMM(A).

    (2) SinceB(A) is a Boolean center ofAandT M(A) is a Boolean center ofMM(A),then,together with the proof of Theorem 3.4,T M(A)≌B(A) and the statements of item (2) hold.□

    Theorem 3.15 shows that T-multipliers on A are completely determined by the Boolean elements of residuated lattices.From 3.12–3.15,we realize that the M-multipliers and partial multipliers on A not only have some similarities,but also some differences.Thus we focus on partial multipliers the domain of which may be not equivalent toA.If dom(h)=A,then we denotehby.For anyD∈D(A),we denote thatM(D,A)={h:DA|his a partial multiplier onA}.For anyD1,D2∈D(A) andhi(x) ∈M(Di,A),i=1,2,we define(h1?h2)(x) :=h1(x)∨h2(x),(h1?h2)(x) :=h1(x)∧h2(x);(h1⊙h2)(x) :=h1(x)⊙(x→h2(x)),(h1h2)(x) :=x⊙(h1(x) →h2(x)).The set of all partial multipliers onAis denoted byM(A) :=∪D∈D(A)M(D,A).

    Theorem 3.16LetAbe a residuated lattice.Then (M(A),?,?,⊙,,idA,0) is a residuated lattice.

    ProofIn fact,h1?h2,h1?h2,h1⊙h2,h1h2∈M(D1∩D2,A),for anyhi∈M(Di,A),i=1,2.We just check thath1⊙h2∈M(D1∩D2,A) and other statements can be similarly obtained.Letx∈D1∩D2,e∈B(A).Then (M1) (h1⊙h2)(e⊙x)=h1(e⊙x)⊙(e⊙x→h2(e⊙x))=e⊙h1(x) ⊙(e⊙x→e⊙h2(x))=h1(x) ⊙e⊙(x→h2(x))=e⊙(h1⊙h2)(x).(M2) Since (x→h1(x)) ⊙(x→h2(x)) ≤x→(x⊙(x→h1(x)) ⊙(x→h2(x))),we obtain that (h1⊙h2)(x)=h1(x) ⊙(x→h2(x))=x⊙(x→h1(x)) ⊙(x→h2(x)) ≤x⊙[x→(x⊙(x→h1(x)) ⊙(x→h2(x)))]=x⊙[x→(h1⊙h2)(x)].Taking this together withx⊙[x→(h1⊙h2)(x)] ≤(h1⊙h2)(x),we can obtain thatx⊙[x→(h1⊙h2)(x)]=(h1⊙h2)(x).From (M2),the commutativity of ⊙onM(A) is clear.Moreover,Proposition 2.4 (8)–(9),(11)directly indicates (M3) and (M4).The rest of the proof is analogous to the standard proof.□

    Definition 3.17A nonempty subsetD?Ais called regular if,for everyx,y∈Asuch thatx∧e=y∧efor everye∈D∩B(A),we have thatx=y.

    Definition 3.18Leth1,h2,hbe multipliers onA.

    (1) We say thath2extendsh1(writeh1h2) provided that dom(h1) ?dom(h2) andh2|dom(h1)=h1.

    (2)his called maximal,provided thathcannot be extended to a strictly larger domain.We denote thatR(A)={D|Dis a regular subset ofA},thatRD(A)={D|Dis both a regular subset and down set ofA},andMr(A)={h|h∈M(A),dom(h) ∈RD(A)}.

    Lemma 3.19LetAbe a residuated lattice.Then,

    (1)D1,D2∈RD(A) impliesD1∩D2∈RD(A),

    (2)Mr(A) is a subalgebra (residuated lattice) ofM(A),

    (3) ifh1,h2∈M(A),h∈Mr(A) andhh1,hh2,thenh1,h2coincide on the dom(h1) ∩dom(h2),

    (4) everyh∈Mr(A) can be extended to a maximal multiplier.Namely,for each principal multiplierha,dom(ha) ∈RD(A),there is a uniquely T-multipliersuch thatand every non-principal multiplier can be extended to a maximal non-principal one,

    (5)θAis a congruence onMr(A).(The relationθAonMr(A) be defined by (h1,h2) ∈θAiffh1,h2coincide on dom(h1) ∩dom(h2)).

    ProofItems (1) and (3)–(4) are easy to prove by Definitions 3.17–3.18.The proof of (2)is similar to that of Theorem 3.16.Therefore,here we only prove item (5).The reflexivity and the symmetry ofθAare clear.Let (h1,h2),(h2,h3) ∈Mr(A) and assume that (h1,h3)r(A).Then there existsp∈dom(h1)∩dom(h3) such thath1(p)≠h3(p).From dom(h2) ∈RD(A),we obtain somee∈dom(h2)∩B(A) ande∧h1(p)≠e∧h3(p) ??h1(e⊙p)≠h3(e⊙p).However,e⊙p≤p,eimpliese⊙p∈dom(h1) ∩dom(h2) ∩dom(h3) andh1(e⊙p)=h3(e⊙p).This is a contradiction.Hence,θAis an equivalence relation onMr(A).Let (h1,h2),(h3,h4) ∈Mr(A)andz∈∩idom(hi).Then (h1h3)(z)=z⊙(h1(z) →h3(z))=z⊙(h2(z) →h4(z))=(h2h4)(z) implies thatθAis compatible with.Similarly,the compatibility ofθAwith ?,?,⊙is easy to check.Therefore,θAis a congruence onMr(A). □

    Example 3.20(1) LetAbe the residuated lattice in Example 3.2 (3).Define some maps as follows:

    One can easily check thath0,h1,h2,h3andh4are multipliers and thath,h5are not multipliers.However,h|D2=h2,h5|D2=h4.Moreover,andh2cannot be extended to any multipliers.

    (2) LetAbe the residuated lattice of Example 3.7 (2).ThenB(A)={0,1,a1,a3}.SettingD1={0,a1,a3,a4},D2={0,a1,a2,a3,a4},we have thatB(A) ∩D1=B(A) ∩D2,and,for everyp,q∈Aandp≠q,there exists an elemente∈B(A) ∩D1such that.HenceD1,D2∈RD(A).Moreover,define some maps as follows:

    Thenu0,w0,w1,w2,v0,v1,v2andvare multipliers onA,butuis not a multiplier.Moreover,we have thatandu0cannot be extended to any multipliers.In fact,it is obvious thatw0,w1,w2,v1,v2,v∈Mr(A),u0is a maximal non-principal multiplier onAand thatvis the unique T-multiplier onAwhich is extended byv1,v2.Meanwhile,w0,w1,w2can be extended to a unique T-multiplierw:AA,w(x)=a3⊙xonA.

    (3) LetA×Bbe the residuated lattice in Example 3.7 (4).SetD0,D1,D2as the down-sets in Item (2).ThenD1×B,D2×B∈RD(A×B).Now,considering the following mapping:

    Then,u′,w′are multipliers onA×Band′∈Mr(A×B).Moreover,can be extended to a uniqueT-multiplierv′:A×B→A×B,v((x,y))=(a1,0)⊙(x,y) onA×B(that is,),butu′is a maximal non-principal multiplier onA×Band cannot be extended.Furthermore,it is clear thatB(A×B)={(0,0),(0,1),(1,0),(1,1),(a1,0),(a1,1),(a3,0),(a3,1)},so we can obtain thatpt,i:Di×BA×B,(x,y)t⊙(x,y) is a multiplier onA×Bandpt,i∈Mr(A×B),wheret∈B(A×B) andi=1,2.

    Lemma 3.21Letbe defined byfor everya∈B(A).Then,

    Definition 3.23A residuated latticeGis called a residuated lattice of fractions ofA(writeA?G) provided that it satisfies that:

    (1)B(A) is a subalgebra ofG,

    (2) for everya,b,s∈G,a≠bthere existse∈B(A) such thate∧a≠e∧bande∧s∈B(A),

    (3) for everya∈G,e∈B(A) such thate∧a∈B(A),ift∈B(A) andt≤e,thent∧a∈B(A).

    Definition 3.24Mis called the maximal residuated lattice of quotients ofAprovided thatA?M,and for each residuated latticeGwithA?G,there is a monomorphismi:GMof residuated lattices.

    Lemma 3.25LetA?G.Then,for eacha,b∈G,a≠band any finite sequences1,···,sn∈G,there existse∈B(A) such thate∧a≠e∧bande∧si∈B(A) fori=1,2,···,n(n≥2).

    ProofBy Definitions 3.23 (1) and (2) and mathematical induction,it is easy to prove.□

    Lemma 3.26LetA?G,a∈G.ThenDa={e|e∈B(A),e∧a∈B(A)} ∈D(B(A)) ∩R(A).

    ProofObviously,Da∈D(B(A)).Assume thatp,q∈A,p≠qande∧p=e∧qfor alle∈Da∩B(A).ThenA?G,and there isd∈B(A) such thatd∧a∈B(A) (namely,d∈Da∩B(A)) andd∧p≠d∧q,which is a contradiction.HenceDa∈R(A). □

    Theorem 3.27A′′is the maximal residuated lattice of quotients ofA.

    (4) Proof of the maximality ofA′′.LetA?G(G is a residuated lattice).ThenB(A) ?B(G).Fort∈G,Dt={e∈B(A)|e∧t∈B(A)} ?D(B(A)) ∩R(A).It is easy to check thatht:DtA,ht=t∧xis a multiplier.If we definei:GA′′,i(t)=[ht,Dt] for everyt∈G,theni(0)=0.For anyt,s∈Gandx∈Dt∩Ds,(i(t)⊙i(s))(x)=(t∧x)⊙(x→s∧x)=t⊙x⊙(x→s∧x)=t⊙[x⊙(x→s∧x)]=t⊙[x⊙(1 ⊙x→s⊙x)]=t⊙[x⊙(1 →s)]=t⊙(x⊙s)=t⊙(x∧s)=(t∧s)∧x=i(t⊙s)(x),and (i(t)i(s))(x)=x⊙(i(t)(x) →i(s)(x))=x⊙(ht(x) →hs(x))=x⊙(t∧x→s∧x)=x⊙(x⊙t→s⊙x)=x⊙(t→s)=i(t→s)(x).Similarly,i(t) ∧i(s)=i(t∧s),i(t) ∨i(s)=i(t∨s).In fact,iis injective.Suppose thatt,s∈Gandi(t)=i(s).Then [ht,Dt]=[hs,Ds];that is,ht(x)=hs(x) for anyx∈Dt∩Ds,i.e.,t∧x=s∧x.Ifts,this,together with Lemma 3.25 andA?G,gives that there ise∈B(A)such thate∧t,e∧s∈B(A) ande∧t≠e∧s.However,e∧t,e∧s∈B(A) implies thate∈Dt∩Ds,which is a contradiction.Therefore,the results hold. □

    Corollary 3.28A′′is the maximal □-algebra of quotients ofAprovided thatAis a□-algebra (where □∈{MV,BL,MT L}).

    Example 3.29(1) LetA={0,1} be a Boolean algebra (a special residuated lattice).ThenA?AandB(A)=A.Clearly,Ais a unique element belonging toR(A);that is,the domain ofh∈Mr(A) must be equivalent toA.0A:AA,x0 andidA:0A:AA,xx(for anyx∈A) are all elements that belong toMr(A).Obviously,0A,idAbelongs to a different congruence class,andB={0A,idA} is a residuated lattice.Obviously,for anyMthat satisfies Definition 3.24,we haveM≌A.Moreover,A′′={[0A,A],[idA,A]} is clear andA′′≌A.

    (2) LetAbe the residuated lattice of Example 3.7 (2).By Example 3.20 (2),we haveD1,D2,A∈R(A) andw0,w1,w2,w,v1,v2,v∈Mr(A).It is clear that0A|D1,0A|D2,0A,idA|D1,idA|D2,idA∈Mr(A) and [0A,A]={0A|D1,0A|D2,0A},[idA,A]={idA|D1,idA|D2,idA},[w,A]={w0,w1,w2,w},[v,A]={v1,v2,v}.One can check thatA′′=({[0A,A],[idA,A],[v,A],[w,A]},?,?,⊙,,⊥,?) is not only a residuated lattice,but also the maximal residuated lattice of quotients ofA,where the rule of ?,?,⊙,,⊥,?is just as defined in Lemma 3.21.

    (3) LetA×Bbe the residuated lattice in Example 3.20 (3),which obviously has an infinite number of elements.ThenD1×B,D2×B,A×B∈RD(A×B) andB(A×B)={(0,0),(0,1),(1,0),(1,1),(a1,0),(a1,1),(a3,0),(a3,1)}.It is clear that0A×B((x,y))=(0,0)andidA×B((x,y))=(x,y) are multipliers and that they belong toMr(A×B).Meanwhile,we have that (A×B)′′=({[0A×B,A×B],[idA×B,A×B],[pt,i,A×B] },?,?,⊙,⊥,?) is a residuated lattice,wheret∈B(A×B),i=1,2,3,D3=A,pt,iis the multiplier onA×Bof Example 3.20 (3).Moreover,it is easy to check that (A×B)′′is the maximal residuated lattice of quotients ofA×B,by the same method of Theorem 3.27.Moreover,if we have thatPBis the set of all subsets ofB,thenPBis not only a residuated lattice,but also a complete Boolean algebra,soA×PBis also a residuated lattice andB(A×PB) has infinite members,which implies that there are infinite multipliers belonging toMr(A×PB) (since,at least,such multipliers areh(x,y)=t⊙(x,y) ∈Mr(A×PB),wheret∈B(A×PB)).Hence,one can check that (A×PB)′′,constructed in the same way as Theorem 3.27,forms the maximal residuated lattice of quotients ofA×PB,which has an infinite element.

    4 Implicative Multipliers on Residuated Lattices

    In this section,we discuss the relation of M-multipliers,T-multipliers and PI-multipliers,and present that the algebraPIM(A) of PI-multipliers onAis isomorphic to the algebraMM(A) of M-multipliers onAunder dual-order.

    Definition 4.1A mappingg:A→Aon a residuated latticeAis said to be an implicative multiplier (simplify,I-multiplier) provided that it satisfiesg(x→y)=x→g(y) for allx,y∈A.

    Definition 4.2Letgbe an I-multiplier on a residuated latticeA.Thengis said to be

    (1) an isotone I-multiplier provided thatx≤yimpliesg(x) ≤g(y) for anyx,y∈A;

    (2) an idempotent I-multiplier provided thatg(g(x))=g(x) (that is,g2=g) for anyx∈A.

    Example 4.3(1)idAandg(x)=1 for anyx∈A(simplify,1) are I-multipliers onA.

    (2)gp(x)=p→xis an I-multiplier onA,wherep∈A.gp(x) is called a principal I-multiplier (simplify,PI-multiplier) onAand every PI-multiplier is isotone.

    (3) LetA={0,a,b,1},0<a <b <1 and ⊙,→be defined as follows:

    Then (A,∧,∨,⊙,→,0,1) is a residuated lattice.Now,we define a mapgonAas follows:

    One can check thatgis an I-multiplier onA,but not isotone.

    (4) LetAbe the residuated lattice of Example 3.2 (3),and defineg,gbonAas follows:

    Thengis an isotone and idempotent I-multiplier onA.gb(x) is an isotone I-multiplier,but not idempotent.

    (5) LetAbe the residuated latticeAtin Example 3.2 (5).Thenis an isotone I-multiplier onAt,but not idempotent.However,whenAis the residuated lattice of Example 3.7 (4),we can get that the mappinggt(x)=t→xis an isotone and idempotent I-multiplier,wheretis a fixed number in an open interval (0,1).

    Denote the set of all I-multipliers onAbyIM(A) and all PI-multipliers byPIM(A).

    Lemma 4.4Letf∈MM(A).Then there exists an I-multiplierg∈PIM(A) such that(f,g) forms a Galois connection.

    ProofLetf∈MM(A).Thenf(y)=f(1) ⊙y,for anyy∈A.Assume thatf(y) ≤x.Then we can get thatf(1) ⊙y≤xiffy≤f(1) →x=gf(1)(x) (wheregf(1)(x) ∈PIM(A)).Taking this together with Proposition 2.3 (3) and Example 4.3 (2),we easily obtain that(f,gf(1)) forms a Galois connection. □

    According to Proposition 3.13,Theorem 3.15 (2),Example 4.3 (3) and Lemma 4.4,it is easy to get the following diagram:

    Proposition 4.5Leta,b∈A.Then,for anyx,y∈A,

    (1)ga(x∧y)=ga(x) ∧ga(y),

    (2)a≤biffgb≤ga,

    (3)abimpliesga≠gb,

    (4)ga°gb=ga⊙b=gb°ga,

    (5)ga?gb=ga∨b,

    (6) ifAis a BL-algebra,thenga?gb=ga∧b.

    ProofBy Lemma 4.4,Lemma 3.3 and Proposition 2.3 (3),(7),items (1)–(3) are obvious.Items (4)–(6) are straightforward,by Proposition 2.3 (5),(7),(10). □

    Corollary 4.7Let (A,∧,∨,⊙,→,0,1) be aBL-algebra (or anMV-algebra).Then(PIM(A),≤op,?op,?op,°,?,1,idA)≌(MM(A),?,?,?,?,,0A,idA)≌A(≤op:=≥,?op:=?,?op:=?).

    ProofProposition 4.5 (5)–(6),Corollary 3.5 and Theorem 4.6 directly indicate the results.□

    Corollary 4.8Let (A,∧,∨,*,0,1) be a Boolean algebra.Then (PIM(A),?,?,,g1,g0)forms a Boolean algebra,which is isomorphic to (A,∨,∧,*,0,1) (wherega:=ga*).

    ProofBy Proposition 2.4 (1)–(5) and Proposition 2.3 (7),we can get thatga(x ?y)=ga(x)?ga(y),ga?ga*=g0andga?ga*=g1,where?∈{∧,∨,⊙,→}.From this,together with Proposition 4.5 (5-6) and Theorem 4.6,we conclude that the result hold. □

    Finally,we present some examples to illustrate the relation betweenMM(A) andPI(A).

    Example 4.9(1) LetAbe the residuated lattice of Example 3.2 (3).Define mapsf,g,honAbyf(x)=a⊙x,g(x)=b⊙x,h(x)=c⊙x,respectively.ThenMM(A)={0A,f,g,h,idA}and0A≤f≤g≤h≤idA.Moreover,we have the following:

    Hence,(MM(A),?,?,?,?,,0A,idA) is a residuated lattice.

    Obviously,PIM(A)={idA,ga,gb,gc,1} andidA≤gc≤gb≤ga≤1;that is,1 ≤opga≤opgb≤opgc≤opidA.Meanwhile,we have

    5 Conclusions

    In this paper,motivated by previous research on multipliers on MV-algebras,BE-algebras and BL-algebras,we extended the concept of multipliers to the more general fuzzy structures,namely residuated lattices.The paper has introduced some multipliers on residuated lattices and investigated the relations between them.We concluded that the setMM(A) of all multiplicative multipliers on a residuated latticeAis a residuated lattice and is isomorphic toA.Each semi-idealised M-multiplier onMV-algebraAcorresponds to an ideal ofA.Moreover,the setT M(A) of all total multipliers onAis a Boolean subalgebra ofMM(A) and is isomorphic toB(A).Meanwhile,the paper has shown thatA′′is the maximal residuated lattice of the quotient for a residuated latticeA.Finally,the paper has shown that the algebraPIM(A) of PI-multipliers on a residuated latticeAis isomorphic toMM(A) under the opposite order.

    猜你喜歡
    王偉
    “平行線及其判定”初試鋒芒
    Effects of heterogeneous adoption thresholds on contact-limited social contagions
    小 蝌 蚪 的 尾 巴
    Convection: a neglected pathway for downward transfer of wind energy in the oceanic mixed layer*
    王偉:寄情山水?dāng)⑧l(xiāng)愁
    藝術(shù)百家 王偉
    警察街頭“捉”小孩“捉”住就開點(diǎn)贊單
    這個(gè)英國人在長城撿垃圾22年
    新西蘭地震震出上萬只超級大鮑魚
    王偉宋 勇者的重生
    怎么达到女性高潮| 国产伦在线观看视频一区| 变态另类成人亚洲欧美熟女| 亚洲精品一区av在线观看| 亚洲精品色激情综合| 国产精品 国内视频| xxxwww97欧美| 成人精品一区二区免费| 一区二区三区高清视频在线| 一二三四社区在线视频社区8| 中国美女看黄片| 最新在线观看一区二区三区| 国产伦在线观看视频一区| 中文字幕av成人在线电影| 美女黄网站色视频| 午夜免费激情av| 国产久久久一区二区三区| 国产免费男女视频| 精品人妻1区二区| 国产黄a三级三级三级人| 日本一二三区视频观看| 精品久久久久久久久久免费视频| 99视频精品全部免费 在线| 在线观看一区二区三区| 一个人观看的视频www高清免费观看| 首页视频小说图片口味搜索| 少妇熟女aⅴ在线视频| 免费看a级黄色片| 琪琪午夜伦伦电影理论片6080| 一本一本综合久久| 久久人妻av系列| 波野结衣二区三区在线 | 色精品久久人妻99蜜桃| 成人18禁在线播放| 中文亚洲av片在线观看爽| 婷婷六月久久综合丁香| 在线观看午夜福利视频| 九色国产91popny在线| h日本视频在线播放| 亚洲自拍偷在线| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲av一区麻豆| 18+在线观看网站| 国产一级毛片七仙女欲春2| 一进一出好大好爽视频| 精品欧美国产一区二区三| 两个人看的免费小视频| 我的老师免费观看完整版| 精品乱码久久久久久99久播| 男人的好看免费观看在线视频| 国产精品永久免费网站| 久久精品91蜜桃| 久久久久久久久大av| 午夜老司机福利剧场| 亚洲国产精品久久男人天堂| 成年版毛片免费区| 久久亚洲精品不卡| 嫁个100分男人电影在线观看| 国产av一区在线观看免费| 激情在线观看视频在线高清| 久久99热这里只有精品18| 天天躁日日操中文字幕| 久久人妻av系列| 成年女人看的毛片在线观看| 国产一区二区激情短视频| 一级作爱视频免费观看| netflix在线观看网站| 久久欧美精品欧美久久欧美| 国产黄色小视频在线观看| 欧美丝袜亚洲另类 | 最新美女视频免费是黄的| 精品不卡国产一区二区三区| 长腿黑丝高跟| av片东京热男人的天堂| 亚洲国产精品合色在线| 久久精品国产清高在天天线| 久久久久国内视频| 最新美女视频免费是黄的| 亚洲 欧美 日韩 在线 免费| 19禁男女啪啪无遮挡网站| av女优亚洲男人天堂| 国产探花在线观看一区二区| 成人国产一区最新在线观看| 一个人免费在线观看电影| 久久精品国产99精品国产亚洲性色| 国产伦在线观看视频一区| 18禁黄网站禁片免费观看直播| 69人妻影院| 一卡2卡三卡四卡精品乱码亚洲| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 欧美成人a在线观看| 色尼玛亚洲综合影院| 国产精品1区2区在线观看.| 精品国产三级普通话版| 亚洲最大成人手机在线| 欧美最黄视频在线播放免费| 亚洲精品在线观看二区| 噜噜噜噜噜久久久久久91| 欧美xxxx黑人xx丫x性爽| 国产视频一区二区在线看| 国产精品一区二区三区四区久久| 久久精品国产清高在天天线| 久久久国产精品麻豆| 一区二区三区免费毛片| bbb黄色大片| 日韩欧美在线二视频| 国产亚洲精品av在线| 日本成人三级电影网站| av中文乱码字幕在线| 免费电影在线观看免费观看| av在线天堂中文字幕| 真人一进一出gif抽搐免费| 欧美一级毛片孕妇| 窝窝影院91人妻| 一区二区三区激情视频| 亚洲成人中文字幕在线播放| 美女高潮喷水抽搐中文字幕| 精品熟女少妇八av免费久了| 免费看光身美女| 最新中文字幕久久久久| 一区二区三区免费毛片| 亚洲国产欧美网| 亚洲自拍偷在线| 免费搜索国产男女视频| 国产成人av激情在线播放| 国产高潮美女av| 露出奶头的视频| 又爽又黄无遮挡网站| 老熟妇乱子伦视频在线观看| 久久精品影院6| 国产成人av教育| 国产午夜精品论理片| 在线观看一区二区三区| 久久久久九九精品影院| 亚洲成av人片在线播放无| 亚洲国产精品999在线| 色播亚洲综合网| 久久久久精品国产欧美久久久| 动漫黄色视频在线观看| 欧美性感艳星| 一本精品99久久精品77| 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放| 国产av一区在线观看免费| 麻豆久久精品国产亚洲av| 欧美性猛交黑人性爽| 国产97色在线日韩免费| 在线天堂最新版资源| АⅤ资源中文在线天堂| 国产中年淑女户外野战色| 一个人看视频在线观看www免费 | 日本在线视频免费播放| 99国产极品粉嫩在线观看| 国产伦人伦偷精品视频| 脱女人内裤的视频| 五月伊人婷婷丁香| 国产美女午夜福利| 国产精品亚洲一级av第二区| 最近视频中文字幕2019在线8| 中出人妻视频一区二区| 人妻夜夜爽99麻豆av| 天天添夜夜摸| 国产色爽女视频免费观看| ponron亚洲| 国产精品女同一区二区软件 | 国产中年淑女户外野战色| 757午夜福利合集在线观看| 欧美黄色片欧美黄色片| 三级毛片av免费| 成人国产综合亚洲| 88av欧美| 色av中文字幕| 亚洲 国产 在线| 99国产精品一区二区蜜桃av| 精品久久久久久久久久久久久| 日韩欧美 国产精品| 欧美性感艳星| 亚洲欧美日韩高清在线视频| 亚洲精品成人久久久久久| 日韩欧美精品免费久久 | 亚洲专区中文字幕在线| 性色avwww在线观看| 久久久久久久久中文| 国产精品香港三级国产av潘金莲| 熟女人妻精品中文字幕| 欧美日韩综合久久久久久 | 在线观看av片永久免费下载| 母亲3免费完整高清在线观看| 两个人看的免费小视频| 最新中文字幕久久久久| 亚洲欧美激情综合另类| 成年女人看的毛片在线观看| 丝袜美腿在线中文| 中文字幕av在线有码专区| 国产不卡一卡二| 亚洲av免费高清在线观看| 韩国av一区二区三区四区| 日韩欧美一区二区三区在线观看| 久久精品国产99精品国产亚洲性色| 国产精品久久久久久久电影 | 欧美日韩精品网址| or卡值多少钱| 国产在线精品亚洲第一网站| 热99在线观看视频| 99久久精品国产亚洲精品| 757午夜福利合集在线观看| 波多野结衣高清作品| 美女 人体艺术 gogo| 手机成人av网站| 一区福利在线观看| 日韩高清综合在线| 国内精品一区二区在线观看| 日韩欧美三级三区| 免费av毛片视频| 欧美日韩一级在线毛片| 国语自产精品视频在线第100页| 亚洲精品美女久久久久99蜜臀| 色视频www国产| 精品国产亚洲在线| 亚洲精华国产精华精| 成人一区二区视频在线观看| 日本 av在线| 欧美日韩福利视频一区二区| 三级男女做爰猛烈吃奶摸视频| 国产私拍福利视频在线观看| 性色avwww在线观看| 成熟少妇高潮喷水视频| 国产色婷婷99| 欧美高清成人免费视频www| 精品国产亚洲在线| 天堂动漫精品| 国产亚洲av嫩草精品影院| 亚洲av电影不卡..在线观看| 成人永久免费在线观看视频| 精品久久久久久,| 最近最新中文字幕大全免费视频| 少妇的丰满在线观看| 一本综合久久免费| 亚洲真实伦在线观看| 亚洲国产欧美人成| 性色avwww在线观看| 老司机福利观看| 国产乱人伦免费视频| 国产一区二区在线观看日韩 | 国产aⅴ精品一区二区三区波| 国产精品久久久久久久电影 | 首页视频小说图片口味搜索| 内射极品少妇av片p| 国内揄拍国产精品人妻在线| 三级毛片av免费| 午夜两性在线视频| 久久久久久久精品吃奶| 久久久久免费精品人妻一区二区| 成年女人永久免费观看视频| 国产成人av激情在线播放| 一a级毛片在线观看| 黄色片一级片一级黄色片| 久久久久免费精品人妻一区二区| 国产国拍精品亚洲av在线观看 | 国产乱人视频| 国产精华一区二区三区| 少妇高潮的动态图| 亚洲无线在线观看| 天堂网av新在线| 国产不卡一卡二| 无人区码免费观看不卡| 麻豆久久精品国产亚洲av| 一个人观看的视频www高清免费观看| 99久久99久久久精品蜜桃| 国产私拍福利视频在线观看| 久久伊人香网站| 精品人妻1区二区| 免费观看的影片在线观看| 特级一级黄色大片| 淫秽高清视频在线观看| 国产激情偷乱视频一区二区| 99精品欧美一区二区三区四区| 国产成人欧美在线观看| 国产精品影院久久| 可以在线观看的亚洲视频| 亚洲中文字幕日韩| 母亲3免费完整高清在线观看| 韩国av一区二区三区四区| АⅤ资源中文在线天堂| 精品一区二区三区av网在线观看| 国产伦精品一区二区三区视频9 | 午夜福利在线在线| 黄色片一级片一级黄色片| 全区人妻精品视频| 日本a在线网址| av专区在线播放| 男女做爰动态图高潮gif福利片| 亚洲成a人片在线一区二区| 亚洲电影在线观看av| 欧美成人性av电影在线观看| 欧美日本视频| 亚洲精品国产精品久久久不卡| 一本精品99久久精品77| 色综合亚洲欧美另类图片| 老司机午夜福利在线观看视频| 嫩草影视91久久| 一本一本综合久久| 精品一区二区三区视频在线观看免费| 久久精品91无色码中文字幕| 黄色成人免费大全| 91久久精品国产一区二区成人 | 亚洲国产欧美人成| 成人鲁丝片一二三区免费| 丝袜美腿在线中文| 精品久久久久久久久久免费视频| 国产高清视频在线播放一区| 久久久久久久午夜电影| 在线看三级毛片| 久久久久久久久中文| 无遮挡黄片免费观看| 偷拍熟女少妇极品色| 亚洲精品456在线播放app | 天天躁日日操中文字幕| 精品国内亚洲2022精品成人| 欧美av亚洲av综合av国产av| 一个人观看的视频www高清免费观看| 国产av一区在线观看免费| 亚洲专区国产一区二区| 国产色爽女视频免费观看| 欧美一区二区精品小视频在线| 免费av毛片视频| 久久久久国内视频| 欧美最黄视频在线播放免费| 男女下面进入的视频免费午夜| 亚洲人成电影免费在线| 色老头精品视频在线观看| 国产欧美日韩一区二区三| 久久久色成人| 国产成人av激情在线播放| 午夜福利欧美成人| 男人和女人高潮做爰伦理| 久久精品国产综合久久久| 亚洲av免费在线观看| 一级黄片播放器| 欧美+日韩+精品| 18禁国产床啪视频网站| 国产日本99.免费观看| 99国产精品一区二区三区| 一进一出好大好爽视频| 精品无人区乱码1区二区| 亚洲av五月六月丁香网| 午夜福利欧美成人| 真人一进一出gif抽搐免费| 亚洲国产日韩欧美精品在线观看 | а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 小蜜桃在线观看免费完整版高清| 香蕉av资源在线| 亚洲人成电影免费在线| 久久精品国产综合久久久| 国产乱人视频| 国产精品女同一区二区软件 | 99国产极品粉嫩在线观看| 狠狠狠狠99中文字幕| 尤物成人国产欧美一区二区三区| 久久久久久九九精品二区国产| 制服丝袜大香蕉在线| 亚洲第一电影网av| 国产一区二区三区视频了| 制服丝袜大香蕉在线| 一级毛片女人18水好多| 日本在线视频免费播放| 亚洲男人的天堂狠狠| 精品人妻1区二区| 丰满乱子伦码专区| 欧美国产日韩亚洲一区| 亚洲自拍偷在线| 美女cb高潮喷水在线观看| 国产精品野战在线观看| 国产主播在线观看一区二区| 97超级碰碰碰精品色视频在线观看| 国产视频一区二区在线看| 女生性感内裤真人,穿戴方法视频| 午夜福利成人在线免费观看| 我的老师免费观看完整版| 成人午夜高清在线视频| 国产色婷婷99| 欧美bdsm另类| 狂野欧美白嫩少妇大欣赏| 99久久九九国产精品国产免费| 国产黄a三级三级三级人| 色尼玛亚洲综合影院| 亚洲av成人不卡在线观看播放网| 亚洲五月天丁香| 欧美日本视频| 十八禁网站免费在线| 成人国产综合亚洲| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 久久国产精品影院| 国产精华一区二区三区| 我的老师免费观看完整版| 欧美日韩福利视频一区二区| 伊人久久大香线蕉亚洲五| 亚洲人与动物交配视频| 97碰自拍视频| 国产97色在线日韩免费| 最新中文字幕久久久久| av黄色大香蕉| 国产av不卡久久| 亚洲欧美日韩高清在线视频| 欧美性猛交黑人性爽| 人人妻人人看人人澡| 国产一区二区激情短视频| 麻豆一二三区av精品| a级毛片a级免费在线| 香蕉久久夜色| 久久6这里有精品| 天天一区二区日本电影三级| 男女视频在线观看网站免费| 亚洲国产高清在线一区二区三| 1024手机看黄色片| 国产高清视频在线播放一区| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| 狂野欧美激情性xxxx| 欧美在线黄色| 高清在线国产一区| 国产国拍精品亚洲av在线观看 | 午夜免费成人在线视频| 久久精品国产99精品国产亚洲性色| 日韩 欧美 亚洲 中文字幕| 国产精品永久免费网站| 一二三四社区在线视频社区8| 一级毛片女人18水好多| 国产精品精品国产色婷婷| 日本熟妇午夜| 免费搜索国产男女视频| 午夜福利在线观看免费完整高清在 | 深爱激情五月婷婷| 99国产精品一区二区三区| 久久久久久久精品吃奶| 精品国产亚洲在线| x7x7x7水蜜桃| 精品久久久久久,| 亚洲久久久久久中文字幕| 色吧在线观看| 免费一级毛片在线播放高清视频| 最近视频中文字幕2019在线8| 免费看光身美女| 日韩av在线大香蕉| 欧美日韩黄片免| 国产中年淑女户外野战色| 午夜福利18| 欧美另类亚洲清纯唯美| 国产欧美日韩一区二区三| 啦啦啦观看免费观看视频高清| a级毛片a级免费在线| 国产精品亚洲美女久久久| 一个人观看的视频www高清免费观看| 午夜两性在线视频| 可以在线观看的亚洲视频| 亚洲成人久久性| 给我免费播放毛片高清在线观看| 深夜精品福利| 国产单亲对白刺激| 久久这里只有精品中国| 精品一区二区三区av网在线观看| 成年女人永久免费观看视频| 99国产精品一区二区三区| 天天躁日日操中文字幕| 亚洲成人久久性| 在线看三级毛片| 国产真人三级小视频在线观看| 中文字幕人妻熟人妻熟丝袜美 | 国产亚洲精品一区二区www| 亚洲av熟女| 九九在线视频观看精品| 久久性视频一级片| 亚洲av成人不卡在线观看播放网| 91麻豆av在线| 男女床上黄色一级片免费看| 一级毛片高清免费大全| 91在线精品国自产拍蜜月 | 成人性生交大片免费视频hd| 国产午夜精品久久久久久一区二区三区 | 99久久99久久久精品蜜桃| 搡老妇女老女人老熟妇| 在线天堂最新版资源| 成人性生交大片免费视频hd| 精品久久久久久,| av黄色大香蕉| 淫秽高清视频在线观看| 国产精品一区二区三区四区免费观看 | 亚洲最大成人中文| 午夜免费激情av| 日韩精品青青久久久久久| 首页视频小说图片口味搜索| 国产精品一及| av专区在线播放| 在线观看美女被高潮喷水网站 | 97碰自拍视频| 欧美另类亚洲清纯唯美| 99在线人妻在线中文字幕| 欧美一级a爱片免费观看看| 久久久久久久久久黄片| 男女那种视频在线观看| 黄片小视频在线播放| 午夜久久久久精精品| 亚洲,欧美精品.| 制服人妻中文乱码| 精华霜和精华液先用哪个| 久99久视频精品免费| 身体一侧抽搐| 亚洲av免费高清在线观看| 精品一区二区三区视频在线观看免费| 18禁裸乳无遮挡免费网站照片| 久久久久国产精品人妻aⅴ院| 淫秽高清视频在线观看| 99久久99久久久精品蜜桃| 我要搜黄色片| 国产成+人综合+亚洲专区| 天美传媒精品一区二区| 国产午夜精品论理片| 国产成人欧美在线观看| 久久国产乱子伦精品免费另类| 国产97色在线日韩免费| 国产真实伦视频高清在线观看 | 十八禁网站免费在线| 日韩大尺度精品在线看网址| 亚洲精品色激情综合| 欧美一级a爱片免费观看看| 免费高清视频大片| 真实男女啪啪啪动态图| 欧美黑人欧美精品刺激| 一级毛片女人18水好多| 久久久久久久午夜电影| 国产亚洲精品综合一区在线观看| 亚洲无线在线观看| 色综合婷婷激情| 免费观看人在逋| 欧美精品啪啪一区二区三区| 久久久久国内视频| 国内少妇人妻偷人精品xxx网站| 在线看三级毛片| 国产一区二区在线观看日韩 | 黄色成人免费大全| 国产精品 国内视频| 欧美最新免费一区二区三区 | 日韩 欧美 亚洲 中文字幕| 亚洲欧美精品综合久久99| 欧美av亚洲av综合av国产av| 中出人妻视频一区二区| www日本黄色视频网| 成人亚洲精品av一区二区| 99久久精品热视频| 国产 一区 欧美 日韩| 在线免费观看的www视频| 中文字幕人妻熟人妻熟丝袜美 | 真实男女啪啪啪动态图| 一二三四社区在线视频社区8| 美女被艹到高潮喷水动态| 亚洲av电影在线进入| 国产亚洲精品av在线| 日本免费a在线| 欧美日韩瑟瑟在线播放| 国产精品久久视频播放| 欧美三级亚洲精品| 亚洲人成电影免费在线| 日本五十路高清| 欧美一级毛片孕妇| 久久精品夜夜夜夜夜久久蜜豆| 欧美大码av| 十八禁网站免费在线| 精品久久久久久久人妻蜜臀av| 欧美性猛交╳xxx乱大交人| 国产精品久久久久久久电影 | 久久中文看片网| 无限看片的www在线观看| 给我免费播放毛片高清在线观看| 一级a爱片免费观看的视频| 人妻丰满熟妇av一区二区三区| 搡老妇女老女人老熟妇| 国产黄片美女视频| 99riav亚洲国产免费| ponron亚洲| 久久精品国产99精品国产亚洲性色| 色综合亚洲欧美另类图片| 午夜日韩欧美国产| 久久性视频一级片| 欧美bdsm另类| 欧美高清成人免费视频www| 一本久久中文字幕| 国产真人三级小视频在线观看| 麻豆一二三区av精品| 一边摸一边抽搐一进一小说| 亚洲欧美日韩无卡精品| 国产激情欧美一区二区| 天天躁日日操中文字幕| 国产av在哪里看| 国内精品久久久久精免费| 母亲3免费完整高清在线观看| 亚洲精品在线观看二区| 久久久精品大字幕| 99国产精品一区二区蜜桃av| 男人舔奶头视频| 亚洲人成网站高清观看| 丝袜美腿在线中文| 午夜福利在线在线| 高潮久久久久久久久久久不卡| 亚洲黑人精品在线| 国产精品影院久久| 夜夜躁狠狠躁天天躁| 亚洲aⅴ乱码一区二区在线播放| 波多野结衣高清无吗| 国产精品一区二区免费欧美| 日韩av在线大香蕉| 2021天堂中文幕一二区在线观| 免费人成在线观看视频色|