• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PROBING A STOCHASTIC EPIDEMIC HEPATITIS C VIRUS MODEL WITH A CHRONICALLY INFECTED TREATED POPULATION*

    2022-11-04 09:07:08RAJASEKARPITCHAIMANI

    S.P.RAJASEKAR M.PITCHAIMANI

    1.Ramanujan Institute for Advanced Study in Mathematics,University of Madras,Chennai -600 005,Tamil Nadu,India;

    2.Department of Mathematics,Government Arts College for Women,Nilakottai -624 202,Tamil Nadu,India

    E-mail: sekaraja.sp@gmail.com;mpitchaimani@yahoo.com

    Quanxin ZHU (朱全新)?

    CHP-LCOCS,School of Mathematics and Statistics,Hunan Normal University,Changsha 410081,China

    E-mail: zqx22@126.com

    Abstract The hepatitis C virus is hitherto a tremendous threat to human beings,but many researchers have analyzed mathematical models for hepatitis C virus transmission dynamics only in the deterministic case.Stochasticity plays an immense role in pathology and epidemiology.Hence,the main theme of this article is to investigate a stochastic epidemic hepatitis C virus model with five states of epidemiological classification: susceptible,acutely infected,chronically infected,recovered or removed and chronically infected,and treated.The stochastic hepatitis C virus model in epidemiology is established based on the environmental influence on individuals,is manifested by stochastic perturbations,and is proportional to each state.We assert that the stochastic HCV model has a unique global positive solution and attains sufficient conditions for the extinction of the hepatotropic RNA virus.Furthermore,by constructing a suitable Lyapunov function,we obtain sufficient conditions for the existence of an ergodic stationary distribution of the solutions to the stochastic HCV model.Moreover,this article confirms that using numerical simulations,the six parameters of the stochastic HCV model can have a high impact over the disease transmission dynamics,specifically the disease transmission rate,the rate of chronically infected population,the rate of progression to chronic infection,the treatment failure rate of chronically infected population,the recovery rate from chronic infection and the treatment rate of the chronically infected population.Eventually,numerical simulations validate the effectiveness of our theoreticalconclusions.

    Key words hepatitis C virus;acute and chronically infected;chronically infected treated;extinction;stationary distribution

    1 Introduction

    The hepatitis C (HCV) virus is a hepatotropic RNA virus that accelerates liver fibrosis,cirrhosis and causes hepatocellular carcinoma (HCC),and is a major threat for liver cancer related mortality worldwide among the human population [1].Flaviviridae is a family of single positive stranded RNA viruses,which contains three genera: flaviviruses,pestiviruses and hepaciviruses [1,2,7,9,10].HCV is a blood-borne virus that induces both acute and chronic infection,and which can lead to chronic liver disease.HCV infection is chiefly transmitted by the transfusion of contaminated blood or blood products;this can occur with contaminated needles/syringes,unsafe injection practice,skin-piercing mechanisms and through injecting drug use (IDU) [3].Heavy alcohol ingestion (as opposed to social drinking) remains a pivotal risk factor for the growth of HCC [3,4,7,8].Exposure to blood during sex may amplify the possibility of HCV [11,12].Generally,HCV infected individuals are asymptomatic until two weeks to six months after transmission (incubation period) [2].No effective prophylactic vaccine against HCV has yet been found,though research by medical scientists continues [6].

    After the incubation period of HCV RNA virus within the blood,the acute HCV infection develops as chronic hepatitis C,which is generally sub-clinical [3].At this stage of acute infection,nearly 80% of infected individuals do not exhibit symptoms [5],though certain symptoms can be determined in a minority of acute infected individuals: fatigue,loss of appetite,fever,nausea,vomiting,abdominal discomfort,anorexia,dark-urine and jaundice.Untreated,60-80% of acute HCV individuals may eventually progress to chronic HCV infection.Most chronic HCV sufferers are asymptomatic until potential complications such as cirrhosis,liver damage,liver failure and liver cancer evolve [1,5,13].The Center for Disease Control and Prevention(CDC) reports that approximately 10-20% of people with chronic untreated HCV ultimately wind up with liver cirrhosis,which can cause complications like jaundice,ascites,the need for a liver transplant,hepatic encephalopathy,swelling in the ankles/feet,bleeding from esophageal varices and death [1–4,8,10].

    The HCV viral genome is a single-stranded RNA with a positive polarity of nearly 10,000 nucleotides;it is packed with a core protein and enveloped in a lipid bi-layer in which two envelope glycoproteins (E1 and E2) frame the HCV virions.It is spherical and about 45-65 nm in diameter [1,2,9].The HCV genomic RNA has a long open reading frame (ORF) of about 9,000 nucleotides;the ORF produces a polyprotein of nearly 3,000 amino acids.The ORF is flanked by 5′and 3′untranslated regions (UTR) vital for viral translation and replication [2,10].The three structural proteins,like the core and envelope glycoproteins E1 and E2,include those related to viral particle production.There are seven nonstructural proteins including p7,NS2,NS3,NS4A,NS4B,NS5A and NS5B;these allow viral processing and replication,along with particle assembly [1,10].The host of low-density lipoproteins (LDLs) and verylow-density lipoproteins (VLDLs) are known as lipoviroparticles,and they are associated with HCV virions.Lipoviroparticles contain Apolipoprotein B (APOB),APOC,and APOE also.Low ailing infectious non-enveloped viral capsids may persist in the blood of infected individuals[1].

    HCV is a high genetic heterogeneous virus.Phylogentic analysis of HCV has revealed 7 main genotypes in different regions of the world that vary in their nucleotide level by 30%,and a large number of subtypes that vary in their nucleotide level by 15-25% [1].Subtypes of the genotypes are labeled as 1a,1b and so on.A global survey carried out recently discovered the genotypes 1 and 3 are the most rampant,claiming up to 46% and 30% of all infections,respectively;genotypes 2,4,5 and 6 accounted for 9%,8%,1% and 6%,respectively [7–10].Genotype 7 has been identified in only a very few individuals from Central Africa [18].Across Europe,about 90% of all cases are genotypes 1,2 and 3;genotypes 1 and 3 have a conspicuous presence in most European countries,though genotype 2 is mostly present in Italy;genotypes 4 and 5 have an escalating presence,but genotype 6 is scarcely seen.In many of the American countries the majority of infections are genotype 1 (1a and 1b);the rest are genotypes 2 (particularly 2a) and 3a.Genotype 3 is discovered rarely in Africa;here genotypes 1,2 and 4 are the most rampant in North and Central Africa,genotypes 1 and 5 dominate South Africa,and genotypes 4 and 5 are the most rampant in North East and Central Africa.A great part of infections in the Indian subcontinent and Thailand are of genotype 3,including innumerable subtypes as originally confirmed in samples from Nepal.Genotype 6 is discovered in 10-20% of the population in many regions of East and South East Asia with a high presence of subtype 6a.To sum up,genotype 1 (1a and 1b) is the most rampant,followed by subtype 3a,which is found primarily in Russia and Australia/New Zealand [7–10,18].

    Pretreatment analyses required for anti-HCV treatment can consist of interferon (INF),determination of HCV genotype,determining the present status of the disease (acute,chronic),assessing the stage of liver disease (fibrosis,cirrhosis),considerations of alcohol addiction,evaluation of the immune system,and assessment for HIV/HBV co-infection and co-morbidities[9,13].These days,combinations of direct-acting antivirals (DAAs) have widely replaced INF based therapy [13].In 1998 and 2001,INF plus ribavirin (RBV) and pegylated (Peg)-IFNs plus an RBV antiviral agent was the standard of care,but those were unable to wipe out chronic HCV infection.On the other hand,sustained virologic response (SVR,defined as no discernible HCV RNA in the blood circulation 12-24 weeks after antiviral therapy cease)achieved average cure rates of 42-45%,65-85%,and 70-80% of infected patients with HCV GT1;GT4,GT5 or GT7;and GT2 or GT3,respectively [1,7,9,13].In November 2013,NS3/4A and NS5A protease inhibitors (simeprevir) were endorsed by the Food and Drug administration (FDA) and this was followed December 2013 by another NS5B polymerase inhibitor(sofosbuvir-SOF).Combining two (simeprevir and SOF) or three DAAs provides excellent tolerability and safety for HCV patients with HCV GT1,and cure rates are 90-100% are attained[13].Combinations with SOF/ledipasvir (NS5A replication complex inhibitors) and ombitasvir(NS5A)/paritaprevir (NS3/4A protease inhibitors)/r+dasabuvir (nonnucleoside inhibitor of NS5B) were endorsed by the FDA in October and December 2014,respectively [9,13].In July 2015,SOF+daclatasvir (DCV;NS5A replication inhibitors)+RBV achieved very high SVR rates (95%) in patients with HCV GT1 with excellent tolerabilty and safety.In 2016,the FDA approved elabasvir/grazoprevir to treat chronic HCV patients in the USA and Europe,and SOF/velpatasvir (VEL;NS5A replication inhibitors) ± RBV regimens reached 50-100%in chronic HCV patients with good tolerability [1,9,13].Finally,SOF+RBV reached high SVR rates in chronic HCV patients with GT1,and furthermore,was revealed to be effective in individuals with GT4,GT5 or GT7 infection [9].

    This segment focuses on HCV as a stealth virus,one that in the course of the infection attacks the command and control point of the immune system,the CD4 helper T cells,by eliminating epitopes that deregulate antiviral Type 1 cytokines like interleukin (IL)-2 and interferonγ(IFN-γ) and on-regulate Type 2 cytokines such as MHC class II molecules and chemokines,which nourish host tolerance to HCV.Infection with HCV paves the way for chronic susceptibility in 85% of patients without evidence of active,antiviral immunological responses [2,14].Knowing the means by which HCV sets and maintains infection is also to examining modes of human immunoregulation.The part played by CD4+and CD8+T cells in HCV clearance or disease pathogenesis is,at least,ambiguously understood.Certainly,the fact that infection consistently occurs despite the existence of virus-specific CD4+and CD8+T cells in the liver and the peripheral blood implies that these responses are ineffective for many patients.Both innate and adaptive immune responses are vital for HCV viral eradication.For the innate immune response,natural killer (NK) cells appear to be useful in eliminating HCV infection,and it seems that some kind of NK cell receptor genes (KIR2DL3 and HLA-C1) are related to viral eradication [1,2,14,15].

    CD4 T cells can be partitioned into at least two types,T helper 1 (Th1) and T helper 2 (Th2),these have different roles in the immune response.The role of CD4 T cells which are prominent in viral escape is problematic;it is easier to handle viral escape methodologies from the point of view of the antibody or killer T-cell identification of viral epitopes.A failure to recognize the causes of viral “escape” would bring about a failure in antibody-facilitated clearance or neutralization of infected cells.HCV has developed several techniques for eluding or evading immense response.For instance,the HCV NS3/4A protein can split and neutralize two host indicating processes that react to HCV pathogen-associated molecular designs to instigate the IFN process.IFN-stimulated genes are sterilized during innate HCV infection,but this is not very effective at doing away with the virus [1,14].Rapidly increasing evidence asserts that CD4 T cells can also have a direct impact on virus-infected target cells,varying from cytotoxicity to secretion of antiviral cytokines like IFN-γand tumour necrosis factor-α(TNF-α).On one level,CD8+killer T cells are somehow required for the ultimate extinction of HCV,and killer cell differentiation rests upon Type 1 cytokines.The last that most patients are unable to recover from the disease highlights the fact that CD8 T-cell responses are neutralized.The origins of these cytokines in the liver environment may not fall in line with conventional paradigms.These somewhat paradoxical observations culminate with the observation that there do exist HCV antigens that are able to extinguish the virus from the blood and liver of at least a minor segments of patients.Here it is suggested that suitable intensive immune responses to HCV are possibly to be controlled by CD4+regulatory T cells [14,15].

    Based on HCV viral pathology,reinfection plays as significant a role as primary infection,with respect to infection rate,progression rate,treatment rate and recovery rate (partial or loss of immunity).The treatment model for HCV transmission dynamics [6,17] is given by the following deterministic nonlinear differential system of equations:

    Here Φ=β(I+πP+λπT).

    The biological meaning of all positive parameters and variables in the deterministic HCV model (1.1) are listed in Table 1.

    Table 1 Biological meaning of variables and parameters of deterministic model (1.1)

    The basic reproduction number of the deterministic HCV system (1.1) is

    Consequently,in [6],the deterministic HCV model (1.1) has the following properties:

    · if R0≤1,the deterministic HCV system (1.1) has an infection-free equilibriumE0=(S0,I0,P0,R0,T0)=(Λμ,0,0,0,0),which is globally asymptotically stable on Γ;

    · if R0>1,the deterministic HCV system (1.1) has an endemic equilibriumE1=(S1,I1,P1,R1,T1),which is globally asymptotically stable on Γ.

    The biological processes captured and expressed by mathematical models for disease transmission can be valuable in real life scenarios,but deterministic models can be influenced by environmental white noise or by the presence of uncertainty.The treatment model for HCV system (1.1) is perpetually subject to stochastic effects which occur at all levels,from susceptible to chronically treated populations.Phenomena are inevitably modeled and stochastically perturbed based on environmental white noise,and understanding this is essential for a better understanding of many biological phenomena.Stochasticity impacts upon various biological[22–30,39,40,43,44] and other models [31–36,38].Inspired by the above factors,we put forth the stochastic epidemic HCV model for a chronically treated population.The stochastic epidemic HCV model is on the basis of the influence of the environment on individuals manifested by stochastic perturbations,and it is proportional to each state [22,25,41,42].In this paper,the theoretical findings extend to the analysis of the corresponding deterministic system.

    We construct the following stochastic epidemic HCV model:

    Here Φ is defined in (1.1).

    LetW(t)=(W1(t),W2(t),W3(t),W4(t),W5(t)) be a 5-dimensional Wiener processes defined on the given probability space.The components ofW(t) are supposed to be mutually independent.In the stochastic model (1.2),the non-negative constantsσ1,σ2,σ3,σ4andσ5reflect the intensities of the environmental white noise.

    The rest of this article is organised as follows: in Section 2 we address the existence of global and unique positive solutions to stochastic HCV model (1.2).In Section 3 the sufficient conditions for the extinction of the hepatotropic RNA virus are attained.Section 4 establishes that there is a unique ergodic stationary distribution of the positive solutions of the stochastic HVC model (1.2) under some conditions.In Section 5 the five-dimensional stochastic model of a hepatitis C virus is validated by extensive numerical simulations,and the dynamics of the stochastic HCV system (1.2) are analyzed.

    2 Existence of a Unique Global Positive Solution

    It is first pivotal to discover whether or not the solution has global existenceS(t),I(t),P(t),R(t) andT(t) signify the portion of the population that is susceptible,acutely infected,chronically infected,recovered and chronically infected,and treated,respectively,at timet.Here the main consideration is that the solution to the stochastic HCV system (1.2) is global and positive.

    Theorem 2.1The stochastic HCV system (1.2) has a unique positive solution (S(t),I(t),P(t),R(t),T(t)),with initial values (S(0),I(0),P(0),R(0),T(0)) for allt≥0;the solution will remain inR5+with probability one,namely,(S(t),I(t),P(t),R(t),T(t)) ∈R5+for allt≥0 almost surely.

    ProofRegarding the stochastic HCV system (1.2),its coefficients are locally Lipschitz continuous,so for any initial values (S(0),I(0),P(0),R(0),T(0)) ∈R5+,there exists a unique maximum local solution (S(t),I(t),P(t),R(t),T(t)) ont∈[0,τ*),whereτ*is the explosion time.To show that this solution is global,we should have thatτ*=∞,almost surely (a.s.).We show that (S(t),I(t),P(t),R(t) andT(t)) do not explode to infinity in a finite time.Letν0>1 be adequately large such thatS(0),I(0),P(0),R(0) andT(0) all lie within the intervalFor each integerν >ν0,define the stopping time [21] as

    where throughout the entire paper,we set inf ?=∞(? denotes the empty set).Obviously,τνis increasing asν→∞.Leta.s..Next,we demonstrate thatτ∞=∞,a.s..If this affirmation is false,then there is a constant>0 and anε∈(0,1) such that

    Thus there exists an integerν1≥ν0such that

    whereaandbare positive constants to be resolved later.The non-negativity of theV1function can be seen from (u-1 -lnu) ≥0 for allu >0.

    Utilizing It?o’s formula onV1,we have that

    where C is a positive constant.Thus

    Taking expectations on both sides of (2.3) yields

    Let Ων={τν≤}for allν≥ν1.Then,as stated by (2.1),P(Ων) ≥ε.Observe that for everyω∈Ωνthere exist at leastS(τν,ω) orI(τν,ω) orP(τν,ω) orR(τν,ω) orT(τν,ω) that equals eitherνor,since

    Hence,we have that

    It follows from (2.4) that

    where1Ωνis the indicator function of Ων(ω).Lettingν→∞leads to the contradiction that

    and hence we obtain thatτ∞=∞a.s.,which completes the proof of Theorem 2.1. □

    Remark 2.2In May 2016,the WHO unveiled the ‘Global Health Sector Strategy on Viral Hepatitis,2016-2021’.The strategy laid out a vision of eradicating viral hepatitis as a public health problem,and the global targets being to reduce new viral hepatitis infections by 90% and reduce deaths due to viral hepatitis by 65% by 2030 [20].Hence,it is essential to study the eradication of the hepatotropic RNA virus among chronic infected HCV individuals.This is the subject of the next section.

    3 Extinction of the HCV

    The spread of the disease and the natural mortality rate of the population,and also the intensities of the white noise in the stochastic system (1.2),are the factors that need to be considered to wipe out HCV.First,we shall present a lemma which will be used in our analysis.

    Lemma 3.1Let (S(t),I(t),P(t),R(t),T(t)) be the solution to stochastic HCV system(1.2) with any positive initial values (S(0),I(0),P(0),R(0),T(0)) ∈Then

    The proof of the Lemma 3.1 is similar to that of Lemma 2.1 and Lemma 2.2 in [37],so we omit it.

    Theorem 3.2Let (S(t),I(t),P(t),R(t),T(t)) be the solution of stochastic HCV system(1.2) with any positive initial values (S(0),I(0),P(0),R(0),T(0)) ∈.If

    then the HCV in stochastic system (1.2) is eradicated exponentially with probability one;i.e.,

    By stochastic system (1.2),we have that

    Integrating both sides of (3.4) from 0 tot,with (3.1) and (3.2),we get that

    Integrating both sides of (3.3) from 0 tot,and combining with (3.5) andwe attain that

    which confirms that

    Otherwise,according to (3.4),we have that

    which,together with (3.1),(3.2) and (3.7),yields that

    Remark 3.3Theorem 3.2 shows the eradication of the hepatotropic RNA virus in stochastic HCV system (1.2) when.For instance,we opt for the environmental white noisesσ1=0.1,σ2=0.4,σ3=0.3,σ4=0.3,σ5=0.3 and other parameters as follows:

    Figure 1 Simulations of stochastic HCV model (1.2) with initial conditions (S(0),I(0),P(0),R(0),T(0))=(0.8,0.18,0.12,0.1,0.1).The parameter values used are as given in Remark 3.4,with σ1=0.1,σ2=0.4,σ3=0.3,σ4=0.3 and σ5=0.3.

    Remark 3.4After six months of persistence of hepatitis C RNA virus within the blood,acute HCV individuals will progress to chronic HCV infection.At this stage,they have low levels of immunity.These are the factors regarding the persistence of HCV amongst the population.HCV persistence is addressed in the next section.

    4 Ergodic Stationary Distribution

    When considering epidemiological dynamical systems,we are interested in when the disease will persist and prevail in a population.In this section,we present some theories about stationary distribution (see Has’minskii [19]),and we show that there exists an ergodic stationary distribution which reveals when a disease will persist.LetX(t) be a homogeneous Markov process in Rd,described by the following stochastic differential equation:

    The diffusion matrix is defined as

    Lemma 4.1(see [19]) The Markov processX(t) has a unique ergodic stationary distributionπ(.) if there exists a bounded domainD?Rdwith a regular boundary Γ having the following properties:

    A1: there is a positive numberMsuch that,forx∈D,ξ∈Rd;

    A2: there exists a non-negative C2-functionV(x) such that LVis negative for anyx∈RdD.Then

    wheref(.) is a function integrable with respect to the measureπ.

    Define a parameter

    Theorem 4.2Assuming that,for any initial values (S(0),I(0),P(0),R(0),T(0))∈,stochastic HCV system (1.2) admits a unique stationary distributionπ(.),and it has the ergodic property.

    ProofTo prove Theorem 4.2,it suffices to validate conditions A1and A2of Lemma 4.1.The diffusion matrix of stochastic HCV system (1.2) is given by

    Next,we focus to proving condition A2.Define

    whereci(i=1,2,···,9) are positive constants to be resolved later.By virtue of It’s formula onU1,we get that

    wherec10,c11,c12andc13are positive constants to be determined later.

    From (4.1),we have that

    Consider,k1=c1+c5,k2=c3+c7+c9,k3=c10andk4=c11+c12+c13.It follows that

    Define a C2-functionQ(S,I,P,R,T):→R as

    Moreover,Q(S,I,P,R,T) is not only continuous,but also tends to ∞as (S,I,P,R,T) approaches the boundary ofand as ||(S,I,P,R,T)|| →∞,where ||.|| denotes the Euclidean norm of a point in;consequently,it must be lower bounded and attain this lower bound at a pointin the interior of.Then we can define a non-negative C2-functionas follows:

    Applying It?o’s formula,we have that

    Similarly,we have that

    In view of (4.3),(4.5),(4.6),(4.7),(4.8) and (4.9),we obtain that

    Now we are in position to construct a compact subset D∈such that the condition A2in Lemma 4.1 holds.Define the bounded closed set

    where 0<∈<1 is a sufficiently small constant.In the set D∈,we can choose∈sufficiently small such that the following conditions hold:

    HereFis a positive constant which will be given explicitly in expression (4.19).Conveniently,we can divide D∈into the following ten domains:

    Case 1If (S,I,P,R,T) ∈D1,in view of (4.10),one can see that

    This follows from (4.11).

    Case 2If (S,I,P,R,T) ∈D2,we obtain that

    This follows from (4.4) and (4.12).

    Case 3If (S,I,P,R,T) ∈D3,as a consequence of (4.10),we get that

    which follows from (4.13).

    Case 4If (S,I,P,R,T) ∈D4,from (4.10),we can attain that

    which follows from (4.14).

    Case 5If (S,I,P,R,T) ∈D5,in connection with (4.10),we derive that

    which follows from (4.15).

    Case 6If (S,I,P,R,T) ∈D6,owing to (4.10),we have that

    which follows from (4.16).

    Case 7If (S,I,P,R,T) ∈D7,on account of (4.10),we attain that

    which follows from (4.16).

    Case 8(S,I,P,R,T) ∈D8coupled with (4.10) yields that

    which follows from (4.17).

    Case 9If (S,I,P,R,T) ∈D9,by (4.10),one can obtain that

    which follows from (4.17).

    Case 10If (S,I,P,R,T) ∈D10,by (4.10),one can obtain that

    which follows from (4.17).

    Obviously,from (4.18),(4.20),(4.22),(4.23),(4.24),(4.25),(4.26),(4.27),(4.28) and (4.29),we attain that for a sufficiently small∈,LU(S,I,P,R,T) ≤-1,?(S,I,P,R,T) ∈ D∈.Hence the condition A2of Lemma 4.1 holds.It follows from Lemma 4.1 that stochastic system(1.2) is ergodic and has a unique stationary distributionπ(.).This completes the proof. □

    Remark 4.3Theorem 4.2 affirms that stochastic HCV system (1.2) has a unique ergodic stationary distributionπ(.) if

    Notice that the expression ofconverges with the basic reproduction number R0for the deterministic model (1.1) if the environmental white noise is not taken into account.For example,we fix the parameters as follows: Λ=48500,β=0.025,π=8.47 × 10-5,λ=0.5,μ=0.005,γ=0.5,?=0.4,ζ=0.005,η=0.0007,φ=0.008,ρ=0.5,δ=0.0001,υ=0.8,α=0.9 withσ1=0=σ2=σ3=σ4=σ5.We do this by calculating=1.3366 and R0=1.3369.Otherwise,we choose the above parameters exceptβ=5 × 10-7,π=0.8,μ=0.001,η=0.07 and the environmental white noisesσ1=0.15,σ2=0.14,σ3=0.2,σ4=0.1,σ5=0.2.We have that=1.4405.Figure 2 reflects the first and second segments of the figures,which confirms the existence of the unique stationary distribution of stochastic HCV model (1.2) and the probability distribution of the stationary distribution,respectively.

    Figure 2 The first and second segments of the figures show the existence of the unique stationary distribution of stochastic HCV model (1.2) with initial conditions (S(0),I(0),P(0),R(0),T(0))=(0.8,0.18,0.12,0.1,0.1),and the probability distribution of the stationary distribution,respectively.

    5 Numerical Simulations and Discussions

    In this article,we have explored a stochastic epidemic hepatitis C virus model with a chronically infected treated population.We showed that the stochastic HCV system (1.2) has a unique global positive solution.We attained sufficient conditions for the extinction of the hepatotropic RNA virus.Furthermore,we accomplished sufficient conditions for the existence of a unique ergodic stationary distribution of the positive solutions to the stochastic HCV model(1.2) by obtaining a suitable Lyapunov function.

    For better understanding,the effect of varied environmental noise on the model’s dynamic behavior based on real-life parameters is examined through numerical simulations.We apply Milstein’s Higher order method [45] to find the solution (1.2) with initialS(0)=0.8,I(0)=0.18,P(0)=0.12,R(0)=0.1,T(0)=0.1,and suppose that the unit of time is one day.The stochastic HCV model can be written in terms of the subsequent discretization equations:

    Hereχi,j(i=1,···,5),j=1,2,···,nare the independent Gaussian random variables which follow the distributionN(0,1),and0 reflects the intensities of white noise.Consider the time step Δt=0.02.

    We choose the parameter values of stochastic HCV system (1.2) as given in Table 2 and the intensities of environmental noiseσ1=0.2,σ2=0.2,σ3=0.3,σ4=0.2,σ5=0.3.

    Noting that

    the conditions of Theorem 3.2 are verified (see Figure 3).On the other hand,Theorem 3.2 shows that the HCV in stochastic system (1.2) is eradicated exponentially with probability one.Furthermore,increasing the disease transmission rate from 2.1×10-7to 4×10-4,decreasing the rate of progression to chronic infection,decreasing the treatment failure rate of the chronically infected population etc.,are all factors that can affect the chances of HCV growing from acute infection to chronic infection.Keeping all the parameter values the same as in Table 2,we can expectβ=4 × 10-4,π=0.008,η=0.7,ρ=0.5,δ=0.012,υ=0.34 with the intensities of environmental white noise as follows:

    Figure 3 Simulations of stochastic HCV model (1.2) with initial conditions (S(0),I(0),P(0),R(0),T(0))=(0.8,0.18,0.12,0.1,0.1).The parameter values used are as given in Table 2,with σ1=0.2,σ2=0.2,σ3=0.3,σ4=0.2 and σ5=0.3

    By computation,

    and the conditions of Theorem 4.2 are fulfilled (see Figure 4).Take another set of parameter values the same as in Table 2,exceptβ=0.005,π=6 × 10-4,η=0.7,ρ=0.5,δ=0.012,υ=0.34 withσ1=0.2,σ2=0.1,σ3=0.2,σ4=0.1,σ5=0.2,by determining that=1.2304>1.Note that the small intensities of environmental white noise lead to disease persistence,while large intensities of environmental white noise may be helpful for suppressing disease outbreak and eradicating the hepatotropic RNA virus.

    Table 2 List of parameters

    Figure 4 The existence of the unique stationary distribution of stochastic HCV model (1.2)

    In future work,we will concentrate on some more realistic but complex models,such as considering the effects of impulsive perturbations on system (1.2).Theorem 3.2 shows that the disease in eradicates in acute and chronically infected populations if we have the condition.What is the behavior of stochastic HCV system (1.2) in the case wherein Theorem 3.2? On the other hand,we could put some other environmental noises,like Poisson noise,Lévy noise and so on,into system (1.2),and examine the dynamical performance of the system.

    In any case,mathematical models pertaining to pathology and epidemiology must always keep environmental noise in mind.

    超碰97精品在线观看| 欧美性长视频在线观看| 中文字幕最新亚洲高清| 欧美大码av| 最新美女视频免费是黄的| 亚洲精品久久午夜乱码| 麻豆乱淫一区二区| 国产免费av片在线观看野外av| 日本a在线网址| 亚洲成a人片在线一区二区| av国产精品久久久久影院| 黄色成人免费大全| 丁香欧美五月| 国产有黄有色有爽视频| 亚洲精品乱久久久久久| www日本在线高清视频| 丝瓜视频免费看黄片| 午夜免费观看网址| 日韩大码丰满熟妇| 色尼玛亚洲综合影院| 欧美性长视频在线观看| 国产xxxxx性猛交| 国产精品av久久久久免费| 女警被强在线播放| 亚洲欧美一区二区三区久久| 亚洲国产毛片av蜜桃av| 女性生殖器流出的白浆| 99久久精品国产亚洲精品| 黄色毛片三级朝国网站| 国产精品影院久久| 中文字幕人妻丝袜制服| 欧美日韩亚洲国产一区二区在线观看 | 一本大道久久a久久精品| 精品电影一区二区在线| 国产一区二区三区在线臀色熟女 | 啦啦啦在线免费观看视频4| 日本黄色视频三级网站网址 | 99国产精品99久久久久| 天天躁夜夜躁狠狠躁躁| 极品教师在线免费播放| 两人在一起打扑克的视频| 在线国产一区二区在线| 波多野结衣av一区二区av| 精品久久久久久久毛片微露脸| 免费在线观看黄色视频的| 亚洲精品久久午夜乱码| 乱人伦中国视频| 女人久久www免费人成看片| 一级作爱视频免费观看| 搡老熟女国产l中国老女人| 精品人妻1区二区| 成人亚洲精品一区在线观看| 国产成人欧美在线观看 | 国产成人影院久久av| 久久久久精品国产欧美久久久| 国产精品1区2区在线观看. | 中出人妻视频一区二区| 18禁观看日本| 国产一区二区三区综合在线观看| 中文欧美无线码| 丰满迷人的少妇在线观看| 欧美成人午夜精品| 美女高潮喷水抽搐中文字幕| 欧美日韩成人在线一区二区| 亚洲欧美日韩高清在线视频| 老熟女久久久| 狠狠狠狠99中文字幕| 精品午夜福利视频在线观看一区| 久热爱精品视频在线9| 在线观看一区二区三区激情| 大香蕉久久网| 国产亚洲欧美98| 国产亚洲精品一区二区www | 国产精品一区二区在线不卡| 美女视频免费永久观看网站| 亚洲人成77777在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 99国产精品99久久久久| 国产真人三级小视频在线观看| 国产亚洲精品久久久久5区| 久久精品国产99精品国产亚洲性色 | 天堂中文最新版在线下载| 久久久久久亚洲精品国产蜜桃av| 欧美国产精品va在线观看不卡| 搡老岳熟女国产| 黄频高清免费视频| 国产片内射在线| 黑人巨大精品欧美一区二区mp4| 久久精品aⅴ一区二区三区四区| 亚洲性夜色夜夜综合| 电影成人av| 婷婷丁香在线五月| 久久国产精品影院| 国产精品二区激情视频| 亚洲国产精品一区二区三区在线| av网站在线播放免费| 黄色丝袜av网址大全| 韩国av一区二区三区四区| 久久久久久久国产电影| 久久中文字幕一级| 18禁裸乳无遮挡动漫免费视频| 国产在视频线精品| 国产高清激情床上av| 天堂中文最新版在线下载| 成年女人毛片免费观看观看9 | 久久久国产精品麻豆| 在线观看日韩欧美| 黄色毛片三级朝国网站| 亚洲全国av大片| 日韩三级视频一区二区三区| 成人黄色视频免费在线看| 黑人欧美特级aaaaaa片| 丝袜在线中文字幕| 天天添夜夜摸| av网站在线播放免费| 黄色成人免费大全| 他把我摸到了高潮在线观看| 国产亚洲欧美在线一区二区| 一区二区三区国产精品乱码| 美女福利国产在线| 欧美日韩av久久| 身体一侧抽搐| 午夜免费观看网址| 日本a在线网址| 精品福利永久在线观看| 一区二区三区精品91| 色94色欧美一区二区| 欧美日韩乱码在线| 久久午夜亚洲精品久久| 成年女人毛片免费观看观看9 | 亚洲欧美一区二区三区久久| 亚洲中文字幕日韩| av中文乱码字幕在线| 欧美黄色片欧美黄色片| 男女免费视频国产| 国产精品美女特级片免费视频播放器 | 国产激情欧美一区二区| 久热爱精品视频在线9| 国产精品免费一区二区三区在线 | 亚洲精品一卡2卡三卡4卡5卡| 热99久久久久精品小说推荐| 亚洲人成电影免费在线| 黑人操中国人逼视频| 在线视频色国产色| 中文欧美无线码| 看片在线看免费视频| 乱人伦中国视频| 国产亚洲精品久久久久5区| 欧洲精品卡2卡3卡4卡5卡区| 欧美亚洲日本最大视频资源| 亚洲精品中文字幕一二三四区| svipshipincom国产片| 久久香蕉精品热| 日本黄色日本黄色录像| 大码成人一级视频| 不卡一级毛片| 国产亚洲精品久久久久5区| 亚洲国产中文字幕在线视频| 亚洲中文字幕日韩| 黄色视频,在线免费观看| 老司机福利观看| 一级a爱视频在线免费观看| 国产精品免费一区二区三区在线 | 午夜激情av网站| 亚洲,欧美精品.| 午夜精品久久久久久毛片777| 色播在线永久视频| 精品人妻在线不人妻| 一区二区三区精品91| 99精品在免费线老司机午夜| 搡老岳熟女国产| 亚洲五月天丁香| 久久影院123| 久久婷婷成人综合色麻豆| 视频区欧美日本亚洲| 操美女的视频在线观看| 一二三四在线观看免费中文在| 亚洲久久久国产精品| 欧美日韩福利视频一区二区| 午夜免费观看网址| 热99re8久久精品国产| 99国产精品一区二区三区| 久久久精品免费免费高清| 制服诱惑二区| 成年人午夜在线观看视频| 宅男免费午夜| 久久精品国产99精品国产亚洲性色 | 在线观看免费日韩欧美大片| 国产亚洲精品一区二区www | 国产亚洲精品一区二区www | 成人永久免费在线观看视频| 人妻一区二区av| 精品久久久久久电影网| 欧美日韩av久久| 精品人妻熟女毛片av久久网站| av片东京热男人的天堂| 女同久久另类99精品国产91| 91av网站免费观看| 黄色怎么调成土黄色| 久久精品国产a三级三级三级| 高清黄色对白视频在线免费看| 久久人妻av系列| 天天躁夜夜躁狠狠躁躁| 在线观看午夜福利视频| 人人澡人人妻人| av线在线观看网站| 国产精华一区二区三区| 美国免费a级毛片| 黄色女人牲交| 黄色片一级片一级黄色片| 超碰成人久久| 五月开心婷婷网| 777米奇影视久久| 999久久久精品免费观看国产| 大陆偷拍与自拍| 国产精品 欧美亚洲| 老熟妇仑乱视频hdxx| 精品国产乱码久久久久久男人| 国产人伦9x9x在线观看| 伊人久久大香线蕉亚洲五| 亚洲国产精品一区二区三区在线| 一级毛片高清免费大全| 久久狼人影院| 老司机午夜十八禁免费视频| 亚洲精品在线美女| av网站免费在线观看视频| 精品少妇久久久久久888优播| 99国产极品粉嫩在线观看| 母亲3免费完整高清在线观看| xxxhd国产人妻xxx| 一a级毛片在线观看| 午夜精品在线福利| 曰老女人黄片| 成人亚洲精品一区在线观看| 久久久久久久久免费视频了| 日韩 欧美 亚洲 中文字幕| 后天国语完整版免费观看| 国产免费男女视频| 成年人免费黄色播放视频| 成人国语在线视频| 久久久久久人人人人人| 午夜福利在线观看吧| 日日爽夜夜爽网站| 日韩 欧美 亚洲 中文字幕| 欧美乱妇无乱码| 啦啦啦视频在线资源免费观看| 欧美在线黄色| aaaaa片日本免费| 久久国产精品影院| 亚洲aⅴ乱码一区二区在线播放 | 久久国产乱子伦精品免费另类| 最新的欧美精品一区二区| 亚洲成人手机| 国产欧美日韩精品亚洲av| 久久久国产成人精品二区 | 亚洲精品美女久久av网站| av网站在线播放免费| ponron亚洲| 国产精品 国内视频| 欧美日韩国产mv在线观看视频| 18禁国产床啪视频网站| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播| 电影成人av| 99国产精品99久久久久| a级片在线免费高清观看视频| 欧美黄色淫秽网站| 天天躁夜夜躁狠狠躁躁| 欧美成狂野欧美在线观看| 欧美 亚洲 国产 日韩一| 99精品欧美一区二区三区四区| 国产成人欧美在线观看 | av片东京热男人的天堂| 久久久精品区二区三区| 狠狠狠狠99中文字幕| 久久 成人 亚洲| 他把我摸到了高潮在线观看| 大片电影免费在线观看免费| 精品人妻1区二区| 欧美精品一区二区免费开放| 下体分泌物呈黄色| 老司机影院毛片| 国产精品一区二区在线不卡| 国产主播在线观看一区二区| 老司机福利观看| 国产欧美日韩一区二区三区在线| 亚洲精华国产精华精| 亚洲精品美女久久久久99蜜臀| 女人被狂操c到高潮| 国产一区二区三区视频了| 国产成人精品久久二区二区91| 人人妻人人添人人爽欧美一区卜| 在线观看免费视频网站a站| 日本vs欧美在线观看视频| 黄网站色视频无遮挡免费观看| 中文字幕人妻丝袜制服| 亚洲色图综合在线观看| 一进一出好大好爽视频| 精品午夜福利视频在线观看一区| 久久精品国产a三级三级三级| 18禁裸乳无遮挡免费网站照片 | 亚洲第一青青草原| 久久久国产一区二区| 亚洲精品在线观看二区| 日本一区二区免费在线视频| 女人被躁到高潮嗷嗷叫费观| 最新的欧美精品一区二区| 久久精品亚洲熟妇少妇任你| 91成年电影在线观看| 欧美精品av麻豆av| 国产一区在线观看成人免费| 色婷婷av一区二区三区视频| 每晚都被弄得嗷嗷叫到高潮| 超色免费av| 欧美国产精品va在线观看不卡| 国产三级黄色录像| 一级毛片女人18水好多| 亚洲,欧美精品.| 亚洲avbb在线观看| 99re在线观看精品视频| 亚洲成a人片在线一区二区| 亚洲精品中文字幕在线视频| 亚洲人成电影观看| 女性被躁到高潮视频| 国产精品九九99| www.熟女人妻精品国产| 成年动漫av网址| 国产麻豆69| 欧美日韩黄片免| 丝袜人妻中文字幕| 一二三四在线观看免费中文在| 久久人妻熟女aⅴ| 国内久久婷婷六月综合欲色啪| 91成人精品电影| 女警被强在线播放| 成人国产一区最新在线观看| 男人操女人黄网站| 亚洲精品中文字幕在线视频| 麻豆国产av国片精品| 亚洲五月色婷婷综合| 男女下面插进去视频免费观看| 黑人操中国人逼视频| 久久久水蜜桃国产精品网| 国产成人啪精品午夜网站| 亚洲美女黄片视频| 欧美丝袜亚洲另类 | 国产视频一区二区在线看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成人国产一区在线观看| 欧美大码av| 他把我摸到了高潮在线观看| 黄色丝袜av网址大全| 久热这里只有精品99| 精品久久蜜臀av无| 久久国产精品男人的天堂亚洲| 久久久久久亚洲精品国产蜜桃av| 精品亚洲成国产av| 成人国语在线视频| 在线视频色国产色| 久久久久国产一级毛片高清牌| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产99精品国产亚洲性色 | 国产激情久久老熟女| 村上凉子中文字幕在线| 久久久国产成人精品二区 | 国产有黄有色有爽视频| 午夜福利影视在线免费观看| 国产有黄有色有爽视频| 亚洲自偷自拍图片 自拍| 黄色视频,在线免费观看| 看黄色毛片网站| 99精品欧美一区二区三区四区| av一本久久久久| 国产淫语在线视频| 女人被狂操c到高潮| 韩国精品一区二区三区| 精品熟女少妇八av免费久了| 亚洲全国av大片| 在线观看免费日韩欧美大片| 国产在视频线精品| 国产精品自产拍在线观看55亚洲 | 久久久久久久精品吃奶| av不卡在线播放| 午夜福利在线免费观看网站| 精品高清国产在线一区| 91成年电影在线观看| 亚洲中文日韩欧美视频| 一个人免费在线观看的高清视频| 天天躁日日躁夜夜躁夜夜| 黑丝袜美女国产一区| 少妇猛男粗大的猛烈进出视频| 欧美黑人欧美精品刺激| 黄色怎么调成土黄色| 亚洲精品美女久久久久99蜜臀| 两个人看的免费小视频| 人妻一区二区av| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久人人做人人爽| 久久久国产一区二区| 精品国产一区二区三区四区第35| 多毛熟女@视频| 少妇被粗大的猛进出69影院| 正在播放国产对白刺激| 丰满的人妻完整版| 黄色丝袜av网址大全| 一区二区日韩欧美中文字幕| 国产精品永久免费网站| 丰满的人妻完整版| 搡老乐熟女国产| 欧美午夜高清在线| 亚洲色图综合在线观看| 日韩熟女老妇一区二区性免费视频| 国产激情欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久久久久久毛片微露脸| 亚洲av片天天在线观看| 狠狠狠狠99中文字幕| 美女国产高潮福利片在线看| 亚洲黑人精品在线| 欧美精品亚洲一区二区| 18禁裸乳无遮挡免费网站照片 | 亚洲aⅴ乱码一区二区在线播放 | 国产91精品成人一区二区三区| svipshipincom国产片| 久久天堂一区二区三区四区| 国产日韩一区二区三区精品不卡| 国产精品二区激情视频| 一级毛片高清免费大全| 日本a在线网址| 亚洲一区中文字幕在线| 色精品久久人妻99蜜桃| 亚洲专区国产一区二区| 制服诱惑二区| 极品少妇高潮喷水抽搐| 大码成人一级视频| 18禁国产床啪视频网站| 亚洲精品久久午夜乱码| 人人妻人人澡人人爽人人夜夜| 咕卡用的链子| 免费人成视频x8x8入口观看| 亚洲五月色婷婷综合| 成年人黄色毛片网站| 国产精品98久久久久久宅男小说| 欧美精品人与动牲交sv欧美| 亚洲中文字幕日韩| 免费在线观看黄色视频的| av天堂在线播放| 亚洲第一欧美日韩一区二区三区| 亚洲片人在线观看| 国产在线精品亚洲第一网站| 国产三级黄色录像| 高清欧美精品videossex| 母亲3免费完整高清在线观看| 国产视频一区二区在线看| 欧美日韩视频精品一区| 国产在线一区二区三区精| 国产精品亚洲av一区麻豆| 成年动漫av网址| 欧美大码av| 成年人免费黄色播放视频| 亚洲av成人一区二区三| 最近最新中文字幕大全免费视频| 天堂俺去俺来也www色官网| 国产熟女午夜一区二区三区| 免费看a级黄色片| 首页视频小说图片口味搜索| 国产主播在线观看一区二区| 夜夜躁狠狠躁天天躁| 露出奶头的视频| 亚洲va日本ⅴa欧美va伊人久久| av超薄肉色丝袜交足视频| 建设人人有责人人尽责人人享有的| 久久香蕉激情| videos熟女内射| 欧美另类亚洲清纯唯美| 亚洲av成人av| 美国免费a级毛片| 啪啪无遮挡十八禁网站| 亚洲精品国产区一区二| 亚洲欧美激情综合另类| 亚洲片人在线观看| 啦啦啦在线免费观看视频4| 叶爱在线成人免费视频播放| 国产精品1区2区在线观看. | 国产精品免费视频内射| 国产熟女午夜一区二区三区| 免费黄频网站在线观看国产| 国产精品一区二区在线不卡| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品 国内视频| 热re99久久精品国产66热6| 无人区码免费观看不卡| 国产又色又爽无遮挡免费看| 久久热在线av| 亚洲九九香蕉| 亚洲欧美日韩另类电影网站| tocl精华| av中文乱码字幕在线| 国产精品免费大片| 国产午夜精品久久久久久| 日韩免费高清中文字幕av| 日韩人妻精品一区2区三区| 久久久精品区二区三区| 免费在线观看亚洲国产| 久久久精品免费免费高清| 日日爽夜夜爽网站| 嫁个100分男人电影在线观看| 身体一侧抽搐| 久久久久国产一级毛片高清牌| 亚洲,欧美精品.| 在线观看舔阴道视频| 久久久久久久久久久久大奶| 婷婷成人精品国产| 久久久久久亚洲精品国产蜜桃av| 亚洲第一青青草原| 亚洲午夜理论影院| 老鸭窝网址在线观看| 纯流量卡能插随身wifi吗| 可以免费在线观看a视频的电影网站| 久久中文看片网| 色播在线永久视频| 视频在线观看一区二区三区| 成人国产一区最新在线观看| 亚洲精品国产一区二区精华液| 99re6热这里在线精品视频| 搡老熟女国产l中国老女人| 久久精品成人免费网站| 伊人久久大香线蕉亚洲五| 大片电影免费在线观看免费| 亚洲精品粉嫩美女一区| 热99国产精品久久久久久7| 在线观看免费日韩欧美大片| 午夜福利视频在线观看免费| 最近最新中文字幕大全电影3 | 国产99久久九九免费精品| 久久人妻福利社区极品人妻图片| 麻豆乱淫一区二区| 亚洲一区高清亚洲精品| 免费在线观看完整版高清| 91在线观看av| 欧美日韩成人在线一区二区| 女人高潮潮喷娇喘18禁视频| 国产日韩一区二区三区精品不卡| 大陆偷拍与自拍| 侵犯人妻中文字幕一二三四区| 在线观看日韩欧美| 久久精品熟女亚洲av麻豆精品| 黄色怎么调成土黄色| 久久人妻熟女aⅴ| 动漫黄色视频在线观看| 精品欧美一区二区三区在线| 他把我摸到了高潮在线观看| 一区二区三区国产精品乱码| 最近最新免费中文字幕在线| 日本五十路高清| 欧美精品av麻豆av| 黄色视频,在线免费观看| 亚洲五月色婷婷综合| 亚洲人成伊人成综合网2020| 亚洲,欧美精品.| 美国免费a级毛片| 在线观看免费日韩欧美大片| 免费黄频网站在线观看国产| 黄片播放在线免费| 日本a在线网址| 亚洲成人免费电影在线观看| 在线av久久热| 十八禁网站免费在线| 免费日韩欧美在线观看| 午夜精品在线福利| 国产真人三级小视频在线观看| 久久青草综合色| 满18在线观看网站| 嫩草影视91久久| 国内久久婷婷六月综合欲色啪| 19禁男女啪啪无遮挡网站| 亚洲午夜理论影院| 亚洲欧美一区二区三区黑人| 麻豆乱淫一区二区| 欧美丝袜亚洲另类 | 国产一区二区三区视频了| 狂野欧美激情性xxxx| 国产欧美日韩精品亚洲av| 老司机在亚洲福利影院| 久久久精品国产亚洲av高清涩受| 另类亚洲欧美激情| netflix在线观看网站| 高清毛片免费观看视频网站 | 91精品三级在线观看| 欧美日韩瑟瑟在线播放| 99热国产这里只有精品6| 80岁老熟妇乱子伦牲交| 亚洲欧美一区二区三区久久| 在线观看免费日韩欧美大片| 午夜福利欧美成人| 男男h啪啪无遮挡| 丝袜人妻中文字幕| 在线视频色国产色| 免费一级毛片在线播放高清视频 | 性色av乱码一区二区三区2| 丝袜在线中文字幕| 国产精品久久电影中文字幕 | 国产99久久九九免费精品| 欧美精品人与动牲交sv欧美| 新久久久久国产一级毛片| 精品一区二区三区av网在线观看| 最近最新中文字幕大全免费视频| 国产深夜福利视频在线观看| 中文字幕最新亚洲高清| 国产伦人伦偷精品视频| 自线自在国产av| 国产aⅴ精品一区二区三区波| 国产成人精品无人区| av线在线观看网站| 黄片播放在线免费|